Computing Hue Contents

Total Page:16

File Type:pdf, Size:1020Kb

Computing Hue Contents Hue From Wikipedia, the free encyclopedia Hue is one of the three main attributes of perceived color, in addition to lightness and chroma (or colorfulness). Hue is also one of the three dimensions in some colorspaces along with saturation, and brightness (also known as lightness or value). Hue is that aspect of a color described Hue in the HSB/HSL encodings of RGB with names such as "red", "yellow", etc. Usually, colors with the same hue are distinguished with adjectives referring to their lightness and/or saturation, such as with "light blue", "pastel blue", "vivid blue". Notable exceptions include brown, which is a dark orange,[1] and pink, a light desaturated red. In painting color theory, a hue refers to a pure color—one without tint or shade (added white or black pigment, respectively). A hue is an element of the color wheel. Contents An image with the hues 1 Computing hue cyclically shifted in HSL 1.1 Computing hue from RGB space. 1.1.1 Computing hue from RGB for HSB, HSV, and HSL color spaces 2 Specialized hues 3 Hue as a qualification in the names of artist's colors 4 Hue vs. dominant wavelength 5 References 6 See also 7 External links The hues in the Computing hue image of this Painted Bunting are In opponent color spaces, such as CIE L*a*b* (CIELAB) and CIE L*u*v* (CIELUV), hue cyclically rotated with time. may be computed together with saturation (or chroma) by converting a color's chromaticity coordinates from rectangular coordinates into polar coordinates. Hue is the angular component of the polar representation, while chroma is the radial component. Specifically, in CIELAB:[2] while, analogously, in CIELUV:[2] In practice, a four-quadrant arctangent may be used if available to invert these formulae. Computing hue from RGB Preucil[3] describes a color hexagon, similar to a trilinear plot described by Evans, Hanson, and Brewer,[4] which may be used to compute hue. To place red at 0°, green at 120°, and blue at 240°, one may solve: He also used a polar plot, which he termed a color circle.[3] Using R, G, and B, rather than the R, G, and B densities Preucil used, one may compute hue angle using the following scheme: determine which of the six possible orderings of R, G, and B prevail, then apply the appropriate formula; see table below. Ordering Hue Region Formula Red-Yellow Yellow-Green Green-Cyan Cyan-Blue Blue-Magenta Magenta-Red Note that in each case the formula contains the fraction , where H is the highest of R, G, and B; L is the lowest, and M is the mid one between the other two. This is referred to as the Preucil Hue Error, and was used in the computation of mask strength in photomechanical color reproduction.[5] Hue angles computed for the Preucil circle agree with the hue angle computed for the Preucil Hexagon at integer multiples of 30 degrees (red, yellow, green, cyan, blue, magenta, and the colors mid-way between contiguous pairs), and differ by approximately 1.2 degrees at odd integer multiples of 15 degrees (based on the circle formula), the maximum divergence between the two. Computing hue from RGB for HSB, HSV, and HSL color spaces The process of converting an RGB color into an HSL color space or HSV color space is usually based on a 6-piece or 12-piece piecewise-linear mapping, treating the HSV cone as a hexacone, or the HSL double cone as a double hexacone.[6] Specialized hues The hues exhibited by caramel colorings and beers are fairly limited in range. The Linner hue index is used to quantify the hue of such products. Hue as a qualification in the names of artist's colors HSV color space as a conical object Manufacturers of pigments use the word hue e.g. 'Cadmium Yellow (hue)' to indicate that the original pigmentation ingredient, often toxic, has been replaced by safer (or cheaper) alternatives whilst retaining the hue of the original. Replacements are often used for chromium, cadmium and alizarin. Hue vs. dominant wavelength Dominant wavelength (or sometimes equivalent wavelength) is a physical analog to the perceptual attribute hue. On a chromaticity diagram, a line is drawn from a white point through the coordinates of the color in question, until it intersects the spectral locus. The wavelength at which the line intersects the spectrum locus is identified as the color's dominant wavelength if the point is on the same side of the white point as the spectral locus, and as the color's complementary wavelength if the point is on the opposite side.[7] References 1. ^ C J Bartleson, "Brown". Color Research and Application, 1 : 4, p 181-191 (1976). 2. ^ a b Colorimetry, second edition: CIE Publication 15.2. Vienna: Bureau Central of the CIE, 1986. 3. ^ a b Frank Preucil, "Color Hue and Ink Transfer … Their Relation to Perfect Reproduction, TAGA Proceedings, p 102-110 (1953). 4. ^ Ralph Merrill Evans, W T Hanson, and W Lyle Brewer, Principles of Color Photography. New York: Wiley, 1953 5. ^ Miles Southworth, Color Separation Techniques, second edition. Livonia, New York: Graphic Arts Publishing, 1979 6. ^ Max K. Agoston (2004). Computer Graphics and Geometric Modelling v. 1: Implementation and Algorithms. Springer, 301–304. ISBN 1852338180. 7. ^ Deane B Judd and Günter Wyszecki, Color in Business, Science, and Industry. New York: Wiley, 1976. See also Lightness (color) Colorfulness Chromaticity Munsell color system Bezold-Brücke shift External links Editing of hue in photography Retrieved from "http://en.wikipedia.org/wiki/Hue" Categories: All articles with unsourced statements | Articles with unsourced statements since August 2007 | Articles to be expanded since February 2007 | All articles to be expanded | Color This page was last modified 23:57, 4 January 2008. All text is available under the terms of the GNU Free Documentation License. (See Copyrights for details.) Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a U.S. registered 501(c)(3) tax- deductible nonprofit charity..
Recommended publications
  • Guided Tour of Color Space
    A Guided Tour of Color Space Charles Poynton This article describes the theory of color repro- dent radiation with different spectral response duction in video, and some of the engineering curves. Because there are exactly three types of compromises necessary to make practical color photoreceptors, three components are cameras and practical coding systems. necessary and sufficient to describe a color, providing that appropriate spectral weighting Video processing is generally concerned with functions are used: Color vision is inherently color represented in three components derived trichromatic. from the scene, usually red, green, and blue or components computed from these. Once red, A fourth type of photoreceptor cell, the rod, is green, and blue components of a scene are also present in the retina. Rods are effective only obtained, color coding systems transform these at extremely low light intensities. Because there components into other forms suitable for is only one type of rod cell, “night vision” cannot processing, recording, and transmission. Accu- perceive color. Image reproduction takes place at rate color reproduction depends on knowledge light levels sufficiently high that the rod recep- of exactly how the physical spectra of the orig- tors play no role. inal scene are transformed into these compo- nents and exactly how the color components are Isaac Newton said, “Indeed rays, properly transformed to physical spectra at the display. expressed, are not colored.” Spectral power distributions (SPDs) exist in the physical world, I use the term luminance and the symbol Y to but color exists only in the eye and the brain. refer to true, CIE luminance, a linear-light quan- tity proportional to physical intensity.
    [Show full text]
  • Introduction to Basic Color Photography Edition Date
    SUBCOURSE EDITION SS0514 A INTRODUCTION TO BASIC COLOR PHOTOGRAPHY EDITION DATE: SEPTEMBER 1994 INTRODUCTION TO BASIC COLOR PHOTOGRAPHY Subcourse Number SS0514 EDITION A United States Army Signal Center and School Fort Gordon, GA 30905-5074 5 Credit Hours Edition Date: September 1994 SUBCOURSE OVERVIEW This subcourse presents you with information on color photography, including theory, exposure, and printmaking. Topics covered include the theory of light, how colors are formed, and color print materials--their structure and exposure. Color negative developing using the popular C-41 process is explained, as well as the Ektaprint 2 process that is most often used to make color prints from negatives. The E6 reversal processing and the two methods of making prints from slides are examined (color coupler (conventional reversal paper) and dye destruction (like Cibachrome)). In addition, this subcourse defines general quality control procedures. Since duplicate transparencies are often required, the generation process is explained. There are no prerequisites for this subcourse. This subcourse reflects the doctrine which was current at the time it was prepared. In your own work situation, always refer to the latest official publications. Unless otherwise stated, the masculine gender of singular pronouns is used to refer to both men and women. TERMINAL LEARNING OBJECTIVE ACTION: You will identify procedures for color negative printing techniques, color reversal film processing and printing, and slide duplicating techniques. CONDITION: You will be given information from TM 11-401-2, STP 11- 25S13-SM-TG, and Photographer's Mate Training Series NAVEDTRA 373-02-45-83, MOD 2. STANDARD: To demonstrate competency of this task, you must achieve a minimum score of 70% on the subcourse examination.
    [Show full text]
  • Color Photography, an Instrumentality of Proof Edwin Conrad
    Journal of Criminal Law and Criminology Volume 48 | Issue 3 Article 10 1957 Color Photography, an Instrumentality of Proof Edwin Conrad Follow this and additional works at: https://scholarlycommons.law.northwestern.edu/jclc Part of the Criminal Law Commons, Criminology Commons, and the Criminology and Criminal Justice Commons Recommended Citation Edwin Conrad, Color Photography, an Instrumentality of Proof, 48 J. Crim. L. Criminology & Police Sci. 321 (1957-1958) This Criminology is brought to you for free and open access by Northwestern University School of Law Scholarly Commons. It has been accepted for inclusion in Journal of Criminal Law and Criminology by an authorized editor of Northwestern University School of Law Scholarly Commons. POLICE SCIENCE COLOR PHOTOGRAPHY, AN INSTRUMENTALITY OF PROOF EDWIN CONRAD The author is a practicing attorney in Madison, Wisconsin. He is a graduate of the University of Wisconsin and the University of Wisconsin Law School, and in addition holds a degree of Master of Arts from this same institution. Mr. Conrad is the author of two books, Modern Trial Evidence (1956) and Wisconsin Evidence (1949). He has served as a lecturer on the law of evidence and scientific evidence at the University of Wisconsin, and is a member of the American Law Institute and the American Acad- emy of Forensic Sciences.-EmroR HISTORICAL HIGHLIGHTS Color photography, the miracle of modem science, is popularly assumed to be of recent origin. Yet we know that the first attempts at reproducing color chemically were made by Prof. T. J. Seebeck of Jena who in 1810, long before photography had even been discovered, observed that if moistened silver chloride were allowed to darken on paper and then exposed to different colors of light, the silver chloride would approximate the colors that had effected it.
    [Show full text]
  • Language of Color Language of Color
    TechneGraphics INC 513.248.2121 Professional Printing Providers Fax: 513.248.5141 2002 Ford Circle, Suite D [email protected] Milford, Ohio 45150 tgiconnect.com Address Service Requested October 2015 TechneGraphics INC Professional Printing Providers Speaking the... Speaking the... Language of Color Language of Color olor is an essential element of communication. It can be used to shape Cperceptions, affect reactions, influence choices, and provoke responses. In marketing materials, it adds a dynamic to the structure TechneGraphics INC Professional Printing Providers – the general form and direction – of the words and image by highlighting and marking 2002 Ford Circle Suite D important content. The more you understand the Milford, Ohio 45150 language of color, the more effective you will be in speaking to your customers and prospects via 513.248.2121 your printed materials and web site. Fax: 513.248.5141 How We See Color [email protected] Science describes how humans perceive color. www.tgiconnect.com Specifically, color is light. In his 1704 book, Types of Color Wheels Opticks, the English natural philosopher Sir A color wheel is arranged according to the Interactive Print Experts Isaac Newton described the fundamental nature chromatic relationship of the colors. The relationships are primary, secondary, tertiary, Stock Photography • Launch a Website of light as color. The book was based on his complementary, and analogous. • Save Contact Info observation that when pure white light passes through a prism, it separates into a spectrum When you need a full color photograph Collections are also available for textures, finishes, • Make a Call • Primary: three hues (i.e., colors) that form the of seven hues (red, orange, yellow, green, blue, to illustrate a brochure or other printed and special effects.
    [Show full text]
  • Teaching Students About White Balance and Color Correction Using Digital Photography by Dr
    Teaching Students about White Balance and Color Correction using Digital Photography by Dr. Jerry J. Waite, Dr. Cheryl Willis, and Garth Oliver, University of Houston Editor’s Note: To view the photos in color go to: In addition to explaining the technology involved in http://www.igaea.org/Images/Waite/ capturing correctly white-balanced color images and subsequent adjustments that must be made, setting up a Introduction demonstration in which illuminant and camera settings Today’s consumer expects good color reproduc- result in both correctly and incorrectly white-balanced tions. Yellow people, green skies, and blue foliage are not reproductions will help students to understand the acceptable in today’s color-charged world. Southworth impact of light on a reproduction. In addition, the use of and Leyda (1998) describe some of the factors that cause tools, such as the GretagMacbeth Color Checker, makes a color reproduction to be “good” in the eyes of the it easy to show students how to fix incorrectly white bal- beholder as the following: anced images using Photoshop®. This paper includes an Equipment, Materials and Facilities List as well as step- • The contrast must be correct. by-step instructions for such a shoot. These instructions • The color hues must be accurate. have been successfully employed in several college-level classes and at the 2004 International Graphic Arts • Memory colors must be accurate. Education Association Conference (IGAEA, 2004). • The color balance must look natural. Theoretical Background • Gray balance should be accurate and look normal. Southworth and Leyda (1998) summarize the attri- “Good” reproductions are dependent upon the light butes of a “good” color reproduction—“Clean and bright source used to illuminate the subject, the film or digital is always right.
    [Show full text]
  • ON FILTERS Color Motion Picture films Are Balanced in Manufacturing for Use with Either Tungsten Light Sources (3200K) Or Daylight (5500K)
    CAMERA AND LIGHTING FILTERS CAMERA AND LIGHTING FILTERS A filter is a piece of glass, gelatin, or other transparent material used over the lens or light source to emphasize, eliminate, or change the color, density, or quality of the entire scene or certain elements in the scene. CAMERA FILTERS Optical filters provide the means to profoundly aFect the image you create. They are most often used at the lens during the actual shooting, but can also be physically inserted into telecines and scanners, and can be virtually applied when the image exists in data space. Filters can be regarded as belonging to one of four general types: • Color correction —broadly, these are filters that aFect the daylight/tungsten balance and the green/magenta shift of the light that passes through them. The most common of these is the 85 filter, which corrects daylight to tungsten. This is the filter we use when we shoot a day exterior with tungsten balanced film. There are many grades, colors and densities of this type of filter, designed to allow us to deal with nearly any color of light and make it a color that the film can manage. They are categorized as conversion, light balancing, and color compensating filters. • Optical e*ect —these filters, like the polarizer, the star filter, or the split field diopter, redirect or selectively refract the light passing through them. The polarizer is commonly used to reduce glare and eliminate reflections. It does this in the same way as do your sunglasses, by allowing only aligned, parallel wavelengths of light to pass through its density.
    [Show full text]
  • Bird Photography by the Direct Color Process
    74 OV•TON.•N•) H•RrER, Bird Photography. [Jan.Auk BIRD PHOTOGRAPHY BY THE DIRECT COLOR PROCESS. BY FRANK OVERTON• M.D. AND FRANCIS HARPER. }VI•N¾photographs that show the home life of wild birds are objectsof great interestand beauty, but black and white pictures fail to reveal the most striking of all the characteristicsof a bird -- its color. Photographyaffords an almostperfect means of record- ing other important characteristics,such as size, shape, and habi~ tat; but until recently it has been almosta total failure in record- ing the colorof the plumage. Hitherto the colorsof birds have been representedby meansof paintings and their reproductionsor by means of hand-colored lantern slides. But bird-paintingis an extremelyslow and difficult process. The artists who are capable of adequately portraying birdsare surprisinglyfew in number,and to satisfactorilyreproduce the paintingson the printed pageis almostas difficultas to make the originalpictures. Consequentlymany of the printed pictures in colorare merely keys,and few paintedportraits, however pleas- ing their composition,are accuratein every particular. Hand- colored lantern slidesare valuable and beautiful, but most of them fail to representthe bird subjectsaccurately or in desirabledetail. Therefore, any additionalmeans of recordingvividly and minutely the natural colorsof wild birdsis worthy of carefulstudy. Sucha means is afforded by the use of the Lumi[re autochromeplates. Photographstaken upon these plates are transparencies,having the qualitiesof goodlantern slides,with the additionalquality of showingthe colorsin their natural tonesand in pleasingdetail. An autochromephotograph may be reproducedby engTaving and printing in the sameway that a painting may be reproduced. But an autochromeis much fuller of microscopicdetail than a painting done by hand, and this detail is too fine to be brought out by the engraver'sart at the presenttime.
    [Show full text]
  • Lippmann Photography: Its History and Recent Development
    Lippmann photography: its history and recent development Hans I. Bjelkhagen De Montfort University, Centre for Modern Optics, The Gateway, Leicester LE1 9BH, UK Email: [email protected]; Telephone: +44-116 250 6374; Fax: +44-116 250 6144 Abstract More than one hundred years ago Gabriel Lippmann recorded the first permanent colour photographs in France. His technique based on recorded light interference structures in an emulsion produced unique colour photographs. It is known as interferential photography or interference colour photography, as well as Lippmann photography. This type of direct colour photography was rather complicated, which is why only very few people recorded such photographs after Lippmann revealed his technique in 1891. When correctly performed, very beautiful colour photographs could be obtained. The fact that the colours of the early Lippmann photographs are well preserved indicates that their archival properties are very good. The principle of Lippmann photography is presented, and a review of its early history is provided. Important early contributions were made by Eduard Valenta, the Lumière brothers, Richard Neuhauss and Hans Lehmann. They improved, in particular, the recording emulsions and recorded many beautiful colour photographs. Over the last few years there has been increasing interest in Lippmann's unique photographic technique. Recent progress in panchromatic ultrafine-grain recording materials for holography has made it possible to record Lippmann photographs again. Since a Lippmann photograph can record the entire colour spectrum, it can provide the best possible photographic colour rendition. In particular, human skin and reflections from metallic objects look extremely realistic. Because of ultrahigh resolution, image detail quality is also remarkable.
    [Show full text]
  • Color Correction Filters - Conversions -**All Trademarks and Copyrights Apply** **Mired Shift Data from NYIP Filter# Color Exp.Incr
    Color Correction Filters - Conversions -**All Trademarks and Copyrights Apply** **Mired Shift Data from NYIP Filter# Color Exp.Incr. Conversion GamColor Lee RoscoLux R/EColor Cinegel Mired** DKBlue 2 3200K to 10000+K Double CTB Alice Double CTB Double Blue -270 (Daylite) (-274)200 Blue378 (-275)200 (-260)3220 DKBlue 1 1/2 2800K to 5600K Extra CTB -190 (2800deg+) (-190)1520 AKA City Blue 847 80A Dk.Blue 2 3200K to 5500K Full CTB Full CTB Full Blue Full CTB Full CTB -130 (2300deg+) (-141)1523 (-137)201 (-131)3202 (-134)201 (-131)3202 (Southern Theat. Sky 882) Boost. 371 80B Dk Blue 1 ½ 3400k TO 5500k 3/4 CTB 3/4 CTB 3/4 CTB 3/4 CTB -110 (2100deg+) (-108)1526 (-112)281 (-113)281 (-100)3203 (Blue Belle 888) 80C Dk Blue 1 3800K to 5500K ½ CTB ½ CTB No Color ½ CTB Theat. -80 (1700deg+) (-75)1529 (-78)202 Blue 60 202 Boost. (Whisper Clearwater 372 Blue 842) 360 80D Blue 2/3 4200K to 5500K ½ Blue ½ CTB -60 (1300deg+) 3204 (-68)3204 82C Blue 2/3 2800K to 3200K (5100K 1/4 CTB 1/4 CTB 1/3 Blue 1/4 CTB 1/3 CTB -45 to 5500K) (-38)1532 (-35)203 3206 203 (-49)3206 (400deg+) (Blue Ice Theat. 885) Boost. 373 82B PaleBlue 1/2 2900K to 3200K (5200K 1/6 CTB 1/4 Blue 1/4 CTB -30 to 5500K) (300deg+) (-28)1534 3208 (-30)3208 82A PaleBlue 1/2 3000K to 3200K (5300K 1/8 CTB 1/8 CTB 1/8 CTB -20 to 5500K) (200deg+) (-20)1535 (-18)218 218 (Winter White 870) 82 LtBlue 1/3 3100K to 3200K (5400K 1/8 Blue 1/8 CTB -10 to 5500K) (100deg+) 3216 (-12)3216 81 LtAmber/ 1/3 3300K to 3200K No Color No Color +10 Straw (100deg-) Straw (+10) Straw (+10) 159 159 81A LtAmber/ 1/3
    [Show full text]
  • Three-Dimensional Photography by Holography
    Three-dimensional photography by holography Jose J. Lunazzi Universidade Estadual de Campinas Institute of Physics C.P. 6165 13083-950 Campinas-SP, Brazil Abstract Color encoding of depth is shown to occur naturally in holograms that are reconstructed under white light illumination. It can be registered in a common color photograph, allowing a simple method of visual decoding by means of ordinary colored 3-D spectacles. The fundamental holographic equations and the photographic procedure required for maximum fidelity in three-dimensional reproduction are described. The result is a new kind of photograph that shows all of the views of the object in a continuous sequence. It permits an animated photographic representation and also makes it possible to adjust the degree of depth visualization when observed as a stereoscopic representation. Subject terms: ho1ography; photography; stereoscopy; color encoding; three-dimensional imaging. Optical Engineering 29/11. 9- 14 (January 1990) CONTENTS 1. Introduction 2. Spectral encoding of depth 3. Holophotography: storage of multiple views in a single photograph 4. Influence of the wavelength resolution 5. Experimental details 6. Conclusions 7. Acknowledgments 8. References 1. INTRODUCTION Color encoding of various properties of objects by holograms has been demonstrated previous1y1-3. In this paper we describe how a hologram naturally encodes a three-dimensional image that, after being photographed, constitutes a perfect anaglyph to be observed through colored spectacles*. The technique employs the well-known effect of blurring by chromatic aberration4 that appears whenever a hologram is made by following the classical procedures of Leith and Upatnieks5 or Denisyuk6. When illuminated in white light, this hologram shows an interesting property, visible in the form of a spectral multicolor profiling of shapes in the scene, that we demonstrate to constitute the spectral encoding of depth.
    [Show full text]
  • 20Th Century Materials, Processes, Technologies
    20th Century Materials, Processes, Technologies Photographic Process ID Webinar #2 Image Permanence Institute 2017-2018 James and Marjorie Carver Instant (Diffusion Transfer) Resources Web Resources • Graphics Atlas – www.graphicsatlas.org • George Eastman Museum Photographic Processes Series – YouTube • Lingua Franca: A Common Language for Conservators of Photographic Materials – iTunes App • The Atlas of Analytical Signatures of Photographic Processes – www.getty.edu/conservation/publications_resources/pdf_publications/atlas.html Print Resources • Twentieth Century Color Photographs: Identification and Care by Silvie Penichon • Photographs of the Past: Process and Preservation by Bertrand Lavedrine • In the Darkroom: An Illustrated Guide to Photographic Processes Before the Digital Age by Sarah Kennel What is a Photograph? • An Image – Light Sensitivity of Chemical Compounds • Silver Salts • Chromium Salts • A substrate Salts (Chemistry): an ionic compound which is made up of two groups of oppositely charged ions (positive and negative) Scanning electron microscope image of silver bromide crystals 19th C Processes into 20th C • Collodion POP, 1885-1910 • Gelatin POP, 1885-1910 • Matte Collodion, 1895-1910 • Carbon, 1868-1940 • Gum Dichromate, 1894-1930s • Cyanotype, 1842-1950 • Platinum, 1880-1930 • Gelatin Dry Plate, 1880-1925 Collodion POP 20th C Processes • Silver Gelatin DOP, 1890-2000 • Screen Plate, 1907-1935 • Carbro, 1925-1950 • Dye Imbibition, 1945-1990 • Chromogenic, 1942-Present • Instant (Diffusion Transfer), 1948-2008 Negative A tonally reversed image on a transparent support. • Glass plate • Flexible strip film Black and White And • Sheet film Color 35mm negative on cellulose nitrtate support Negative All light sensitive materials exposed to light through a camera produce a negative image. More light is reflecting off the light surfaces like the man’s shirt exposing the light sensitive material creating darker hues.
    [Show full text]
  • Color Mania: the Material of Color in Photography and Film
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2020 Introduction: Color mania. The material of color in photography and film. Exhibition and publication Hielscher, Eva ; Wietlisbach, Nadine Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-183184 Book Section Published Version Originally published at: Hielscher, Eva; Wietlisbach, Nadine (2020). Introduction: Color mania. The material of color in photog- raphy and film. Exhibition and publication. In: Flückiger, Barbara; Hielscher, Eva; Wietlisbach, Nadine. Color mania : the material of color in photography and film. Zürich: Lars Müller, 9-14. Color Mania: The Material of Color in Photography and Film Exhibition and Publication Eva Hielscher and Nadine Wietlisbach Since the emergence of film and photography in the nine- teenth century, the two media have both featured color—a fact that has to this day often been neglected in cultural, art historical, and sci - en tificdebates and is almost completely unknown to the general pub - lic. In the early 1840s, such photographic forms as daguerreotypes and cyanotypes already contained color elements—the former pro duced by coloring techniques, the latter by chemical reactions in the printing process. Likewise, among the earliest motion pictures pro duced in the 1890s were colorful (hand-colored, tinted, and/or toned) spectacles. But that is not all: in the course of the history of analogue photography and analogue film—both based on photoch e m i c a l l y p r o - duced individual images or series of images—several hundred color processes have been devised, long before the digital age presented the two sister media with new challenges and possibilities.
    [Show full text]