Business License List As of 04.15.21
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geoscience and a Lunar Base
" t N_iSA Conference Pubhcatmn 3070 " i J Geoscience and a Lunar Base A Comprehensive Plan for Lunar Explora, tion unclas HI/VI 02907_4 at ,unar | !' / | .... ._-.;} / [ | -- --_,,,_-_ |,, |, • • |,_nrrr|l , .l -- - -- - ....... = F _: .......... s_ dd]T_- ! JL --_ - - _ '- "_r: °-__.......... / _r NASA Conference Publication 3070 Geoscience and a Lunar Base A Comprehensive Plan for Lunar Exploration Edited by G. Jeffrey Taylor Institute of Meteoritics University of New Mexico Albuquerque, New Mexico Paul D. Spudis U.S. Geological Survey Branch of Astrogeology Flagstaff, Arizona Proceedings of a workshop sponsored by the National Aeronautics and Space Administration, Washington, D.C., and held at the Lunar and Planetary Institute Houston, Texas August 25-26, 1988 IW_A National Aeronautics and Space Administration Office of Management Scientific and Technical Information Division 1990 PREFACE This report was produced at the request of Dr. Michael B. Duke, Director of the Solar System Exploration Division of the NASA Johnson Space Center. At a meeting of the Lunar and Planetary Sample Team (LAPST), Dr. Duke (at the time also Science Director of the Office of Exploration, NASA Headquarters) suggested that future lunar geoscience activities had not been planned systematically and that geoscience goals for the lunar base program were not articulated well. LAPST is a panel that advises NASA on lunar sample allocations and also serves as an advocate for lunar science within the planetary science community. LAPST took it upon itself to organize some formal geoscience planning for a lunar base by creating a document that outlines the types of missions and activities that are needed to understand the Moon and its geologic history. -
Qiao Et Al., Sosigenes Pit Crater Age 1/51
Qiao et al., Sosigenes pit crater age 1 2 The role of substrate characteristics in producing anomalously young crater 3 retention ages in volcanic deposits on the Moon: Morphology, topography, 4 sub-resolution roughness and mode of emplacement of the Sosigenes Lunar 5 Irregular Mare Patch (IMP) 6 7 Le QIAO1,2,*, James W. HEAD2, Long XIAO1, Lionel WILSON3, and Josef D. 8 DUFEK4 9 1Planetary Science Institute, School of Earth Sciences, China University of 10 Geosciences, Wuhan 430074, China. 11 2Department of Earth, Environmental and Planetary Sciences, Brown University, 12 Providence, RI 02912, USA. 13 3Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK. 14 4School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, 15 Georgia 30332, USA. 16 *Corresponding author E-mail: [email protected] 17 18 19 20 Key words: Lunar/Moon, Sosigenes, irregular mare patches, mare volcanism, 21 magmatic foam, lava lake, dike emplacement 22 23 24 25 1/51 Qiao et al., Sosigenes pit crater age 26 Abstract: Lunar Irregular Mare Patches (IMPs) are comprised of dozens of small, 27 distinctive and enigmatic lunar mare features. Characterized by their irregular shapes, 28 well-preserved state of relief, apparent optical immaturity and few superposed impact 29 craters, IMPs are interpreted to have been formed or modified geologically very 30 recently (<~100 Ma; Braden et al. 2014). However, their apparent relatively recent 31 formation/modification dates and emplacement mechanisms are debated. We focus in 32 detail on one of the major IMPs, Sosigenes, located in western Mare Tranquillitatis, 33 and dated by Braden et al. -
Glossary Glossary
Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts. -
Planetary Surfaces
Chapter 4 PLANETARY SURFACES 4.1 The Absence of Bedrock A striking and obvious observation is that at full Moon, the lunar surface is bright from limb to limb, with only limited darkening toward the edges. Since this effect is not consistent with the intensity of light reflected from a smooth sphere, pre-Apollo observers concluded that the upper surface was porous on a centimeter scale and had the properties of dust. The thickness of the dust layer was a critical question for landing on the surface. The general view was that a layer a few meters thick of rubble and dust from the meteorite bombardment covered the surface. Alternative views called for kilometer thicknesses of fine dust, filling the maria. The unmanned missions, notably Surveyor, resolved questions about the nature and bearing strength of the surface. However, a somewhat surprising feature of the lunar surface was the completeness of the mantle or blanket of debris. Bedrock exposures are extremely rare, the occurrence in the wall of Hadley Rille (Fig. 6.6) being the only one which was observed closely during the Apollo missions. Fragments of rock excavated during meteorite impact are, of course, common, and provided both samples and evidence of co,mpetent rock layers at shallow levels in the mare basins. Freshly exposed surface material (e.g., bright rays from craters such as Tycho) darken with time due mainly to the production of glass during micro- meteorite impacts. Since some magnetic anomalies correlate with unusually bright regions, the solar wind bombardment (which is strongly deflected by the magnetic anomalies) may also be responsible for darkening the surface [I]. -
DMAAC – February 1973
LUNAR TOPOGRAPHIC ORTHOPHOTOMAP (LTO) AND LUNAR ORTHOPHOTMAP (LO) SERIES (Published by DMATC) Lunar Topographic Orthophotmaps and Lunar Orthophotomaps Scale: 1:250,000 Projection: Transverse Mercator Sheet Size: 25.5”x 26.5” The Lunar Topographic Orthophotmaps and Lunar Orthophotomaps Series are the first comprehensive and continuous mapping to be accomplished from Apollo Mission 15-17 mapping photographs. This series is also the first major effort to apply recent advances in orthophotography to lunar mapping. Presently developed maps of this series were designed to support initial lunar scientific investigations primarily employing results of Apollo Mission 15-17 data. Individual maps of this series cover 4 degrees of lunar latitude and 5 degrees of lunar longitude consisting of 1/16 of the area of a 1:1,000,000 scale Lunar Astronautical Chart (LAC) (Section 4.2.1). Their apha-numeric identification (example – LTO38B1) consists of the designator LTO for topographic orthophoto editions or LO for orthophoto editions followed by the LAC number in which they fall, followed by an A, B, C or D designator defining the pertinent LAC quadrant and a 1, 2, 3, or 4 designator defining the specific sub-quadrant actually covered. The following designation (250) identifies the sheets as being at 1:250,000 scale. The LTO editions display 100-meter contours, 50-meter supplemental contours and spot elevations in a red overprint to the base, which is lithographed in black and white. LO editions are identical except that all relief information is omitted and selenographic graticule is restricted to border ticks, presenting an umencumbered view of lunar features imaged by the photographic base. -
First International Conference on Mars Polar Science and Exploration
FIRST INTERNATIONAL CONFERENCE ON MARS POLAR SCIENCE AND EXPLORATION Held at The Episcopal Conference Center at Carnp Allen, Texas Sponsored by Geological Survey of Canada International Glaciological Society Lunar and Planetary Institute National Aeronautics and Space Administration Organizers Stephen Clifford, Lunar and Planetary Institute David Fisher, Geological Survey of Canada James Rice, NASA Ames Research Center LPI Contribution No. 953 Compiled in 1998 by LUNAR AND PLANETARY INSTITUTE The Institute is operated by the Universities Space Research Association under Contract No. NASW-4574 with the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication. Abstracts in this volume may be cited as Author A. B. (1998) Title of abstract. In First International Conference on Mars Polar Science and Exploration, p. xx. LPI Contribution No. 953, Lunar and Planetary Institute, Houston. This report is distributed by ORDER DEPARTMENT Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1 113 Mail order requestors will be invoiced for the cost of shipping and handling. LPI Contribution No. 953 iii Preface This volume contains abstracts that have been accepted for presentation at the First International Conference on Mars Polar Science and Exploration, October 18-22? 1998. The Scientific Organizing Committee consisted of Terrestrial Members E. Blake (Icefield Instruments), G. Clow (U.S. Geologi- cal Survey, Denver), D. Dahl-Jensen (University of Copenhagen), K. Kuivinen (University of Nebraska), J. -
Appendix I Lunar and Martian Nomenclature
APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei -
User Guide to 1:250,000 Scale Lunar Maps
CORE https://ntrs.nasa.gov/search.jsp?R=19750010068Metadata, citation 2020-03-22T22:26:24+00:00Z and similar papers at core.ac.uk Provided by NASA Technical Reports Server USER GUIDE TO 1:250,000 SCALE LUNAR MAPS (NASA-CF-136753) USE? GJIDE TO l:i>,, :LC h75- lu1+3 SCALE LUNAR YAPS (Lumoalcs Feseclrch Ltu., Ottewa (Ontario) .) 24 p KC 53.25 CSCL ,33 'JIACA~S G3/31 11111 DANNY C, KINSLER Lunar Science Instltute 3303 NASA Road $1 Houston, TX 77058 Telephone: 7131488-5200 Cable Address: LUtiSI USER GUIDE TO 1: 250,000 SCALE LUNAR MAPS GENERAL In 1972 the NASA Lunar Programs Office initiated the Apollo Photographic Data Analysis Program. The principal point of this program was a detailed scientific analysis of the orbital and surface experiments data derived from Apollo missions 15, 16, and 17. One of the requirements of this program was the production of detailed photo base maps at a useable scale. NASA in conjunction with the Defense Mapping Agency (DMA) commenced a mapping program in early 1973 that would lead to the production of the necessary maps based on the need for certain areas. This paper is designed to present in outline form the neces- sary background informatiox or users to become familiar with the program. MAP FORMAT * The scale chosen for the project was 1:250,000 . The re- search being done required a scale that Principal Investigators (PI'S) using orbital photography could use, but would also serve PI'S doing surface photographic investigations. Each map sheet covers an area four degrees north/south by five degrees east/west. -
All Roads in County (Updated January 2020)
All Roads Inside Deschutes County ROAD #: 07996 SEGMENT FROM TO TRS OWNER CLASS SURFACE LENGTH (mi) <null> <null> 211009 Other Rural Local Dirt-Graded <null> County Road Length: 0 101ST LN ROAD #: 02265 SEGMENT FROM TO TRS OWNER CLASS SURFACE LENGTH (mi) 10 0 101ST ST 0.262 END BULB 151204 Deschutes County Rural Local Macadam, Oil 0.262 Mat County Road Length: 0.262 101ST ST ROAD #: 02270 SEGMENT FROM TO TRS OWNER CLASS SURFACE LENGTH (mi) 10 0 HWY 126 0.357 MAPLE LN, NW 151204 Deschutes County Rural Local Macadam, Oil 0.357 Mat 20 0.357 MAPLE LN, NW 1.205 95TH ST 151203 Deschutes County Rural Local Macadam, Oil 0.848 Mat County Road Length: 1.205 103RD ST ROAD #: 02259 SEGMENT FROM TO TRS OWNER CLASS SURFACE LENGTH (mi) <null> <null> 151209 Local Access Road Rural Local AC <null> <null> <null> 151209 Unknown Rural Local AC <null> 40 2.75 BEGIN 3.004 COYNER AVE, 141228 Deschutes County Rural Local Macadam, Oil 0.254 NW Mat County Road Length: 0.254 105TH CT Page 1 of 975 \\Road\GIS_Proj\ArcGIS_Products\Road Lists\Full List 2020 DCRD Report 1/02/2020 ROAD #: 02261 SEGMENT FROM TO TRS OWNER CLASS SURFACE LENGTH (mi) 10 0 QUINCE AVE, NW 0.11 END BUBBLE 151204 Deschutes County Rural Local Macadam, Oil 0.11 Mat County Road Length: 0.11 10TH ST ROAD #: 02188 SEGMENT FROM TO TRS OWNER CLASS SURFACE LENGTH (mi) <null> <null> 151304 City of Redmond City Collector AC <null> <null> <null> 151309 City of Redmond City Local AC <null> <null> <null> 151304 City of Redmond City Collector Macadam, Oil <null> Mat <null> <null> 141333 City of Redmond Rural -
Tossup Roentgen, Archimedes, Gauss, Balboa an D~¥As.:.? Da
Tossup , Roentgen, Archimedes, Gauss, Balboa an_d ~¥as.:.? Da Gama all have one bigger than Einstein's. Rutherford's is inside of..G!avius'. ' ~e three largest are Hertzsprung, Korolev and Apollo. For 10 points );IlUlt are t!1e~ objects, seven of which will be named for the astronauts who ~e..s-p~ttle disaster. / . Lunar Craters (' ,/ J- This Athenjan wa~ an admirer of Socrates ~ndji . him' such works as the Symposium and the Apo!?gy of Socrates. ~ - - st known wever, as an historian, the author of the Hellemca and the AnaEiastS, an a t of a mercenary expedition into Asia Minor. For 10 points, name ntury B.C. author. Xenophon ,. .. .. "The seizure of $3~&;gWo Y Hills," "Savage Lu~y ... 'Teeth Like Baseballs, Eyes Like J llied ire, '" and "A Terrible Experience with Extremely Dangerous Drugs." These e apters from, for 10 points, .what book? Fear and Loathing in Las Vegas (by Hunter S. Thompson) .' Lazlo Toth attacked her with a h~e, screaming "I Jesus Christ". He severed her left arm, smas~er nose-and lsfigured her I eye. That was in 1972, and today she and her ~n~i~ ·- behlnd i ss wall in J) Peter's Basilica the scars barely visible. For 10 y.Qin(s, "Yho are .... y, re ? ' The Pieul . L/ Accept: C~st and the Virgin Mary In 1649She invited Rene Descartes to her court to teach her philosophy. She had her lessons at 5 in the morning; Des.cartes, more used to rising at noon, caught a c . d died. Fo t's: who was this Swedish queen, \ the daughter of Gustavus Christina \, \ \ / Tossup Its biological name Ailuropod I 'l- " --~ . -
Summary of Sexual Abuse Claims in Chapter 11 Cases of Boy Scouts of America
Summary of Sexual Abuse Claims in Chapter 11 Cases of Boy Scouts of America There are approximately 101,135sexual abuse claims filed. Of those claims, the Tort Claimants’ Committee estimates that there are approximately 83,807 unique claims if the amended and superseded and multiple claims filed on account of the same survivor are removed. The summary of sexual abuse claims below uses the set of 83,807 of claim for purposes of claims summary below.1 The Tort Claimants’ Committee has broken down the sexual abuse claims in various categories for the purpose of disclosing where and when the sexual abuse claims arose and the identity of certain of the parties that are implicated in the alleged sexual abuse. Attached hereto as Exhibit 1 is a chart that shows the sexual abuse claims broken down by the year in which they first arose. Please note that there approximately 10,500 claims did not provide a date for when the sexual abuse occurred. As a result, those claims have not been assigned a year in which the abuse first arose. Attached hereto as Exhibit 2 is a chart that shows the claims broken down by the state or jurisdiction in which they arose. Please note there are approximately 7,186 claims that did not provide a location of abuse. Those claims are reflected by YY or ZZ in the codes used to identify the applicable state or jurisdiction. Those claims have not been assigned a state or other jurisdiction. Attached hereto as Exhibit 3 is a chart that shows the claims broken down by the Local Council implicated in the sexual abuse. -
Adams Adkinson Aeschlimann Aisslinger Akkermann
BUSCAPRONTA www.buscapronta.com ARQUIVO 27 DE PESQUISAS GENEALÓGICAS 189 PÁGINAS – MÉDIA DE 60.800 SOBRENOMES/OCORRÊNCIA Para pesquisar, utilize a ferramenta EDITAR/LOCALIZAR do WORD. A cada vez que você clicar ENTER e aparecer o sobrenome pesquisado GRIFADO (FUNDO PRETO) corresponderá um endereço Internet correspondente que foi pesquisado por nossa equipe. Ao solicitar seus endereços de acesso Internet, informe o SOBRENOME PESQUISADO, o número do ARQUIVO BUSCAPRONTA DIV ou BUSCAPRONTA GEN correspondente e o número de vezes em que encontrou o SOBRENOME PESQUISADO. Número eventualmente existente à direita do sobrenome (e na mesma linha) indica número de pessoas com aquele sobrenome cujas informações genealógicas são apresentadas. O valor de cada endereço Internet solicitado está em nosso site www.buscapronta.com . Para dados especificamente de registros gerais pesquise nos arquivos BUSCAPRONTA DIV. ATENÇÃO: Quando pesquisar em nossos arquivos, ao digitar o sobrenome procurado, faça- o, sempre que julgar necessário, COM E SEM os acentos agudo, grave, circunflexo, crase, til e trema. Sobrenomes com (ç) cedilha, digite também somente com (c) ou com dois esses (ss). Sobrenomes com dois esses (ss), digite com somente um esse (s) e com (ç). (ZZ) digite, também (Z) e vice-versa. (LL) digite, também (L) e vice-versa. Van Wolfgang – pesquise Wolfgang (faça o mesmo com outros complementos: Van der, De la etc) Sobrenomes compostos ( Mendes Caldeira) pesquise separadamente: MENDES e depois CALDEIRA. Tendo dificuldade com caracter Ø HAMMERSHØY – pesquise HAMMERSH HØJBJERG – pesquise JBJERG BUSCAPRONTA não reproduz dados genealógicos das pessoas, sendo necessário acessar os documentos Internet correspondentes para obter tais dados e informações. DESEJAMOS PLENO SUCESSO EM SUA PESQUISA.