Petition for Determination of Nonregulated Status for Corn Rootworm Protected and Glyphosate Tolerant MON 87411 Maize the Unders

Total Page:16

File Type:pdf, Size:1020Kb

Petition for Determination of Nonregulated Status for Corn Rootworm Protected and Glyphosate Tolerant MON 87411 Maize the Unders Petition for Determination of Nonregulated Status for Corn Rootworm Protected and Glyphosate Tolerant MON 87411 Maize The undersigned submits this petition under 7 CFR § 340.6 to request that the Administrator make a determination that the article should not be regulated under 7 CFR part 340 October 4, 2013 (Revised December 18, 2013) OECD Unique Identifier: MON-87411-9 Monsanto Petition Number: CR240-13U1 USDA-APHIS Petition Number 13-290-01p Submitted by: John M. Cordts, M.S., M.B.A Monsanto Company 800 North Lindbergh Blvd. St. Louis, MO 63167 Phone: (314) 694-4831 Fax: (314) 694-3080 E-mail: [email protected] Prepared by: A. Ahmad, Ph.D., P.M. Bachman, Ph.D., B.A. Comstock, B.S., J.M. Cordts, M.S., M.B.A., S. Dubelman, Ph.D., T.H. Klusmeyer, Ph.D., D.K. Kovalic, Ph.D., C.A. Lawrence, Ph.D., J.S. Petrick, Ph.D., Q. Tian, M.D., Ph.D. Contributors and/or Principal Investigators: K. Adu-tutu, Ph.D., S. Arackal, M.S., D. Anstrom, M.S., A. Beyene, Ph.D., J. Bynum, Ph.D., S.M. Carleton, Ph.D., D.B. Carson, Ph.D., M. Chen, Ph.D., K. Crowley, Ph.D., S. Drury, B.A., J. Fischer, Ph.D., R. Hileman, Ph.D., K. Howard, Ph.D., T. Lee, Ph.D., S.L. Levine, Ph.D., G. Mueller, M.A., M. Paradise, M.A., E. Parks, Ph.D., B. Sammons, Ph.D. A. Silvanovich, Ph.D., Z. Song, M.S., J. Tan, Ph.D., J. Uffman, B.S., W. Urqhart, Ph.D., J.M. Ward, Ph.D., B.J. Warner, M.S., J. Warren, B.S., F. Zapata, M.S. Monsanto Company CR240-13U1 1 of 374 RELEASE OF INFORMATION Monsanto is submitting the information in this petition for review by the USDA as part of the regulatory process. Monsanto understands that the USDA complies with the provisions of the Freedom of Information Act (FOIA). In the event the USDA receives a FOIA request, pursuant to 5 U.S.C., § 552, and 7 CFR Part 1, covering all or some of the information in this petition, Monsanto expects that, in advance of the release of the document(s), USDA will provide Monsanto with a copy of the material proposed to be released and the opportunity to object to the release of any information based on appropriate legal grounds, e.g., responsiveness, confidentiality, and/or competitive concerns. Monsanto understands that this information may be made available to the public in a reading room and upon individual request as part of a public comment period. Monsanto also understands that when deemed complete, a copy of the petition may be posted to the USDA-APHIS BRS website or other U.S. government websites (e.g., www.regulations.gov). Except in accordance with the foregoing, Monsanto does not authorize the release, publication or other distribution of this information without Monsanto's prior notice and consent. © 2013 Monsanto Company. All Rights Reserved. This document is protected under national and international copyright law and treaties. This document and any accompanying material are for use only by the regulatory authority to which it has been submitted by Monsanto Company and its affiliates, collectively “Monsanto Company,” and only in support of actions requested by Monsanto Company. Any other use, copying, or transmission, including internet posting, of this document and the materials described in or accompanying this document, without prior consent of Monsanto Company, is strictly prohibited; except that Monsanto Company hereby grants such consent to the regulatory authority where required under applicable law or regulation. The intellectual property, information and materials described in or accompanying this document are owned by Monsanto Company, which has filed for or been granted patents on those materials. By submitting this document and any accompanying materials, Monsanto Company does not grant any party or entity any right or license to the information, material or intellectual property described or contained in this submission. Monsanto Company CR240-13U1 2 of 374 CERTIFICATION The undersigned certifies that, to the best knowledge and behef of the undersigned, this petition includes all information and views on which to base a determination, and that it includes all relevant data and information known to the petitioner that are unfavorable to the petition. John M. Cordts, M.S., M.B.A. Regulatory Affairs Manager Monsanto Company 800 North Lindbergh Blvd., Mail Stop C3SD St. Louis, MO 63167 Tel: (314)-694-4831 Fax: (314)-694-3080 Monsanto Company CR240-13U1 3 of374 EXECUTIVE SUMMARY The Animal and Plant Health Inspection Service (APHIS) of the United States (U.S.) Department of Agriculture (USDA) has responsibility under the Plant Protection Act (Title IV Pub. L. 106-224, 114 Stat. 438, 7 U.S.C. § 7701-7772) to prevent the introduction and dissemination of plant pests into the U.S. APHIS regulation 7 CFR § 340.6 provides that an applicant may petition APHIS to evaluate submitted data to determine that a particular regulated article does not present a plant pest risk and no longer should be regulated. If APHIS determines that the regulated article does not present a plant pest risk, the petition is granted, thereby allowing unrestricted introduction of the article. Monsanto Company is submitting this request to APHIS for a determination of nonregulated status for the new biotechnology-derived maize product, MON 87411, any progeny derived from crosses between MON 87411 and conventional maize, and any progeny derived from crosses of MON 87411 with biotechnology-derived maize that have previously been granted nonregulated status under 7 CFR part 340. Product Description Monsanto Company has developed biotechnology-derived maize, MON 87411, that confers protection against corn rootworm (CRW) (Diabrotica spp.) and tolerance to the herbicide glyphosate. MON 87411 contains a suppression cassette that expresses an inverted repeat sequence designed to match the sequence of western corn rootworm (WCR; Diabrotica virgifera virgifera). The expression of the suppression cassette results in the formation of a double-stranded RNA (dsRNA) transcript containing a 240 bp fragment of the WCR Snf7 gene (DvSnf7). Upon consumption, the plant-produced dsRNA in MON 87411 is recognized by the CRW’s RNA interference (RNAi) machinery resulting in down-regulation of the targeted DvSnf7 gene leading to CRW mortality. MON 87411 also contains a cry3Bb1 gene that produces a modified Bacillus thuringiensis (subsp. kumamotoensis) Cry3Bb1 protein to protect against CRW larval feeding. In addition, MON 87411 contains the cp4 epsps gene from Agrobacterium sp. strain CP4 that encodes for the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) protein, which confers tolerance to glyphosate, the active ingredient in Roundup® agricultural herbicides. MON 87411 builds upon the current Bt protein-based mode-of-action (MOA) for CRW control by the addition of a new RNA-mediated MOA that offers enhanced control of target insect pests and prolonged durability of existing Bt technologies designed to control CRW. MON 87411 will provide benefits to growers similar to those obtained by use of existing CRW-protected maize hybrids, which include reduced need for insecticides and associated improvements in worker safety, increased yield protection, and water conservation. MON 87411 is also glyphosate tolerant and will continue to ® Roundup and Roundup Ready are registered trademarks of Monsanto Technology LLC Monsanto Company CR240-13U1 4 of 374 provide benefits associated with conservation tillage methods, including reduced soil erosion, reduced fuel and labor costs, improved air quality and conservation of soil moisture. MON 87411 will not be offered for commercial use as a stand-alone product, but will be combined, through traditional breeding methods, with other deregulated biotechnology- derived traits to provide protection against both above-ground and below-ground maize pests as well as tolerance to multiple herbicides. These next generation combined-trait maize products will offer broader grower choice, improved production efficiency, increased pest control durability, and enhanced grower profit potentials. Data and Information Presented Confirms the Lack of Plant Pest Potential and the Food and Feed Safety of MON 87411 Compared to Conventional Maize The data and information presented in this petition demonstrate that MON 87411 is agronomically, phenotypically, and compositionally comparable to commercially cultivated maize. Moreover, the data and information presented herein demonstrate that MON 87411 is not expected to pose an increased plant pest risk, including weediness, compared to commercially cultivated maize. The food, feed, and environmental safety of MON 87411 was confirmed based on multiple, well-established lines of evidence: • The CP4 EPSPS protein in MON 87411 is identical to the CP4 EPSPS protein present in several other commercially available crops that have been reviewed by USDA and previously deregulated (e.g., Roundup Ready varieties of soybean, maize, cotton, sugarbeet, canola, and alfalfa). The safety and mode-of-action of CP4 EPSPS proteins is well documented and is the subject of numerous publications. Similarly, the safety of the Cry3Bb1 protein has been previously assessed in two other corn rootworm- protected products (MON 863 and MON 88017) that have been grown on tens of millions of acres in the U.S. since their introduction. The mode-of-action of Bt proteins has also been extensively studied and is well-documented in numerous publications. • The RNA-based suppression of the Snf7 gene in western corn rootworm that results from expression of the DvSnf7 suppression cassette in MON 87411 is mediated by dsRNA molecules. Double-stranded RNAs are commonly used by eukaryotes, including plants, for endogenous gene suppression and as described in this petition, pose no novel risks from a feed/food and environment perspective. Nucleic acids, as the components of RNA, have a long history of safe consumption and are considered GRAS by the U.S.
Recommended publications
  • Rnai in Primary Cells and Difficult-To-Transfect Cell Lines
    Automated High Throughput Nucleofection® RNAi in Primary Cells and Difficult-to-Transfect Cell Lines Claudia Merz, Bayer Schering Pharma AG, Berlin, Germany; Andreas Schroers, amaxa AG, Cologne, Germany; Eric Willimann, Tecan AG, Männedorf, Switzerland. Introduction Materials & Methods - Workflow Using primary cells for RNAi based applications such as target identification or – validation, requires a highly efficient transfection displaying the essential steps of the automated Nucleofector® Process: technology in combination with a reliable and robust automation system. To accomplish these requirements we integrated the amaxa 1. Transfer of the cells to the Nucleocuvette™ plate, 96-well Shuttle® in a Tecan Freedom EVO® cell transfection workstation which is based on Tecan’s Freedom EVO® liquid handling 2. Addition of the siRNA, (Steps 1 and 2 could be exchanged), platform and include all the necessary components and features for unattended cell transfection. 3. Nucleofection® process, 4. Addition of medium, Count Cells 5. Transfer of transfected cells to cell culture plate for incubation ® Nucleofector Technology prior to analysis. Remove Medium The 96-well Shuttle® combines high-throughput compatibility with the Nucleofector® Technology, which is a non-viral transfection method ideally suited for primary cells and hard-to-transfect cell lines based on a combination of buffers and electrical parameters. Nucleocuvette Plate Add Nucleofector +– The basic principle and benefits of the (empty) Solution Cell of interest Gene of interest Nucleofector®
    [Show full text]
  • Widespread Gene Transfection Into the Central Nervous System of Primates
    Gene Therapy (2000) 7, 759–763 2000 Macmillan Publishers Ltd All rights reserved 0969-7128/00 $15.00 www.nature.com/gt NONVIRAL TRANSFER TECHNOLOGY RESEARCH ARTICLE Widespread gene transfection into the central nervous system of primates Y Hagihara1, Y Saitoh1, Y Kaneda2, E Kohmura1 and T Yoshimine1 1Department of Neurosurgery and 2Division of Gene Therapy Science, Department of Molecular Therapeutics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan We attempted in vivo gene transfection into the central ner- The lacZ gene was highly expressed in the medial temporal vous system (CNS) of non-human primates using the hem- lobe, brainstem, Purkinje cells of cerebellar vermis and agglutinating virus of Japan (HVJ)-AVE liposome, a newly upper cervical cord (29.0 to 59.4% of neurons). Intrastriatal constructed anionic type liposome with a lipid composition injection of an HVJ-AVE liposome–lacZ complex made a similar to that of HIV envelopes and coated by the fusogenic focal transfection around the injection sites up to 15 mm. We envelope proteins of inactivated HVJ. HVJ-AVE liposomes conclude that the infusion of HVJ-AVE liposomes into the containing the lacZ gene were applied intrathecally through cerebrospinal fluid (CSF) space is applicable for widespread the cisterna magna of Japanese macaques. Widespread gene delivery into the CNS of large animals. Gene Therapy transgene expression was observed mainly in the neurons. (2000) 7, 759–763. Keywords: central nervous system; primates; gene therapy; HVJ liposome Introduction ever, its efficiency has not been satisfactory in vivo. Recently HVJ-AVE liposome, a new anionic-type lipo- Despite the promising results in experimental animals, some with the envelope that mimics the human immuno- gene therapy has, so far, not been successful in clinical deficiency virus (HIV), has been developed.13 Based upon 1 situations.
    [Show full text]
  • Genuity Smartstax Corn: an Amazing Advancement in GE Crop
    Genuity SmartStax corn: An amazing advancement in GE crop 05 May 2010 | News Image not found or type unknown Using GS corn as a platform would be a quicker way of enhancing the number of transgenes in a single crop variety The trademarked Genuity-SmartStax corn (GS corn) containing eight transgenes-six for pest control and two for weed control- developed through collaboration between Monsanto and Dow AgroSciences, introduced few months ago, is an amazing development in crop genetic engineering (GE). Incorporated into the best of corn varieties, this event is expected to provide the most comprehensive pest and weed control system available, leading to an impressive crop health and increase of whole farm crop yields. The development of Genuity SmartStax corn from the shaky origins of genetic engineering is a fascinating reading. Genuity SmartStax corn GS corn takes care of the major pests, such as the European and southwestern corn borer, northern and western corn rootworm, western bean cutworm, black cutworm, corn earworm, and fall armyworm and also imparts tolerance to both glyphosate and glufosinate herbicides. In addition, the coming together of two giants in the seed industry will encourage other private-private partnerships to further this initiative. Eight transgenes in GS corn Tolerance to aerial pests (three Bt genes): Cry 1A.105 (Monsanto), Cry 2Ab2 (Monsanto) and Cry 1F (Dow). Tolerance to subsoil pests (three Bt genes): Cry 3Bb1 (Monsanto), Cry 34Ab1 (Dow) and Cry 35Ab1 (Dow). Tolerance to herbicides (two genes): Glyphosate (Roundup Ready, Monsanto) and Glufosinate (LibertyLink, Dow, under license from Bayer). Biosecurity evaluation Transgenic crops are evaluated for product efficacy and biosecurity in the laboratory, green house and in the field for over 10 years before commercialization.
    [Show full text]
  • Biblioteksentralen Som Utviklingsaktør På Toten Med Lærer- Bakgrunn Og
    Bibliotekaren Tidsskrift for Bibliotekarforbundet Biblioteksentralen som utviklingsaktør på Toten Oppgjørenes time Med lærer- bakgrunn og bibliotekar framtid BFs økonomi under Skadd på jobb god kontroll - hva gjør jeg? 8 2004 Innhold: Bibliotekaren ISSN 0804-4147 Lederen har ordet side 3 ISSN 1503-836X (online) Forbundsstyrets junimøte side 4 Bibliotekaren er Bibliotekarforbundets BF mot forskriftsendring nå side 7 tidsskrift og utkommer hver måned. Ansvarlig redaktør Oppgjørenes timer Erling Bergan - Det er to bibliotekarer i Norge som sitter midt i begivenhetenes sentrum når det gjelder både sentrale forhandlinger og megling. Det er oss to fra Bibliotekaforbundet - rådgiver Thor Bjarne Stadshaug og meg. Vi sitter der 8 Redaksjonens adresse det skjer og har innpass i det som foregår, sier forbundsleder Monica Deil- Runnen 4, 6800 FØRDE dok i dette intervjuet etter at årets sentrale tariffoppgjør er unnagjort Tlf.: 57 82 07 65 Mobil: 91 31 80 01 Faks: 85 03 16 64 Lokale forhandlinger i KS-sektoren side 11 Epost: [email protected] Med lærerbakgrunn og bibliotekarframtid Stoff Etter 22 år som lærer i grunnskolen gjorde Anne Elisabeth Waage opp Vi mottar stoff i alle former. Tekster status: Hun fant ikke mange lærerkollegaer som var over 50. Skolehver- foretrekker vi som fi ler i RiktTekstFor- dagen ble simpelthen for stri i lengden. Anne Elisabeth valgte å skifte 12 mat (rtf). Usignerte artikler står for fil. Hun studerer nå bibliotekfag i Bergen. redaktørens regning. Fornøyd i staten? side 15 Abonnement Kr. 290,- pr. år betales til BFs girokonto Bibliotekvaktens søketips: 6039.05.64093. Merk innbetalingen Detektor – et katalogisert utgangspunkt side 16 «Abonnement». Alle henvendelser om abonnement rettes til BFs sekretariat i Lakkegata 21, 0187 Oslo, tlf.
    [Show full text]
  • World Resources Institute the Monsanto Company
    World Resources Institute Sustainable Enterprise Program A program of the World Resources Institute The Monsanto Company: Quest for Sustainability (A) “Biotechnology represents a potentially sustainable For more than a decade, WRI's solution to the issue, not only of feeding people, but of providing Sustainable Enterprise Program (SEP) the economic growth that people are going to need to escape has harnessed the power of business to poverty…… [Biotechnology] poses the possibility of create profitable solutions to leapfrogging the industrial revolution and moving to a post- environment and development industrial society that is not only economically attractive, but challenges. BELL, a project of SEP, is also environmentally sustainable.i ” focused on working with managers and academics to make companies --Robert Shapiro, CEO, Monsanto Company more competitive by approaching social and environmental challenges as unmet market needs that provide Upon his promotion to CEO of chemical giant The business growth opportunities through Monsanto Company in 1995, Robert Shapiro became a vocal entrepreneurship, innovation, and champion of sustainable development and sought to redefine the organizational change. firm’s business strategy along principles of sustainability. Shapiro’s rhetoric was compelling. He captured analysts’ Permission to reprint this case is attention with the specter of mass hunger and environmental available at the BELL case store. degradation precipitated by rapid population growth and the Additional information on the Case
    [Show full text]
  • Quick and Efficient Method for Genetic Transformation of Biopolymer
    Technical Note Received: 29 July 2009 Revised: 14 September 2009 Accepted: 14 September 2009 Published online in Wiley Interscience: 29 October 2009 (www.interscience.wiley.com) DOI 10.1002/jctb.2284 Quick and efficient method for genetic transformation of biopolymer-producing bacteria Qin Wang,a Alexander P. Mueller,a Chean Ring Leong,b Ken’ichiro Matsumoto,b Seiichi Taguchib and Christopher T. Nomuraa∗ Abstract In order to genetically modify microorganisms capable of producing polyhydroxyalkanoate (PHA) biopolymers, a simple and rapid method to prepare freshly plated Pseudomonas cells for transformation via electroporation was developed. This method can be used to transfer both replicative plasmids and linear DNA to knock out genes into the cells. The transformation efficiencies were in the range of ≥107 transformants µg−1 DNA for replicative plasmids and ≥106 transformants µg−1 DNA for linear DNA, which are comparable with commercially available competent cells. Furthermore, this transformation procedure can be performed in less than 10 min, saving a great deal of time compared with traditional methods. Knockout mutants of several Pseudomonas species were generated by transformation of linear DNA and these mutations were verified by PCR and analysis of PHA content. c 2009 Society of Chemical Industry Keywords: transformation; electroporation; Pseudomonas putida; polyhydroxyalkanoates (PHAs) INTRODUCTION using various strains of P. putida.StrainsweregrowninLuria- Pseudomonas putida is a Gram-negative soil bacterium that plays Bertani (LB) medium (1% tryptone, 0.5% yeast extract, and 0.5% animportantroleinelementcycling innature,bioremediation,and NaCl) with the appropriate antibiotic when necessary. For selection production of polyhydroxyalkanoates (PHAs), which are environ- of transformants, kanamycin (Km) and gentamycin (Gm) were mentally friendly biodegradable plastics.1–3 Despite having a fully added to LB agar plates and liquid media at final concentrations sequenced genome,3 the functions of many ORFs in this organ- of 50 µgmL−1 and 20 µgmL−1, respectively.
    [Show full text]
  • ES Cell Targeting Handbook
    TABLE OF CONTENTS Overview of ES Core Facility Introduction Generation of Gene-Targeted ES Cells Karyotyping of Positive ES Clones ES Cell Request Form General Information for the Generation of Targeted Cells Principles of Gene Targeting Requirements for the Design of Targeting Constructs Screening Assay for the Identification of Targeted ES Clones Overview of ES Cell Culture ES Cell Factors Affecting Successful Chimera Production FAQ Overview of ES Core Facility Our Mission The ES Core Facility (ECF) was founded by the NINDS Core Center Grant and was established to benefit the contributors of this proposal. The mission of ECF is to effectively produce ES cell lines with a high probability of germline transmission. Core Service Services provided by the Core for a typical project include: • Provide guidance on the design of targeting construct • Generate targeted ES cell lines for the production of chimeric mice • Karyotyping ES cells to be micro-injected into blastocysts Consultation is available from ECF directors and staff members on the entire procedures of generating gene knock-out mice. Application for Service Prior to the initiation of a project, a brief meeting is generally required between the investigator and ECF facility staff resulting in a mutually acceptable research strategy. This strategy will outline specifics of the project including knockout strategy, KO construct design, screening assays, and other procedural issues relevant to the generation of targeted ES cells. In addition, a completed service application form, signed by the principal investigator and approved by the Core Director, will also be required. The Core Director will prioritize the service requests according to the difficulty of the project and work load.
    [Show full text]
  • Intramuscular Electroporation Delivery of IFN- Gene Therapy for Inhibition of Tumor Growth Located at a Distant Site
    Gene Therapy (2001) 8, 400–407 2001 Nature Publishing Group All rights reserved 0969-7128/01 $15.00 www.nature.com/gt RESEARCH ARTICLE Intramuscular electroporation delivery of IFN-␣ gene therapy for inhibition of tumor growth located at a distant site S Li, X Zhang, X Xia, L Zhou, R Breau, J Suen and E Hanna Department of Otolaryngology/Head and Neck Surgery, University of Arkansas School of Medicine, 4001 W Capital Avenue, Little Rock, AR 72205, USA Although electroporation has been shown in recent years to 2 or endostatin gene, also delivered by electro-injection. The be a powerful method for delivering genes to muscle, no increased therapeutic efficacy was associated with a high gene therapy via electro-injection has been studied for the level and extended duration of IFN-␣ expression in muscle treatment of tumors. In an immunocompetent tumor-bearing and serum. We also discovered that the high level of IFN-␣ murine model, we have found that delivery of a low dose of expression correlated with increased expression levels of reporter gene DNA (10 ␮g) to muscle via electroporation the antiangiogenic genes IP-10 and Mig in local tumor under specific pulse conditions (two 25-ms pulses of 375 tissue, which may have led to the reduction of blood vessels V/cm) increased the level of gene expression by two logs of observed at the local tumor site. Delivery of increasing doses magnitude. Moreover, administration of 10 ␮g of interferon (10–100 ␮g) of IFN-␣ plasmid DNA by injection alone did (IFN)-␣ DNA plasmid using these parameters once a week not increase antitumor activity, whereas electroporation for 3 weeks increased the survival time and reduced squam- delivery of increasing doses (10–40 ␮g) of IFN-␣ plasmid ous cell carcinoma (SCC) growth at a distant site in the DNA did increase the survival time.
    [Show full text]
  • MIAMI UNIVERSITY the Graduate School Certification for Approving
    MIAMI UNIVERSITY The Graduate School Certification for Approving the Dissertation We hereby approve the Dissertation of Stephen Hess Candidate for the Degree: Doctor of Philosophy ____________________________________ Director (Dr. Venelin Ganev) ____________________________________ Reader (Dr. Gulnaz Sharafutdinova) ____________________________________ Reader (Dr. Adeed Dawisha) ____________________________________ Graduate School Representative (Dr. Stanley Toops) ABSTRACT AUTHORITARIAN LANDSCAPES: STATE DECENTRALIZATION, POPULAR MOBILIZATION, AND THE INSTITUTIONAL SOURCES OF RESILIENCE IN NONDEMOCRACIES by Stephen Hess Beginning with the insight that highly-centralized state structures have historically provided a unifying target and fulcrum for the mobilization of contentious nationwide social movements, this dissertation investigates the hypothesis that decentralized state structures in authoritarian regimes impede the development of forms of popular contention sustained and coordinated on a national scale. As defined in this work, in a decentralized state, local officials assume greater discretionary control over public expenditures, authority over the implementation of government policies, and latitude in managing outbreaks of social unrest within their jurisdictions. As a result, they become the direct targets of most protests aimed at the state and the primary mediators of actions directed at third-party, non-state actors. A decentralized state therefore presents not one but a multitude of loci for protests, diminishing claimants‘ ability to use the central state as a unifying target and fulcrum for organizing national contentious movements. For this reason, decentralized autocracies are expected to face more fragmented popular oppositions and exhibit higher levels of durability than their more centralized counterparts. To examine this claim, I conduct four comparative case studies, organized into pairs of autocracies that share a common regime type but vary in terms of state decentralization.
    [Show full text]
  • Food and Drug Law Journal
    FOOD AND DRUG LAW JOURNAL EDITOR IN CHIEF Judy Rein EDITORIAL ADVISORY BOARD CHAIR VICE CHAIR FACULTY ADVISOR Laurie Lenkel Robert Giddings Joseph A. Page FDA – OC Hutchison PLLC Georgetown University Law Center ________________________________ Anthony Anscombe James Flaherty Francis Palumbo Sedgwick LLP Fresenius Medical University of Maryland School of Pharmacy Peter Barton Hutt Abraham Gitterman Covington & Burling Arnold & Porter LLP Sandra Retzky FDA – CTP Barbara Binzak Kimberly Gold Blumenfeld Norton Rose Fulbright Joan Rothenberg Buchanan Ingersoll & LLP FDA - CFSAN Rooney PC John Johnson Jodi Schipper Catherine Clements FDA Imports FDA – CDER Express Scripts Alan Katz Christopher van Gundy Kellie Combs toXcel, LLC Keller and Heckman Ropes & Gray LLP Sara Koblitz James Woodlee Nathan Cortez Fish & Richardson Kleinfeld Kaplan & Becker LLP Southern Methodist University Valerie Madamba Emily Wright Blue Apron Pfizer Brian Dahl Dahl Compliance Alan Minsk Kimberly Yocum Consulting LLC Arnall Golden Gregory TC Heartland LLC LLP Sandra dePaulis Lowell Zeta FDA – CVM Nicole Negowetti Hogan Lovells The Good Food Ian Fearon Institute Patricia Zettler British American Tobacco Georgia State James O’Reilly University Law School University of Cincinnati OFFICERS OF THE FOOD AND DRUG LAW INSTITUTE CHAIR: Allison M. Zieve, Public Citizen Litigation Group VICE CHAIR: Jeffrey N. Gibbs, Hyman, Phelps & McNamara, P.C. TREASURER: Frederick R. Ball, Duane Morris LLP GENERAL COUNSEL/SECRETARY: Joy J. Liu, Vertex Pharmaceuticals IMMEDIATE PAST CHAIR: Sheila Hemeon-Heyer, Heyer Regulatory Solutions LLC PRESIDENT & CEO: Amy Comstock Rick GEORGETOWN UNIVERSITY LAW CENTER STUDENT EDITOR IN CHIEF Dana Shaker STUDENT MANAGING EDITORS Jacob Klapholz Christine Rea STUDENT NOTES EDITOR SYMPOSIUM EDITOR Lauren Beegle Alexander P.
    [Show full text]
  • The Art of Transfection (Poster / Pdf)
    TRANSDUCTION NON-VIRAL TRANSFECTION Transduction is the process of using vectors including retroviruses, lentiviruses, adenoviruses, PACKAGE DELIVERY: Chemical Chemical transfection adeno-associated viruses, or hybrids to deliver genetic payloads into cells. Generally, a plasmid transfection reagent containing mRNA carrying genes flanked by viral sequences is first transfected into a producer cell with other reagent virus-associated (packaging) plasmids. In the producer cells, virions form that contain the gene The Art of Transfection of interest. For safety, no plasmid used in the process contains all of the necessary sequences Inserting genetic material into mammalian and insect cells without killing them can be a challenge, CHEMICAL TRANSFECTION for virion formation, and only the plasmid carrying the gene of interest contains signals that but scientists have developed several ways to perform this intricate task. Transfection is the process of Functional proteins or allow it to be packaged into virions. Researchers then extract, purify, and use the virions from Complexation structural components released Chemical carriers represent the most straightforward and widespread tools for gene delivery the producer cells to insert DNA into other cells to stably or transiently express the DNA of introducing nucleic acids (plasmid DNA or messenger, short interfering, or micro RNA) into a cell. from cell or into cytoplasm experiments in mammalian cells. Chemical transfection experiments follow a simple workflow and interest. The transferred genetic material, which lacks viral genes, cannot generate new viruses. Researchers accomplish this with nonviral methods (chemical or physical transfection), or with viral provide high efficiency nucleic acid delivery for the most commonly used cells as well as many methods, commonly referred to as transduction.
    [Show full text]
  • Biotechnology Benefits for Corn Production
    Agronomic SPOTLIGHT Biotechnology Benefits for Corn Production Many corn products have multiple biotech traits that provide insect protection and herbicide tolerance that promote better plant health, stress tolerance, and yield potential. University of Wisconsin field research trials show that genetically modified corn products (GM) have a number of benefits over conventional corn to help manage downside risk under variable yield conditions and protect yield potential. GM products with insect and herbicide tolerance not only protect corn yield potential, they provide other benefits as well. The large productivity gains in corn production made during the GM corn helped overcome the continuous corn rotation yield last several decades have come primarily from advanced plant penalty that conventional corn experienced during the 2000 breeding techniques and improved corn management of the to 2005 comparison period. crop. Research has determined that about 50% of on-farm yield The University of Wisconsin research shows that farmers gains since 1934 can be attributed to improved management 2 planting GM corn products in a corn-on-corn rotation in 2000 practices. Breeding and management interact as both are had a lower potential risk of low yield (175 bu/acre) than farmers necessary to sustain increased production. Yield stability across using a conventional corn-on-corn rotation (Figure 1). In 2005, a wide range of environments is one of the most important 1 the negative impact of the corn-on-corn rotation was not selection targets for corn breeders. Consequently, improved apparent for GM corn products but was still a problem in stress tolerance for higher planting densities, coupled with conventional corn-on-corn rotation (Figure 2).
    [Show full text]