Intramuscular Electroporation Delivery of IFN- Gene Therapy for Inhibition of Tumor Growth Located at a Distant Site

Total Page:16

File Type:pdf, Size:1020Kb

Intramuscular Electroporation Delivery of IFN- Gene Therapy for Inhibition of Tumor Growth Located at a Distant Site Gene Therapy (2001) 8, 400–407 2001 Nature Publishing Group All rights reserved 0969-7128/01 $15.00 www.nature.com/gt RESEARCH ARTICLE Intramuscular electroporation delivery of IFN-␣ gene therapy for inhibition of tumor growth located at a distant site S Li, X Zhang, X Xia, L Zhou, R Breau, J Suen and E Hanna Department of Otolaryngology/Head and Neck Surgery, University of Arkansas School of Medicine, 4001 W Capital Avenue, Little Rock, AR 72205, USA Although electroporation has been shown in recent years to 2 or endostatin gene, also delivered by electro-injection. The be a powerful method for delivering genes to muscle, no increased therapeutic efficacy was associated with a high gene therapy via electro-injection has been studied for the level and extended duration of IFN-␣ expression in muscle treatment of tumors. In an immunocompetent tumor-bearing and serum. We also discovered that the high level of IFN-␣ murine model, we have found that delivery of a low dose of expression correlated with increased expression levels of reporter gene DNA (10 ␮g) to muscle via electroporation the antiangiogenic genes IP-10 and Mig in local tumor under specific pulse conditions (two 25-ms pulses of 375 tissue, which may have led to the reduction of blood vessels V/cm) increased the level of gene expression by two logs of observed at the local tumor site. Delivery of increasing doses magnitude. Moreover, administration of 10 ␮g of interferon (10–100 ␮g) of IFN-␣ plasmid DNA by injection alone did (IFN)-␣ DNA plasmid using these parameters once a week not increase antitumor activity, whereas electroporation for 3 weeks increased the survival time and reduced squam- delivery of increasing doses (10–40 ␮g) of IFN-␣ plasmid ous cell carcinoma (SCC) growth at a distant site in the DNA did increase the survival time. Our data clearly demon- C3H/HeJ-immunocompetent mouse. IFN-␣ gene therapy strate the potential utility of electroporation for delivery of delivered to muscle using electroporation demonstrated stat- gene therapy to muscle for the treatment of residual or dis- istically significant (P Ͻ 0.05) therapeutic efficacy for treating seminated tumors. Gene Therapy (2001) 8, 400–407. SCC located at a distant site, compared with interleukin (IL)- Keywords: gene therapy; electroporation; muscle; IFN-␣; antiangiogenesis; IL-12 Introduction Skeletal muscle is an attractive site for somatic gene delivery because of its large size, good capacity for pro- ␣ Interferon (IFN)- recombinant protein therapy is the tein synthesis, easy accessibility for intramuscular injec- first cytokine to be used clinically for cancer patients and tion, and ability to take up plasmid after intramuscular has been shown to be effective in the treatment of several administration.13 Intramuscular injection of high-dose, cancers including renal cell carcinomaa, hairy cell leuke- but not low-dose, IFN-␣ gene using a syringe needle sig- mia, malignant melanoma, basal cell carcinoma, and mul- nificantly inhibited B16F10 melanoma and glioma 261 1–3 tiple myeloma. However, long-term daily admini- growth in mice and reduced Cloudman melanoma tumor ␣ stration of IFN- protein is required to maintain growth in vivo,14 demonstrating the high level of IFN-␣ ␣ therapeutic efficacy, and some IFN- protein clinical that is required to achieve therapeutic effect. 4 ␣ trials have been disappointing. Ex vivo IFN- gene ther- Electroporation is a highly effective method for apy studies have demonstrated tumor inhibition and an increasing gene expression by creating transient pores in 5–9 elicited tumor-specific immune memory. However, cell membranes through which plasmids can gain entry this approach is patient-specific and the application is into the cell. Although electroporation delivery of ␣ time-consuming. Direct intratumoral injection of IFN- to reporter and therapeutic genes to muscle has been 10 11 treat solid Renca, basal cell carcinoma, and hetero- described by several groups over the past few years,15–17 xenograft prostatic (PC-3) or hepatocellular carcinoma there are no data available to determine the therapeutic 12 (Hep3B) with the use of viral or nonviral delivery sys- efficacy of such an approach in a tumor model. tems has demonstrated effective tumor suppression in IFN-␣ has several subtypes and multiple biological mouse models in vivo, but the intratumoral approach is functions that control cell growth, modulate host immun- not practical for metastatic lesions and microscopic ity, and inhibit angiogenesis.18–21 The mechanisms of anti- residual lesions after surgery. tumoral cell proliferation and immunity modulation by IFN-␣ have been extensively examined, but the mech- anism for antiangiogenesis is less well studied and only Correspondence: S Li a few antiangiogenic genes regulated by IFN-␣ have been Received 7 September 2000; accepted 20 December 2000 identified.18–22 The expression of interferon inducible pro- Electroporation delivery of IFN-␣ gene into muscle for inhibition of tumor growth SLiet al 401 tein-10 (IP-10) and monokine induced by IFN-␥ (Mig) started when the tumor volume was 30 mm3, or twice have been known to be enhanced by IFN-␥ and inhibit the size as in the above experiment. Although the angiogenesis in tumors in vivo,23–28 but it is not clear reduction was not as dramatic as in the previous experi- whether IFN-␣ will have a similar effect in vivo. ment, a 50% reduction in tumor growth was obtained We used squamous cell carcinoma (SCCVII) in an with electroporation delivery (Figure 2c). These data immunocompetent mouse (C3H/HeJ) as a model for this clearly demonstrate that although electro-injection of study. We present data demonstrating that electro-injec- IFN-␣ was not able to eradicate the established SCCVII tion of the IFN-␣ gene is a very powerful method for tumor in vivo, it was able to reduce significantly the rate generating a high and durable level of gene expression. of tumor growth. We also show that this method of delivering the IFN-␣ gene into muscle induces significant anti-SCCVII tumor High-level and extended gene expression in serum after growth by increasing the level of IFN-␣ expression, electro-injection of IFN-␣ gene in muscle which may in turn inhibit tumor vascularization by To determine whether the enhanced therapeutic efficacy inducing IP-10 and Mig expression. of IFN-␣ by electroporation delivery directly correlates with IFN-␣ production, Western blot analysis was perfor- med to analyze the level of IFN-␣ gene expression in both Results injected muscle tissue and serum. As expected, high lev- els of IFN-␣ gene expression were detected in both mus- Increased gene expression in C3H/HeJ mice using cle and serum on day 3 after electro-injection. There was electro-injection in muscle no detectable level of IFN-␣ expression in either muscle In an earlier study, we observed a two- to three-fold tissue or serum following injection alone (Figure 3a). increase in the level of gene expression by electro-injec- The duration of IFN-␣ gene expression after a single tion of plasmid DNA in the muscle of the CD1 mouse, administration of IFN-␣ gene therapy was also deter- using electroporation conditions of two 25-ms pulses at mined. Serum was collected on days 1, 3 and 7. IFN-␣ 375 V/cm field strength.29 To determine whether the protein was detectable in the serum of electro-injected same results could be obtained in a murine tumor model, mice at all three sampling times by Western blot analysis. we determined enzyme activity after delivery of lucifer- However, it was not detected in mice receiving the injec- ase or secreted alkaline phosphatase (SEAP) gene to the tion without electroporation (Figure 3b). Clearly, the muscle of the C3H/HeJ mouse, an immunocompetent therapeutic efficacy of electroporation therapy could be mouse model, using 10 ␮g of DNA for each muscle, with attributed, at least in part, to the resulting high-level and or without electroporation. As shown in Figure 1, the extended expression of IFN-␣. level of luciferase expression in muscle reached 135 ng/mg total protein (Figure 1a), which was more than Inhibition of vascularization in tumor tissue after 100-fold higher than that in the injection-only group. The electroporation delivery of IFN-␣ gene in muscle maximum level of SEAP in serum was 285 ng/ml blood, To determine the mechanism by which electroporation which was reached on day 14 after delivery and was 100- gene therapy with IFN-␣ inhibited tumor growth, a cyto- fold higher than that in the injection-only group (Figure toxic T lymphocyte (CTL) assay was performed. This 1b). As expected, the magnitude of increase in gene showed no increase in tumor cell-lysing activity in either expression in C3H/HeJ mice was similar to that which the electro-injected animals or controls (data not shown). we observed in CD1 mice. The increased level of gene However, immunostaining with anti-CD8+ T cell anti- expression by electro-injection was correlated to the body and anti-endothelial cell marker CD31 antibody increased number of fiber cells transfected with exogen- demonstrated a slightly increased number of infiltrating ous DNA as determined by green fluorescent protein CD8+ T cells (P Ͼ 0.05) and significantly decreased vessel (GFP) expression (Figure 1c). Thus, our delivery tech- density (P Ͻ 0.05) after electroporation delivery of IFN- nique was applicable to this murine tumor model. ␣ gene in muscle (Figure 4A–C). The tumor samples for immunostaining were obtained from mice killed 3 days Inhibition of SCCVII tumor growth via electro-injection of after the second administration, with a week interval IFN-␣ gene in muscle between administrations. Tumor growth in the animal group receiving 10 ␮gof INF-␣ plasmid DNA injected by electroporation was sig- Enhanced expression of IP-10 and Mig after nificantly reduced, compared with that in either the syr- electroporation delivery of IFN-␣ gene in muscle inge needle injection group or the control groups (empty The slight increase in CD8+ T cell infiltration and decrease plasmid with or without electroporation delivery), and in vessel density in tumor observed in our study impli- the survival time was increased (P Ͻ 0.05; Figure 2a, b).
Recommended publications
  • Widespread Gene Transfection Into the Central Nervous System of Primates
    Gene Therapy (2000) 7, 759–763 2000 Macmillan Publishers Ltd All rights reserved 0969-7128/00 $15.00 www.nature.com/gt NONVIRAL TRANSFER TECHNOLOGY RESEARCH ARTICLE Widespread gene transfection into the central nervous system of primates Y Hagihara1, Y Saitoh1, Y Kaneda2, E Kohmura1 and T Yoshimine1 1Department of Neurosurgery and 2Division of Gene Therapy Science, Department of Molecular Therapeutics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan We attempted in vivo gene transfection into the central ner- The lacZ gene was highly expressed in the medial temporal vous system (CNS) of non-human primates using the hem- lobe, brainstem, Purkinje cells of cerebellar vermis and agglutinating virus of Japan (HVJ)-AVE liposome, a newly upper cervical cord (29.0 to 59.4% of neurons). Intrastriatal constructed anionic type liposome with a lipid composition injection of an HVJ-AVE liposome–lacZ complex made a similar to that of HIV envelopes and coated by the fusogenic focal transfection around the injection sites up to 15 mm. We envelope proteins of inactivated HVJ. HVJ-AVE liposomes conclude that the infusion of HVJ-AVE liposomes into the containing the lacZ gene were applied intrathecally through cerebrospinal fluid (CSF) space is applicable for widespread the cisterna magna of Japanese macaques. Widespread gene delivery into the CNS of large animals. Gene Therapy transgene expression was observed mainly in the neurons. (2000) 7, 759–763. Keywords: central nervous system; primates; gene therapy; HVJ liposome Introduction ever, its efficiency has not been satisfactory in vivo. Recently HVJ-AVE liposome, a new anionic-type lipo- Despite the promising results in experimental animals, some with the envelope that mimics the human immuno- gene therapy has, so far, not been successful in clinical deficiency virus (HIV), has been developed.13 Based upon 1 situations.
    [Show full text]
  • Recombinant DNA and Elements Utilizing Recombinant DNA Such As Plasmids and Viral Vectors, and the Application of Recombinant DNA Techniques in Molecular Biology
    Fact Sheet Describing Recombinant DNA and Elements Utilizing Recombinant DNA Such as Plasmids and Viral Vectors, and the Application of Recombinant DNA Techniques in Molecular Biology Compiled and/or written by Amy B. Vento and David R. Gillum Office of Environmental Health and Safety University of New Hampshire June 3, 2002 Introduction Recombinant DNA (rDNA) has various definitions, ranging from very simple to strangely complex. The following are three examples of how recombinant DNA is defined: 1. A DNA molecule containing DNA originating from two or more sources. 2. DNA that has been artificially created. It is DNA from two or more sources that is incorporated into a single recombinant molecule. 3. According to the NIH guidelines, recombinant DNA are molecules constructed outside of living cells by joining natural or synthetic DNA segments to DNA molecules that can replicate in a living cell, or molecules that result from their replication. Description of rDNA Recombinant DNA, also known as in vitro recombination, is a technique involved in creating and purifying desired genes. Molecular cloning (i.e. gene cloning) involves creating recombinant DNA and introducing it into a host cell to be replicated. One of the basic strategies of molecular cloning is to move desired genes from a large, complex genome to a small, simple one. The process of in vitro recombination makes it possible to cut different strands of DNA, in vitro (outside the cell), with a restriction enzyme and join the DNA molecules together via complementary base pairing. Techniques Some of the molecular biology techniques utilized during recombinant DNA include: 1.
    [Show full text]
  • REVIEW Gene Therapy
    Leukemia (2001) 15, 523–544 2001 Nature Publishing Group All rights reserved 0887-6924/01 $15.00 www.nature.com/leu REVIEW Gene therapy: principles and applications to hematopoietic cells VFI Van Tendeloo1,2, C Van Broeckhoven2 and ZN Berneman1 1Laboratory of Experimental Hematology, University of Antwerp (UIA), Antwerp University Hospital (UZA), Antwerp; and 2Laboratory of Molecular Genetics, University of Antwerp (UIA), Department of Molecular Genetics, Flanders Interuniversity Institute for Biotechnology (VIB), Antwerp, Belgium Ever since the development of technology allowing the transfer Recombinant viral vectors of new genes into eukaryotic cells, the hematopoietic system has been an obvious and desirable target for gene therapy. The last 10 years have witnessed an explosion of interest in this Biological gene transfer methods make use of modified DNA approach to treat human disease, both inherited and acquired, or RNA viruses to infect the cell, thereby introducing and with the initiation of multiple clinical protocols. All gene ther- expressing its genome which contains the gene of interest (= apy strategies have two essential technical requirements. ‘transduction’).1 The most commonly used viral vectors are These are: (1) the efficient introduction of the relevant genetic discussed below. In each case, recombinant viruses have had material into the target cell and (2) the expression of the trans- gene at therapeutic levels. Conceptual and technical hurdles the genes encoding essential replicative and/or packaging pro- involved with these requirements are still the objects of active teins replaced by the gene of interest. Advantages and disad- research. To date, the most widely used and best understood vantages of each recombinant viral vector are summarized in vectors for gene transfer in hematopoietic cells are derived Table 1.
    [Show full text]
  • Gene Therapy and Genetic Engineering: Frankenstein Is Still a Myth, but It Should Be Reread Periodically
    Indiana Law Journal Volume 48 Issue 4 Article 2 Summer 1973 Gene Therapy and Genetic Engineering: Frankenstein is Still a Myth, but it Should be Reread Periodically George A. Hudock Indiana University - Bloomington Follow this and additional works at: https://www.repository.law.indiana.edu/ilj Part of the Genetics and Genomics Commons Recommended Citation Hudock, George A. (1973) "Gene Therapy and Genetic Engineering: Frankenstein is Still a Myth, but it Should be Reread Periodically," Indiana Law Journal: Vol. 48 : Iss. 4 , Article 2. Available at: https://www.repository.law.indiana.edu/ilj/vol48/iss4/2 This Article is brought to you for free and open access by the Law School Journals at Digital Repository @ Maurer Law. It has been accepted for inclusion in Indiana Law Journal by an authorized editor of Digital Repository @ Maurer Law. For more information, please contact [email protected]. GENE THERAPY AND GENETIC ENGINEERING: FRANKENSTEIN IS STILL A MYTH, BUT IT SHOULD BE REREAD PERIODICALLY GEORGE A. HUDOCKt Biotechnology and the law are far removed from each other as disciplines of human intellect. Yet the law and my own discipline, genetics, have come together in many courtrooms concerning such matters as paternity, and they will continue to intersect with increasing frequency as the visions of 100 years ago become the reality of today. This article examines the implications of recent research for human genetic therapy and genetic engineering, and suggests some guidelines for legal regulation of genetic technology. The following discussion derives from three premises which I view as basic: (1) that which is currently possible in genetic engineering, and in fact has already been done, is generally underestimated; (2) what may be possible in the near future is quite commonly overesti- mated; (3) regulation of the application of genetic technology is possible and will not be overwhelmingly complicated.
    [Show full text]
  • World Resources Institute the Monsanto Company
    World Resources Institute Sustainable Enterprise Program A program of the World Resources Institute The Monsanto Company: Quest for Sustainability (A) “Biotechnology represents a potentially sustainable For more than a decade, WRI's solution to the issue, not only of feeding people, but of providing Sustainable Enterprise Program (SEP) the economic growth that people are going to need to escape has harnessed the power of business to poverty…… [Biotechnology] poses the possibility of create profitable solutions to leapfrogging the industrial revolution and moving to a post- environment and development industrial society that is not only economically attractive, but challenges. BELL, a project of SEP, is also environmentally sustainable.i ” focused on working with managers and academics to make companies --Robert Shapiro, CEO, Monsanto Company more competitive by approaching social and environmental challenges as unmet market needs that provide Upon his promotion to CEO of chemical giant The business growth opportunities through Monsanto Company in 1995, Robert Shapiro became a vocal entrepreneurship, innovation, and champion of sustainable development and sought to redefine the organizational change. firm’s business strategy along principles of sustainability. Shapiro’s rhetoric was compelling. He captured analysts’ Permission to reprint this case is attention with the specter of mass hunger and environmental available at the BELL case store. degradation precipitated by rapid population growth and the Additional information on the Case
    [Show full text]
  • Quick and Efficient Method for Genetic Transformation of Biopolymer
    Technical Note Received: 29 July 2009 Revised: 14 September 2009 Accepted: 14 September 2009 Published online in Wiley Interscience: 29 October 2009 (www.interscience.wiley.com) DOI 10.1002/jctb.2284 Quick and efficient method for genetic transformation of biopolymer-producing bacteria Qin Wang,a Alexander P. Mueller,a Chean Ring Leong,b Ken’ichiro Matsumoto,b Seiichi Taguchib and Christopher T. Nomuraa∗ Abstract In order to genetically modify microorganisms capable of producing polyhydroxyalkanoate (PHA) biopolymers, a simple and rapid method to prepare freshly plated Pseudomonas cells for transformation via electroporation was developed. This method can be used to transfer both replicative plasmids and linear DNA to knock out genes into the cells. The transformation efficiencies were in the range of ≥107 transformants µg−1 DNA for replicative plasmids and ≥106 transformants µg−1 DNA for linear DNA, which are comparable with commercially available competent cells. Furthermore, this transformation procedure can be performed in less than 10 min, saving a great deal of time compared with traditional methods. Knockout mutants of several Pseudomonas species were generated by transformation of linear DNA and these mutations were verified by PCR and analysis of PHA content. c 2009 Society of Chemical Industry Keywords: transformation; electroporation; Pseudomonas putida; polyhydroxyalkanoates (PHAs) INTRODUCTION using various strains of P. putida.StrainsweregrowninLuria- Pseudomonas putida is a Gram-negative soil bacterium that plays Bertani (LB) medium (1% tryptone, 0.5% yeast extract, and 0.5% animportantroleinelementcycling innature,bioremediation,and NaCl) with the appropriate antibiotic when necessary. For selection production of polyhydroxyalkanoates (PHAs), which are environ- of transformants, kanamycin (Km) and gentamycin (Gm) were mentally friendly biodegradable plastics.1–3 Despite having a fully added to LB agar plates and liquid media at final concentrations sequenced genome,3 the functions of many ORFs in this organ- of 50 µgmL−1 and 20 µgmL−1, respectively.
    [Show full text]
  • ES Cell Targeting Handbook
    TABLE OF CONTENTS Overview of ES Core Facility Introduction Generation of Gene-Targeted ES Cells Karyotyping of Positive ES Clones ES Cell Request Form General Information for the Generation of Targeted Cells Principles of Gene Targeting Requirements for the Design of Targeting Constructs Screening Assay for the Identification of Targeted ES Clones Overview of ES Cell Culture ES Cell Factors Affecting Successful Chimera Production FAQ Overview of ES Core Facility Our Mission The ES Core Facility (ECF) was founded by the NINDS Core Center Grant and was established to benefit the contributors of this proposal. The mission of ECF is to effectively produce ES cell lines with a high probability of germline transmission. Core Service Services provided by the Core for a typical project include: • Provide guidance on the design of targeting construct • Generate targeted ES cell lines for the production of chimeric mice • Karyotyping ES cells to be micro-injected into blastocysts Consultation is available from ECF directors and staff members on the entire procedures of generating gene knock-out mice. Application for Service Prior to the initiation of a project, a brief meeting is generally required between the investigator and ECF facility staff resulting in a mutually acceptable research strategy. This strategy will outline specifics of the project including knockout strategy, KO construct design, screening assays, and other procedural issues relevant to the generation of targeted ES cells. In addition, a completed service application form, signed by the principal investigator and approved by the Core Director, will also be required. The Core Director will prioritize the service requests according to the difficulty of the project and work load.
    [Show full text]
  • HD-Guidance Document Gene Therapy/GMO Environmental Data
    HD-Guidance document Gene Therapy/GMO Environmental Data Guidance document for the compilation of the documentation on possible risks for humans and the environment in support of applications for the authorisation to carry out clinical trials of somatic gene therapy and with medicines containing genetically modified microorganisms (environmental data) In accordance with Articles 22, 35 and Annex 4 ClinO by Swiss Agency for Therapeutic Products (Swissmedic), Federal Office for Public Health (FOPH), Federal Office for the Environment (FOEN), Swiss Expert Committee for Biosafety (SECB) Contents 1 Summary .....................................................................................................................................2 2 Decision tree regarding the compilation of environmental data documentation ................... 3 3 Preliminary remarks / legal basis ..............................................................................................4 4 Definition of genetically modified microorganisms (GMOs) ....................................................5 5 Environmental data documentation ..........................................................................................5 5.1 General information ............................................................................................................................... 5 5.2 Determining and evaluating the risks for humans and the environment (risk assessment) ......... 6 5.2.1 Guidance for the risk assessment ...................................................................................................
    [Show full text]
  • Askbio Announces IND for LION-101, a Novel Investigational AAV Gene
    AskBio Announces IND for LION-101, a Novel Investigational AAV Gene Therapy for the Treatment of Limb-Girdle Muscular Dystrophy Type 2I/R9 (LGMD2I/R9), Cleared to Proceed by U.S. FDA -- LGMD2I/R9 is a Rare Form of Muscular Dystrophy with No Approved Therapies – -- First-in-Human Phase 1/2 Clinical Study Expected to Begin Dosing in 1H 2022 – Research Triangle Park, N.C. – May 25, 2021 – Asklepios BioPharmaceutical, Inc. (AskBio), a wholly owned and independently operated subsidiary of Bayer AG, announced that the U.S. Food & Drug Administration (FDA) has cleared its Investigational New Drug (IND) application for LION-101 to proceed in a Phase 1/2 clinical study. LION-101 is a novel recombinant adeno-associated virus (rAAV) based vector being developed as a one-time intravenous infusion for the treatment of patients with Limb-Girdle Muscular Dystrophy Type 2I/R9 (LGMD2I/R9). LION-101 will be evaluated in a first-in-human Phase 1/2 multicenter study to evaluate a single intravenous (IV) infusion in adult and adolescent subjects with genotypically confirmed LGMD2I/R9. AskBio plans to initiate dosing for the LION-101 Phase 1/2 clinical study in the first half of 2022. “In preclinical mouse models, LION-101 therapy demonstrated both dose-dependent efficacy and tolerability, providing a clear approach to study this novel AAV vector in first-in-human trials,” said Katherine High, MD, President, Therapeutics, AskBio. “Currently there are no approved therapies for LGMD2I/R9, and with limited treatment options that only address symptoms of the disease, the patient burden is profound.
    [Show full text]
  • Human Gene Therapy (Part 6 Of
    Background on Genetic Diseases 13 Background on genetic diseases Chromosomes and inheritance ual. The relative importance of genetic and envi- ronmental influences varies in both patients and Higher organisms package their DNA into seg- diseases. Some medical conditions, such as auto- ments called chromosomes. Each chromosome is mobile accidents or war wounds, may have large composed of one very long stretch of DNA that environmental and very small genetic contribu- is bound to various proteins and other molecules. tions. Most diseases have a mixture of genetic and There are two copies of each of 22 chromosomes environmental contributions (Harsanyi, 1981). In in the cells of a human. In addition, there are two several disorders, such as Huntington or Tay- sex chromosomes. Females have two ‘(X” chromo- Sachs diseases, the influence of a single gene is somes and males have one “X” and one “Y. ” In nor- so large that the disorders are called genetic mal human cells, therefore, there are 46 chromo- diseases. somes: 2 sex chromosomes and 2 copies of each of 22 other chromosomes (these non-sex chromo- somes are called autosomes). SINGLE GENE TRAITS, OR MENDELIAN TRAITS When traits or diseases are primarily deter- The 46 discrete aggregates of DNA and attached mined by a single gene, they obey the relatively protein that comprise the chromosomes are main- simple laws of inheritance first specified by tained inside the nucleus of somatic cells. In germ Gregor Mendel, a monk who lived in the last cen- cells, in contrast, a specialized phenomenon called tury and whose interests in agriculture led him meiosis takes place.
    [Show full text]
  • The Landscape of Non-Viral Gene Augmentation Strategies for Inherited Retinal Diseases
    International Journal of Molecular Sciences Review The Landscape of Non-Viral Gene Augmentation Strategies for Inherited Retinal Diseases Lyes Toualbi 1,2, Maria Toms 1,2 and Mariya Moosajee 1,2,3,4,* 1 UCL Institute of Ophthalmology, London EC1V 9EL, UK; [email protected] (L.T.); [email protected] (M.T.) 2 The Francis Crick Institute, London NW1 1AT, UK 3 Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK 4 Great Ormond Street Hospital for Children NHS Found Trust, London WC1N 3JH, UK * Correspondence: [email protected]; Tel.: +44-207-608-6971 Abstract: Inherited retinal diseases (IRDs) are a heterogeneous group of disorders causing progres- sive loss of vision, affecting approximately one in 1000 people worldwide. Gene augmentation therapy, which typically involves using adeno-associated viral vectors for delivery of healthy gene copies to affected tissues, has shown great promise as a strategy for the treatment of IRDs. How- ever, the use of viruses is associated with several limitations, including harmful immune responses, genome integration, and limited gene carrying capacity. Here, we review the advances in non-viral gene augmentation strategies, such as the use of plasmids with minimal bacterial backbones and scaffold/matrix attachment region (S/MAR) sequences, that have the capability to overcome these weaknesses by accommodating genes of any size and maintaining episomal transgene expression with a lower risk of eliciting an immune response. Low retinal transfection rates remain a limita- tion, but various strategies, including coupling the DNA with different types of chemical vehicles (nanoparticles) and the use of electrical methods such as iontophoresis and electrotransfection to aid Citation: Toualbi, L.; Toms, M.; Moosajee, M.
    [Show full text]
  • Gene Therapy Pipeline
    Gene Therapy Pipeline Delivery Expressed Indication Abstract Patents Inventor Platform Product AAV10 vector-based gene therapy for treating ALS with enhanced tropism for neuronal cells. Administration of rAAV encoding inhibitory RNA for Reference#: Amyolateral Sclerosis Guangping Gao superoxide dismutase 1 (SOD1) distributes widely throughout CNS with low UMMS10-36 rAAV miR-SOD1 (ALS; Lou Gehrig’s Zhushang Xu toxicity. Long-term inhibition of mutant SOD1 improves lifespan in the animal Patent#: Diseases) models. more info. 9,102,949 Novel therapeutic to treat cholesterol-related disorders by recombinant Reference#: Dyslipidimia, Familial adeno-associated (rAAV)-based gene therapy. Introduction of miR122- Guangping Gao miR-122 UMMS10-37 rAAV hypercholesterolemia inhibitor transgene in the liver significantly reduces cholesterol levels up to Phillip Zamore Antagonist Patent#: (FH) 50% for at least 14 weeks in mice. more info. 9,272,053 New effective and safe gene therapy approach that allows gene delivery across the blood brain barrier (BBB) upon intravascular administration. Reference#: Multiple inserts Neurodegenerative Guangping Gao rAAV Designed to minimize off-target effects by incorporation of non-CNS-tissue UMMS10-38 coding for Disorders, Canavan Zhushang Xu specific miRNA binding site into the transgene expression cassette. more Patent#: RNAi/protein Disease info. 9,102,949 Novel method to isolate and characterize natural variants of AAV9. This new Reference#: Application of new information allows for designing caspids with higher efficiency in packaging UMMS10-39 Guangping Gao rAAV rAAV9 variant AAV for gene therapy and tissue specificity. more info. Patent#: Terence Flotte Pending Newly designed multicistronic expression construct with efficient shRNA Reference#: Application of new delivery.
    [Show full text]