Dependence of N2O/NO Decomposition and Formation on Temperature and Residence Time in Thermal Reactor

Total Page:16

File Type:pdf, Size:1020Kb

Dependence of N2O/NO Decomposition and Formation on Temperature and Residence Time in Thermal Reactor energies Article Dependence of N2O/NO Decomposition and Formation on Temperature and Residence Time in Thermal Reactor Sang Ji Lee 1, Jae Geun Yun 1, Han Min Lee 1, Ji Yeop Kim 1, Jin Han Yun 2 and Jung Goo Hong 1,* 1 School of Mechanical Engineering, Kyungpook National University, Buk-gu, Daegu 41566, Korea; [email protected] (S.J.L.); [email protected] (J.G.Y.); [email protected] (H.M.L.); [email protected] (J.Y.K.) 2 Department of Environmental Machinery, Korea Institute of Machinery & Materials, Yuseong-gu, Daejeon 34103, Korea; [email protected] * Correspondence: [email protected]; Tel.: +82-53-950-6570 Abstract: Nitrogen dioxide (N2O) is a greenhouse gas that is harmful to the ozone layer and con- tributes to global warming. Many other nitrogen oxide emissions are controlled using the selective non-catalytic reaction (SNCR) process, but N2O reduction methods are few. To avoid future air pollu- tion problems, N2O reduction from industrial sources is essential. In this study, a N2O decomposition and NO formation under an argon atmospheric N2O gas mixture were observed in a lab-scale SNCR system. The reaction rate and mechanism of N2O were calculated using a reaction path analyzer (CHEMKIN-PRO). The residence time of the gas mixture and the temperature in the reactor were set as experimental variables. The results confirmed that most of the N2O was converted to N2 and NO. The change in the N2O reduction rate increased with the residence time at 1013 and 1113 K, but decreased at 1213 K due to the inverse reaction. NO concentration increased with the residence time Citation: Lee, S.J.; Yun, J.G.; Lee, at 1013 and 1113 K, but decreased at 1213 K owing to the conversion of NO back to N2O. H.M.; Kim, J.Y.; Yun, J.H.; Hong, J.G. Keywords: Dependence of N2O/NO nitrous oxide (N2O); nitric oxide (NOx); argon (Ar) ambient; thermal decomposition; Decomposition and Formation on residence time; rate of progress; GRI-Mech 3.0 Temperature and Residence Time in Thermal Reactor. Energies 2021, 14, 1153. https://doi.org/10.3390/ en14041153 1. Introduction Nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) are considered green- Academic Editor: Mejdi Jeguirim house gases. N2O is very stable in air, and takes an average of 135 years to decompose naturally. Upon reaching the stratosphere, N2O reacts with an oxygen atom (O) to form Received: 1 February 2021 nitrogen monoxide (NO). NO reacts with ozone (O ) again in the ozone layer and destroys Accepted: 17 February 2021 3 O in a chain [1,2]. Therefore, N O has 310 times higher global warming potential (GWP) Published: 22 February 2021 3 2 than CO2. N O was designated as a greenhouse gas by the Kyoto Protocol in 1997. Afterward, Publisher’s Note: MDPI stays neutral 2 N O was regulated as a greenhouse gas under the Paris Agreement adopted at the UN with regard to jurisdictional claims in 2 published maps and institutional affil- Climate Change Conference in 2015. However, in most countries, including South Korea, iations. specific reduction policies for N2O are still inadequate [3]. N2O reduction methods can be divided into two methods. The first is the inhibition of N2O production. The second is N2O removal at the end of the exhaust [4–6]. In the first method, N2O generation can be suppressed using a fluid medium in the fluidized bed combustion process (FBC) and by using a catalyst mounted on a generation source Copyright: © 2021 by the authors. such as a vehicle [4–6]. However, this method is greatly affected by the N O temperature Licensee MDPI, Basel, Switzerland. 2 and pressure conditions. The second method involves reducing the N O generated in This article is an open access article 2 distributed under the terms and the incinerator and the industrial process at a subsequent stage [4–6]. This technology of conditions of the Creative Commons N2O reduction at the end of the process is largely divided into selective catalytic reduction Attribution (CC BY) license (https:// (SCR) and selective non-catalytic reduction (SNCR). The SCR process uses a catalyst, so the creativecommons.org/licenses/by/ facility can be operated at a lower temperature than that required for SNCR. The SNCR 4.0/). Energies 2021, 14, 1153. https://doi.org/10.3390/en14041153 https://www.mdpi.com/journal/energies Energies 2021, 14, x FOR PEER REVIEW 2 of 11 Energies 2021, 14, 1153 2 of 11 SNCR process operates at a relatively high temperature (approximately 1000–1500 K) comparedprocess operates with the at SCR a relatively process, high and temperaturethe initial investment (approximately cost is 1000–1500lower than K) other compared pro- cesseswith the[4–8]. SCR process, and the initial investment cost is lower than other processes [4–8]. TheThe SNCR SNCR process process is a is NOx a NOx reducing reducing process, process, where where the NOx the NOxgenerated generated in the com- in the bustioncombustion process process of an of incinerator an incinerator is reduced is reduced using using a reductant. a reductant. Specifically, Specifically, a areductant reductant such as ammonia (NH3) and urea aqueous solution (NH2CONH2) is injected into the such as ammonia (NH3) and urea aqueous solution (NH2CONH2) is injected into the chamber at temperatures of 1173–1373 K, thereby reducing NOx to nitrogen (N2) and wa- chamber at temperatures of 1173–1373 K, thereby reducing NOx to nitrogen (N2) and water 3 tervapor vapor [9 [9].]. In In general, general, NH NH3 isis moremore efficientefficient thanthan the urea urea aqueous aqueous solution, solution, but but urea urea is is easiereasier to to handle handle and and results results in in a aless less costly costly process process [10,11]. [10,11]. FigureFigure 11 shows shows the the decomposition decomposition mechanism mechanism and and reaction reaction pathway pathway of of NH NH3 3andand urea urea aqueousaqueous solution solution in in the the SNCR SNCR process process [12]. [12]. In In the the process, process, the the Zel'dovich Zel’dovich mechanism mechanism is is usedused as as the the basic basic reaction reaction pathway pathway for for oxidation oxidation and and deoxidation deoxidation of of N N2 2[13].[13]. FigureFigure 1. 1. BasicBasic decomposition decomposition mechanism mechanism of of nitrous nitrous oxideoxide usingusing ammoniaammoniaand and urea urea aqueous aqueous solution solu- tionreductants reductants [13 ].[13]. InIn a aSNCR SNCR process process that that uses uses urea urea aqueous aqueous solution solution as a as reductant, a reductant, NOx NOx is reduced is reduced to Nto2 and N2 Nand2O N[14].2O[ Svoboda14]. Svoboda et al. reported et al. reported that the that reductant the reductant employed employed in the process in the processaffects theaffects production the production of N2O [15]. of N Moreover,2O[15]. Moreover, Kim reported Kim that reported a small that amount a small of amount N2O was of gen- N2O eratedwas generated when urea when aqueous urea aqueoussolution solutionwas injected was injected for NOx for removal NOx removal in the inoperation the operation of a wasteof a waste incinerator incinerator [16]. [16]. CarbonCarbon monoxide monoxide (CO) andand oxygenoxygen (O (O2)2 are) are typical typical reaction reaction gases gases that that affect affect the SNCR the SNCRprocess. process. In the In oxygen-free the oxygen-free process, process, the NOxthe NOx reducing reducing reaction reaction occurs occurs at temperatures at tempera- turesof 1400 of 1400 K or K higher. or higher. This This results results from from the NOthe NO reduction reduction proceeding proceeding at a at relatively a relatively high hightemperature temperature due todue the to low the OHlow concentration, OH concentrat therebyion, thereby leading leading to an increase to an increase in the reaction in the reactiontemperature. temperature. Im reported Im reported that thethat optimalthe optimal O2 concentrationO2 concentration in in the the SNCR SNCR process process is is5–7% 5–7% [ 17[17].]. InIn a astudy study on on the the residence residence time, time, Liang Liang et et al. al. reported reported that that the the optimum optimum temperature temperature for N O decomposition and NOx formation decreased with increasing residence time for N2O2 decomposition and NOx formation decreased with increasing residence time of theof mixture the mixture [18]. Various [18]. Various studies studies considering considering the dependence the dependence of NO reduction of NO reduction on the tem- on peraturethe temperature and residence and residencetime have used time ammonia have used as ammonia a reductant as in a reductantthe SNCR process in the SNCR [19– 22].process Duo et[19 al.–22 reported]. Duo etthat al. the reported optimum that temperature the optimum for temperatureNO reduction for decreased NO reduction with increasingdecreased residence with increasing time [23]. residence time [23]. Previous studies have confirmed that the reduction efficiency of N2O is determined Previous studies have confirmed that the reduction efficiency of N2O is determined by complex factors such as the amount of reductant, mixture composition, and residence by complex factors such as the amount of reductant, mixture composition, and residence time. Most of those studies focused on controlling the amount of N2O generated during time. Most of those studies focused on controlling the amount of N2O generated during the NOx reduction process in the SNCR. Additionally, studies of N2O decomposition have the NOx reduction process in the SNCR. Additionally, studies of N2O decomposition have mostly used catalysts. [24–26]. In the SNCR system, N2O is less regulated than NOx; hence, mostly used catalysts. [24–26]. In the SNCR system, N2O is less regulated than NOx; hence, the reduction of N2O has rarely been investigated.
Recommended publications
  • Molecular Modeling of the Thermal Decomposition of Polymers
    DOT/FAA/AR-05/32 Molecular Modeling of the Thermal Office of Aviation Research Decomposition of Polymers Washington, D.C. 20591 October 2005 Final Report This document is available to the U.S. public through the National Technical Information Service (NTIS), Springfield, Virginia 22161. U.S. Department of Transportation Federal Aviation Administration NOTICE This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof. The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the objective of this report. This document does not constitute FAA certification policy. Consult your local FAA aircraft certification office as to its use. This report is available at the Federal Aviation Administration William J. Hughes Technical Center's Full-Text Technical Reports page: actlibrary.tc.faa.gov in Adobe Acrobat portable document format (PDF). Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT/FAA/AR-05/32 4. Title and Subtitle 5. Report Date MOLECULAR MODELING OF THE THERMAL DECOMPOSITION OF October 2005 POLYMERS 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Stanislav I. Stoliarov1, Phillip R. Westmoreland2, Huiqing Zhang2, Richard E. Lyon3, and Marc R. Nyuden4 9. Performing Organization Name and Address 3 10. Work Unit No. (TRAIS) Federal Aviation Administration 1SRA International, Inc. William J. Hughes Technical Center 3120 Fire Road Fire Safety Branch Egg Harbor Twp., NJ 08234 Atlantic City International Airport, NJ 08405 11.
    [Show full text]
  • Thermal Decomposition of Nitrous Oxide on a Gold Surface
    AN ABSTRACT OF THE THESIS OF JEREMY BROOKE HALLADAY for theDOCTOR OF PHILOSOPHY (Name) (Degree) in CHEMICAL ENGINEERING presented on 9- LI- 70 (Major) (Date) Title: SIMULTANEOUS HOMOGENEOUS AND HETEROGENEOUS CHEMICAL REACTION KINETICS: THERMAL DECOMPOSI- TION OF NITROUS OXIDE ON A COLD SURFACE Abstract approved: Redacted for Privacy Robert V. Mr4ek A general technique has been proposed for the determination of rates for reactions which occur simultaneously by homogeneous and heterogeneous paths.This technique requires determining the effect on the observed rate of varying the amount of catalyst in the reactor. If S is the amount of catalyst and f(S/V) is the dependence of the total rate on S/V, then r,r = rH +rs f(S/ V) where rT = total reaction rate, moles -time-1-volume-1 rH = homogeneous reaction rate r = the concentration dependent function of the heterogeneous rate. Values of rH and rcan then be found from a plot of rT versus f(S /V), all other variables being held constant, except if f(S/V) = (S/V)0 The proposed method has been applied to the simultaneous homo- geneous and heterogeneous thermal decomposition of nitrous oxide to the elements. Gold was used as the catalyst.Data were taken in the temperature range 700-800oCwith a backmix reactor; this type ofre- actor allowed the direct determination of rate.The reaction products were analyzed with a gas chromatograph.It was found that the de- composition to the elements is described by the expression 2 k[N20] -r 1 + kS [N20] (S/V) 1 1 + k[N20] 2 By varying S/ V, the surface rate was caused to range from 0% to 80% of the total reaction rate.
    [Show full text]
  • Thermal Decomposition of Ethylene Oxide on Pd( 111): Comparison of the Pathways for the Selective Oxidation of Ethylene and Olefin Metathesis R
    730 Langmuir 1994,10, 730-733 Thermal Decomposition of Ethylene Oxide on Pd( 111): Comparison of the Pathways for the Selective Oxidation of Ethylene and Olefin Metathesis R. M. Lambert,+R. M. Ormerod,* and W. T. Tysoe*p% Department of Chemistry, University of Cambridge, Cambridge CB2 lEW, U.K., Department of Chemistry, University of Keele, Keele, Staffordshire ST5 5BG, U.K.,and Department of Chemistry and Laboratory for Surface Studies, University of Wisconsin, Milwaukee, Wisconsin 5321 1 Received August 3, 1993. In Final Form: December 16,199P The product distribution detected in the multimass temperature-programmeddesorption of a saturated overlayer of ethylene oxide adsorbed on Pd(ll1) at - 180 K indicates that it decomposes to yield ethylene and acetaldehyde. These observations are interpreted by postulating that ethylene oxide reacts to form an oxymetallocycle. This is proposed to thermally decompose in a manner analogous to carbometallocycles that form during olefin metathesis catalysis by the reaction between an alkene and a surface carbene. Thus, the metallocycle can decompose to yield ethylene and deposit adsorbed atomic oxygen or undergo a 8-hydrogen transfer to form acetaldehyde. Introduction Scheme 1 Ethylene epoxidation is a catalytic process of great industrial importance where the most selective catalysts are based on It has been unequivocally demon- T\ 2L + CAUI XCH, strated that both partial and total oxidation products arise from the reaction of ethylene with adsorbed atomic oxygen and desorbs intact at -175 K.g Ethylene oxide adsorbed and that the presence of dissolved subsurface oxygen on oxygen-precovered silver does thermally decompose enhances the selectivity to ethylene oxide.3~~It has been by reaction with oxygen, and this has been suggested as proposed that this facilitates electrophilic attack of a pathway to the formation of total oxidation products.3 ethylene by adsorbed atomic oxygen by reducing its negative charge.
    [Show full text]
  • Kinetics of the Thermal Decomposition of Rhodochrosite
    minerals Article Kinetics of the Thermal Decomposition of Rhodochrosite Iván A. Reyes 1,2 , Mizraim Flores 3,*, Elia G. Palacios 4 , Hernán Islas 1, Julio C. Juárez 5 , Martín Reyes 5, Aislinn M. Teja 5 and Cristóbal A. Pérez 1 1 Instituto de Metalurgia, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico; [email protected] (I.A.R.); [email protected] (H.I.); [email protected] (C.A.P.) 2 Catedrático CONACYT, Consejo Nacional de Ciencia y Tecnología, Ciudad de Mexico 03940, Mexico 3 Área Electromecánica Industrial, Universidad Tecnológica de Tulancingo, Hidalgo 43642, Mexico 4 Escuela Superior de Ingeniería Química e Industrias Extractivas, Instituto Politécnico Nacional, Ciudad de Mexico 07738, Mexico; [email protected] 5 Área Académica de Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de Hidalgo, Hidalgo 42183, Mexico; [email protected] (J.C.J.); [email protected] (M.R.); [email protected] (A.M.T.) * Correspondence: mfl[email protected] Abstract: Manganese is a widely used element in the steel industry; its main source is a mineral named rhodochrosite (MnCO3). For industrial usage, rhodochrosite is reduced to different man- ganese oxides by means of nodulation furnaces. In this study, rhodochrosite was thermally analyzed at temperatures ranging from 100 ◦C to 1200 ◦C. XRD (Powder X-ray diffraction), XRF (X-ray fluores- cence), AAS (Atomic Absorption Spectrometry), and FESEM-EDX (Field Emission Scanning Electron Microscopy-Energy Dispersive X-ray Spectrometry) were used to characterize the mineral and the residues were analyzed by XRD and FTIR (Fourier-transform infrared spectroscopy) to determine the stoichiometry of the thermal decomposition reactions.
    [Show full text]
  • Chemical Source of Oxygen John F
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Northern Iowa Proceedings of the Iowa Academy of Science Volume 66 | Annual Issue Article 28 1959 Chemical Source of Oxygen John F. O'Brien Saint Ambrose College Copyright © Copyright 1959 by the Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/pias Recommended Citation O'Brien, John F. (1959) "Chemical Source of Oxygen," Proceedings of the Iowa Academy of Science: Vol. 66: No. 1 , Article 28. Available at: https://scholarworks.uni.edu/pias/vol66/iss1/28 This Research is brought to you for free and open access by UNI ScholarWorks. It has been accepted for inclusion in Proceedings of the Iowa Academy of Science by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. O'Brien: Chemical Source of Oxygen Chemical Source of Oxygen 1 By JOHN F. O'BRIEN Abstract. An investigation was made on the thermal decom­ position of the alkali metal chlorates and perchlorates of sodium, potassium and lithium, and mixtures of these. The effects of various catalysts in promoting and controlling the decomposition with the production of minimum reaction temperature and maxi­ mum oxygen yield were studied. Experimental results are pre­ sented for potassium chlorate and perchlorate. In recent years the military has advocated the development of a solid chemical oxygen source to the point where it may be used in an aircraft oxygen system. The need exists for a reliable oxygen source that is efficient on a weight and volume basis, and suf­ ficiently developed for immediate availability for military use.
    [Show full text]
  • THERMAL DECOMPOSITION and EXPLOSION of AMMONIUM PERCHLORATE and AMMONIUM PERCHLORATE PROPELLANT up to 50 KILOBARS (5.0X10' N/M2)
    NASA TECHNICAL NOTE NASA TN D-6013 cr) c- 0 liom COPY -? n Am KIR!I"D I I- 4 m 4 z THERMAL DECOMPOSITION AND EXPLOSION OF AMMONIUM PERCHLORATE AND AMMONIUM PERCHLORATE PROPELLANT UP TO 50 KILOBARS (5.0X10' N/m2) by Huns R. Voelkl Lewis Research Center Cleueland, Ohio 44135 NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. SEPTEMBER 1970 TECH LIBRARY KAFB, NM - ... __ - 0132bb4 1. Report No. 2. Government Accession No. 3. Recipient's Catalog IVO. NASA TN D-6013 - -.. 4. Title and Subtitle THERMAL DECOMPOSITION AND EXPLOSION OF 5. Report Date September 1970 AMMONIUM PERCHLORATE AND AMMONIUM PERCHLORATE 6. Performing Organization Code PROPELLANT UP TO 50 KILOBARS (5. OXlO9 N/m2) 7. Author(s) 8. Performing Organization Report No. Hans R. Voelkl E-4568 10. Work Unit No. 9. Performing Organization Name- and Address 129-03 Lewis Research Center 11. Contract or Grant No. National Aeronautics and Space Administration Cleveland, Ohio 44135 13. Type of Report and Period Covered I12. Sponsoring Agency Name and Address Technical Note - National Aeronautics and Space Administration 14. Sponsoring Agency Code Washington, D. C. 20546 -. 15. Supplementary Notes L - - . - -. 16. Abstract The rates of thermal decomposition of ammonium perchlorate and an ammonium perchlorate 9 9 9 2 solid propellant at 15, 25, and 50 kilobars (1.5X10 , 2.5X10 , and 5.0XlO N/m ) pressure were studied in a cubic anvil press. The data were correlated by first order rate equations to obtain the temperature variation of the specific reaction rates and the apparent activation energies. Explosion limits of pure ammonium perchlorate are included to 30 kilobars (3.
    [Show full text]
  • Organic and Inorganic Decomposition Products from the Thermal Desorption of Atmospheric Particles
    Atmos. Meas. Tech., 9, 1569–1586, 2016 www.atmos-meas-tech.net/9/1569/2016/ doi:10.5194/amt-9-1569-2016 © Author(s) 2016. CC Attribution 3.0 License. Organic and inorganic decomposition products from the thermal desorption of atmospheric particles Brent J. Williams1, Yaping Zhang1, Xiaochen Zuo1, Raul E. Martinez1, Michael J. Walker1, Nathan M. Kreisberg2, Allen H. Goldstein3, Kenneth S. Docherty4,5, and Jose L. Jimenez5 1Dept. of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA 2Aerosol Dynamics Inc., Berkeley, California, USA 3Dept. of Environmental Science, Policy & Management and Dept. of Civil & Environmental Engineering, University of California, Berkeley, California, USA 4Alion Science and Technology, EPA Office of Research and Development, Research Triangle Park, North Carolina, USA 5Cooperative Institute for Research in the Environmental Sciences (CIRES) and Dept. of Chemistry & Biochemistry, University of Colorado, Boulder, Colorado, USA Correspondence to: Brent J. Williams ([email protected]) Received: 23 November 2015 – Published in Atmos. Meas. Tech. Discuss.: 18 December 2015 Revised: 19 March 2016 – Accepted: 22 March 2016 – Published: 11 April 2016 Abstract. Atmospheric aerosol composition is often ana- the signal (e.g., m/z 53, 82 observed here for isoprene-derived lyzed using thermal desorption techniques to evaporate sam- secondary OA). All of these ions are important for ambient ples and deliver organic or inorganic molecules to various aerosol analyzed with the
    [Show full text]
  • A Metallurgical Investigation of the Bath Smelting of Composite Organic and Ferrous Wastes Stuart John Street University of Wollongong
    University of Wollongong Research Online University of Wollongong Thesis Collection University of Wollongong Thesis Collections 1997 A metallurgical investigation of the bath smelting of composite organic and ferrous wastes Stuart John Street University of Wollongong Recommended Citation Street, Stuart John, A metallurgical investigation of the bath smelting of composite organic and ferrous wastes, Doctor of Philosophy thesis, Department of Materials Engineering, University of Wollongong, 1997. http://ro.uow.edu.au/theses/1479 Research Online is the open access institutional repository for the University of Wollongong. For further information contact Manager Repository Services: [email protected]. A Metallurgical Investigation of the Bath Smelting of Composite Organic and Ferrous Wastes A thesis submitted in fulfilment of the requirements for the award of the degree Doctor of Philosophy from University of Wollongong by Stuart John Street, B.E (Hons), M.E (Hons) Department of Materials Engineering 1997 Candidates Certificate This is to certify that the work presented in this thesis was carried out by the candidate in the Department of Materials Engineering, University of Wollongong, and has not been submitted to any other university or institution for a higher degree. Stuart Street "I may not care but that doesn't mean I don't understand." - Homer.J.Simpson "The Simpsons" Acknowledgements It has been said that: "Sometimes a scream is better than a thesis" - Ralph Waldo Emerson (1803-1882) to all those that heard me scream, thanks. Abstract Bath smelting has recently been the focus of several large research and development programs investigating alternative ironmaking processes. Fundamental studies have contributed to the understanding of smelting- reduction processes however these have not been entirely applicable to the smelting of composite pellets.
    [Show full text]
  • Thermal Decomposition of Coal - Dexiang Zhang
    COAL, OIL SHALE, NATURAL BITUMEN, HEAVY OIL AND PEAT – Vol. I -Thermal Decomposition of Coal - Dexiang Zhang THERMAL DECOMPOSITION OF COAL Dexiang Zhang Department of Chemical Engineering for Energy Source, East China University of Science and Technology, Shanghai,China Keywords: Coal, Thermal decomposition, Pyrolysis, Flash pyrolysis, Hydropyrolysis, Pyrolysis product, Pyrolysis technology, Gas, Tar, Char, Coke, Low-temperature pyrolysis, Weight loss, Thermal treatment, Homolysis, Devolatilization, Maceral, Atmosphere, Chemicals,Heating rate, Reaction, Coal rank, Temperature, Pressure, Hydrocarbonization, Hydrogenation, Laser, Microwave, Flash tube, Plasma, Electric arc, Shock tube, Electric current, Entraining gas, Hydrogen, Acetylene, Clean fuels, Mechanism, Aromatic, Hydrocarbon , Pyrolytic conditions. Contents 1. Introduction 2. Fundamentals of Thermal Decomposition of Coal 2.1 The Patterns of Thermal Decomposition 2.1.1 Slow Heating Rate 2.1.2 Rapid Heating Rate 2.2 Chemical Reactions of Coal in Thermal Decomposition 2.2.1 The Rule of Organic Compounds in Thermal Decomposition Process 2.2.2 Chemical Reactions of Coal in Thermal Decomposition 2.3 Products Derived from Thermal Decomposition 2.3.1 Gaseous and Liquid Products 2.3.2 Solid Products 3. Parameters Affecting Thermal Decomposition of Coal 3.1 Coal Rank 3.2 Temperature and Heating Rate 3.2.1 Effect of Temperature on Weight Loss 3.2.2 Effect of Temperature on Pyrolysis Product Composition 3.2.3 Effect of Heating Rate 4. Processes of Thermal Decomposition of Coal 4.1 Low-Temperature Pyrolysis 4.2 Flash Pyrolysis and Hydropyrolysis 5. ConclusionUNESCO – EOLSS Glossary Bibliography SAMPLE CHAPTERS Biographical Sketch Summary When coal is heated progressively in an inert atmosphere, coal starts to decompose and evolves a mixture of hydrogen and/or oxygen-rich products, and aromatics units until coal comes to resemble a micro-crystalline graphitic solid at a high enough temperature.
    [Show full text]
  • Synthesis, Polymorphism and Thermal Decomposition Process of (N-C4H9)4NRE(BH4)4 for RE = Ho, Tm and Yb
    materials Article Synthesis, Polymorphism and Thermal Decomposition Process of (n-C4H9)4NRE(BH4)4 for RE = Ho, Tm and Yb Wojciech Wegner 1,2,* and Tomasz Jaro ´n 2,* 1 College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland 2 Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland * Correspondence: [email protected] (W.W.); [email protected] (T.J.) Abstract: In total, three novel organic derivatives of lanthanide borohydrides, n-But4NRE(BH4)4 (TBAREB), RE = Ho, Tm, Yb, have been prepared utilizing mechanochemical synthesis and purified via solvent extraction. Studies by single crystal and powder X-ray diffraction (SC-XRD and PXRD) revealed that they crystalize in two polymorphic forms, α- and β-TBAREB, adopting monoclinic (P21/c) and orthorhombic (Pnna) unit cells, previously found in TBAYB and TBAScB, respectively. Thermal decomposition of these compounds has been investigated using thermogravimetric analysis and differential scanning calorimetry (TGA/DSC) measurements, along with the analysis of the gaseous products with mass spectrometry (MS) and with analysis of the solid decomposition products with PXRD. TBAHoB and TBAYbB melt around 75 ◦C, which renders them new ionic liquids with relatively low melting points among borohydrides. Keywords: borohydrides; lanthanides; hydrogen storage; crystal structures; polymorphism; thermal stability; rare-earth elements Citation: Wegner, W.; Jaro´n,T. Synthesis, Polymorphism and Thermal Decomposition Process of 1. Introduction (n-C4H9)4NRE(BH4)4 for RE = Ho, Metal borohydrides constitute a continuously growing family of chemical compounds. Tm and Yb.
    [Show full text]
  • Carbon Dioxide Decomposition by Plasma Methods and Application of High Energy and High Density Plasmas in Material Processing and Nanostructures†
    Transactions of JWRI, Vol.39 (2010), No. 1 Carbon Dioxide Decomposition by Plasma Methods and Application of High Energy and High Density Plasmas in Material Processing † and Nanostructures SRIVASTAVA Mahesh P.** and KOBAYASHI Akira * Abstract The increase of carbon dioxide (CO2) in the atmosphere can cause climatic and geographical changes which will destroy nature. In order to combat this destruction many researchers have attempted either decomposition of carbon dioxide or carbon dioxide sequestration so as to bring the carbon dioxide content down to 260 ppm in the atmosphere. In the present paper, we have summarized some of the earlier attempts at the decomposition of carbon dioxide. We give a detailed introduction about the gas tunnel type of plasma jet for the decomposition of carbon dioxide. However, in most of the earlier attempts, carbon dioxide decomposed into carbon monoxide which is highly poisonous and it is a drawback in these attempts. In order to circumvent this drawback we have proposed a scheme for decomposition of carbon dioxide using an array of high voltage electrode systems with which it may be possible to decompose carbon dioxide to its constituents. We will also present some of the results of material processing using the gas tunnel type plasma jet and high energy high density non equilibrium plasma under fusion conditions such as those prevailing in dense plasma focus (DPF) device. KEY WORDS: (Carbon Dioxide), (Decomposition), (Plasma Methods), (High Energy and High Density Plasmas), (Material Processing), (Nanostructures) 1. Introduction dramatic climatic and geographical changes-effecting land & water bodies and will destroy nature. Therefore, From ancient times the content of oxygen and carbon the reduction of carbon dioxide is an important research dioxide has been found to be between 210 thousand and topic for many researchers.
    [Show full text]
  • Thermal Decomposition of Calcium Sulfate Walter Michael Bollen Iowa State College
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1954 Thermal decomposition of calcium sulfate Walter Michael Bollen Iowa State College Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Chemical Engineering Commons Recommended Citation Bollen, Walter Michael, "Thermal decomposition of calcium sulfate " (1954). Retrospective Theses and Dissertations. 13319. https://lib.dr.iastate.edu/rtd/13319 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overiaps.
    [Show full text]