Nzbotsoc-2000-62.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2002 New Zealand Botanical Society
NEW ZEALAND BOTANICAL SOCIETY NEWSLETTER NUMBER 67 MARCH 2002 New Zealand Botanical Society President: Anthony Wright Secretary/Treasurer: Doug Rogan Committee: Bruce Clarkson, Colin Webb, Carol West Address: c/- Canterbury Museum Rolleston Avenue CHRISTCHURCH 8001 Subscriptions The 2002 ordinary and institutional subscriptions are $18 (reduced to $15 if paid by the due date on the subscription invoice). The 2002 student subscription, available to full-time students, is $9 (reduced to $7 if paid by the due date on the subscription invoice). Back issues of the Newsletter are available at $2.50 each from Number 1 (August 1985) to Number 46 (December 1996), $3.00 each from Number 47 (March 1997) to Number 50 (December 1997), and $3.75 each from Number 51 (March 1998) onwards. Since 1986 the Newsletter has appeared quarterly in March, June, September and December. New subscriptions are always welcome and these, together with back issue orders, should be sent to the Secretary/Treasurer (address above). Subscriptions are due by 28th February each year for that calendar year. Existing subscribers are sent an invoice with the December Newsletter for the next years subscription which offers a reduction if this is paid by the due date. If you are in arrears with your subscription a reminder notice comes attached to each issue of the Newsletter. Deadline for next issue The deadline for the June 2002 issue (68) is 25 May 2002. Please post contributions to: Joy Talbot 23 Salmond Street Christchurch 8002 Send email contributions to [email protected] Files can be in WordPerfect (version 8 or earlier), MS Word (Word 97 or earlier) or saved as RTF or ASCII. -
Plant Charts for Native to the West Booklet
26 Pohutukawa • Oi exposed coastal ecosystem KEY ♥ Nurse plant ■ Main component ✤ rare ✖ toxic to toddlers coastal sites For restoration, in this habitat: ••• plant liberally •• plant generally • plant sparingly Recommended planting sites Back Boggy Escarp- Sharp Steep Valley Broad Gentle Alluvial Dunes Area ment Ridge Slope Bottom Ridge Slope Flat/Tce Medium trees Beilschmiedia tarairi taraire ✤ ■ •• Corynocarpus laevigatus karaka ✖■ •••• Kunzea ericoides kanuka ♥■ •• ••• ••• ••• ••• ••• ••• Metrosideros excelsa pohutukawa ♥■ ••••• • •• •• Small trees, large shrubs Coprosma lucida shining karamu ♥ ■ •• ••• ••• •• •• Coprosma macrocarpa coastal karamu ♥ ■ •• •• •• •••• Coprosma robusta karamu ♥ ■ •••••• Cordyline australis ti kouka, cabbage tree ♥ ■ • •• •• • •• •••• Dodonaea viscosa akeake ■ •••• Entelea arborescens whau ♥ ■ ••••• Geniostoma rupestre hangehange ♥■ •• • •• •• •• •• •• Leptospermum scoparium manuka ♥■ •• •• • ••• ••• ••• ••• ••• ••• Leucopogon fasciculatus mingimingi • •• ••• ••• • •• •• • Macropiper excelsum kawakawa ♥■ •••• •••• ••• Melicope ternata wharangi ■ •••••• Melicytus ramiflorus mahoe • ••• •• • •• ••• Myoporum laetum ngaio ✖ ■ •••••• Olearia furfuracea akepiro • ••• ••• •• •• Pittosporum crassifolium karo ■ •• •••• ••• Pittosporum ellipticum •• •• Pseudopanax lessonii houpara ■ ecosystem one •••••• Rhopalostylis sapida nikau ■ • •• • •• Sophora fulvida west coast kowhai ✖■ •• •• Shrubs and flax-like plants Coprosma crassifolia stiff-stemmed coprosma ♥■ •• ••••• Coprosma repens taupata ♥ ■ •• •••• •• -
A Fern Propagation Report (2005-2009) John Rugis
A Fern Propagation Report (2005-2009) John Rugis Introduction I’ve been experimenting with fern propagation for Propagation Method nearly four years with some success. The beginnings Noteworthy accounts of propagation methods are of this interest can be traced back to six months before given by Field (1890), Dobbie (1921), and again that when we relocated to our present bush clad Dobbie (1951). My approach has been to glean the section in Maraetai, South Auckland. Even in my then principles from the past but update to present botanically uninformed state, the presence of ferns and materials and technology. their influence on me was undeniable. Subsequent count revealed that there were already fifty-one fern species present on the property! Overview and Background In my particular experience, the task of fern propagation has consisted of 1) identification, 2) location, 3) collection, 4) propagation. As an identification study guide and reference manual, I have found the book New Zealand Ferns (Brownsey, 1989) indispensible. Historical accounts, such as Fig. 1. A spore packet. contained in Field (1890) and Dobbie (1921), provide additional background and interesting insight into past, I place cuttings in folded white A4 paper for spore as well as possible present, species distributions. release, which often occurs within 24 hours. Most Locating ferns in the wild is often not easy. species are left at room temperature for this and unforced desiccation of the sample occurs. However, “One word of warning, O trustful reader; when you see for green spore species, anything other than very slight a species marked 'abundant,' do not be too sanguine, I drying can kill the spore. -
GENOME EVOLUTION in MONOCOTS a Dissertation
GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field. -
1999 New Zealand Botanical Society
NEW ZEALAND BOTANICAL SOCIETY NEWSLETTER NUMBER 57 SEPTEMBER 1999 New Zealand Botanical Society President: Jessica Beever Secretary/Treasurer: Anthony Wright Committee: Bruce Clarkson, Colin Webb, Carol West Address: c/- Canterbury Museum Rolleston Avenue CHRISTCHURCH 8001 NEW ZEALAND Subscriptions The I999 ordinary and institutional subs are $18 (reduced to $15 if paid by the due date on the subscription invoice). The 1999 student sub, available to full-time students, is $9 (reduced to $7 if paid by the due date on the subscription invoice). Back issues of the Newsletter are available at $2.50 each from Number 1 (August 1985) to Number 46 (December 1996), $3.00 each from Number 47 (March 1997) to Number 50 (December 1997), and $3.75 each from Number 51 (March 1998) onwards. Since 1986 the Newsletter has appeared quarterly in March, June, September and December. New subscriptions are always welcome and these, together with back issue orders, should be sent to the Secretary/Treasurer (address above). Subscriptions are due by 28 February of each year for that calendar year. Existing subscribers are sent an invoice with the December Newsletter for the next year's subscription which offers a reduction if this is paid by the due date. If you are in arrears with your subscription a reminder notice comes attached to each issue of the Newsletter. Deadline for next issue The deadline for the December 1999 issue (Number 58) is 26 November 1999. Please forward contributions to: Dr Carol J. West, c/- Department of Conservation PO Box 743 Invercargill Contributions may be provided on an IBM compatible floppy disc (Word) or by e-mail to [email protected] Cover Illustration Plagiochila ramosissima with antheridial branches. -
Assessing Pollination and Fruit Dispersal in Fuchsia Excorticata (Onagraceae)
RobertsonNew Zealand et al.—Pollination Journal of Botany, and 2008, dispersal Vol. in46 Fuchsia: 299–314 299 0028–825X/08/4603–0299 © The Royal Society of New Zealand 2008 Assessing pollination and fruit dispersal in Fuchsia excorticata (Onagraceae) ALastaIR W. ROBErtsON cases very frequently by silvereyes, which also oc- Ecology, Institute of Natural Resources casionally rob nectar from flowers. We confirmed Massey University that hermaphrodites account for more than half the Private Bag 11222 plants in all populations, are fully self-compatible, Palmerston North 4474, New Zealand and can autonomously self in the absence of pollina- [email protected] tors (especially in plants with smaller herkogamy). Fruit production in hermaphrodites and (particularly) JENNY J. LADLEY females was frequently pollen-limited (mean Pollen DAVE KELLY Limitation Indices of 0.17 and 0.40, respectively), School of Biological Sciences and was correlated with visual assessments of pol- University of Canterbury len loads on the stigma, a useful index of pollinator Private Bag 4800 service. A comparison of the proportion of ripe or Christchurch 8140, New Zealand overripe fruit on branches exposed to birds versus KatE L. MCNUTT branches enclosed in wire cages showed that un- Ecology, Institute of Natural Resources caged fruit on Kapiti Island is removed almost as Massey University soon as it is ripe but on the mainland it persists for Private Bag 11222 much longer. The proportion of ripe or overripe Palmerston North 4474, New Zealand compared to green fruit is therefore an approximate index of dispersal service. Both indices may be use- PAUL G. PETERSON ful to managers concerned with measuring the level Landcare Research of mutualism service provided by native birds. -
Breeding Systems and Reproduction of Indigenous Shrubs in Fragmented
Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Breeding systems and reproduction of indigenous shrubs in fragmented ecosystems A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy III Plant Ecology at Massey University by Merilyn F Merrett .. � ... : -- �. � Massey University Palrnerston North, New Zealand 2006 Abstract Sixteen native shrub species with various breeding systems and pollination syndromes were investigated in geographically separated populations to determine breeding systems, reproductive success, population structure, and habitat characteristics. Of the sixteen species, seven are hermaphroditic, seven dioecious, and two gynodioecious. Two of the dioecious species are cryptically dioecious, producing what appear to be perfect, hermaphroditic flowers,but that functionas either male or female. One of the study species, Raukauaanomalus, was thought to be dioecious, but proved to be hermaphroditic. Teucridium parvifolium, was thought to be hermaphroditic, but some populations are gynodioecious. There was variation in self-compatibility among the fo ur AIseuosmia species; two are self-compatible and two are self-incompatible. Self incompatibility was consistent amongst individuals only in A. quercifolia at both study sites, whereas individuals in A. macrophylia ranged from highly self-incompatible to self-compatible amongst fo ur study sites. The remainder of the hermaphroditic study species are self-compatible. Five of the species appear to have dual pollination syndromes, e.g., bird-moth, wind-insect, wind-animal. High levels of pollen limitation were identified in three species at fo ur of the 34 study sites. -
Coromandel Peninsula, Auckland Anniversary Weekend 28/01/05 to 1/02/05 Mike Wilcox, Gael Donaghy, Leslie Haines, Graeme Jane, Carol Mcsweeney, Maureen Young
Field Trip: Coromandel Peninsula, Auckland Anniversary Weekend 28/01/05 to 1/02/05 Mike Wilcox, Gael Donaghy, Leslie Haines, Graeme Jane, Carol McSweeney, Maureen Young Abstract Introduction Thirty two Auckland Bot Soc members were based at The 2005 Anniversary Weekend camp was held on the Te Kouma for the Anniversary weekend camp from Coromandel Peninsula, based at the Te Kouma 28th January to 1st February 2005. Notable native Harbour Farmstay at the head of Te Kouma Harbour plants recorded were the coastal shrub Pomaderris about 8 km south of Coromandel town. Our rugosa, which we found fairly commonly on open accommodation was comfortable and the location banks in the Te Kouma area; Metrosideros albiflora convenient for exploring the botany of the western and Brachyglottis myrianthos in the Manaia Forest side of the Coromandel Peninsula. Those at the camp Sanctuary of Coromandel Forest Park; Ascarina lucida were: Tricia Aspin, Wayne Aspin, Enid Asquith, Paul and Pseudopanax laetus at 530 m in the Mahakirau Asquith, Jan Butcher, Lisa Clapperton, Colleen Forest Estate; parapara (Pisonia brunoniana), Crampton, Gwenda Cruickshank, Brian Cumber, Gael Macropiper excelsum subsp. excelsum and Streblus Donaghy, Gladys Goulstone, Leslie Haines, Betty banksii on Motuoruhi (Goat Island); Hebe pubescens Headford, Graeme Jane, Wyne Johns, Elaine Marshall, subsp. pubescens – the common koromiko on coastal Carol McSweeney, Garry McSweeney, John Millett, Coromandel cliffs, including the islands; Alseuosmia Helen Preston-Jones, C.J. Ralph, Carol Ralph, Juliet quercifolia and Libertia ixioides on the Te Kouma Richmond, John Rowe, Stella Rowe, Gabi Schmidt- Peninsula; and Korthalsella salicornioides and Adam, Doug Shaw, Nancy Smith, Shirley Tomlinson, Austrofestuca littoralis at Otama Beach. -
The 1770 Landscape of Botany Bay, the Plants Collected by Banks and Solander and Rehabilitation of Natural Vegetation at Kurnell
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Hochschulschriftenserver - Universität Frankfurt am Main Backdrop to encounter: the 1770 landscape of Botany Bay, the plants collected by Banks and Solander and rehabilitation of natural vegetation at Kurnell Doug Benson1 and Georgina Eldershaw2 1Botanic Gardens Trust, Mrs Macquaries Rd Sydney 2000 AUSTRALIA email [email protected] 2Parks & Wildlife Division, Dept of Environment and Conservation (NSW), PO Box 375 Kurnell NSW 2231 AUSTRALIA email [email protected] Abstract: The first scientific observations on the flora of eastern Australia were made at Botany Bay in April–May 1770. We discuss the landscapes of Botany Bay and particularly of the historic landing place at Kurnell (lat 34˚ 00’ S, long 151˚ 13’ E) (about 16 km south of central Sydney), as described in the journals of Lieutenant James Cook and Joseph Banks on the Endeavour voyage in 1770. We list 132 plant species that were collected at Botany Bay by Banks and Daniel Solander, the first scientific collections of Australian flora. The list is based on a critical assessment of unpublished lists compiled by authors who had access to the collection of the British Museum (now Natural History Museum), together with species from material at National Herbarium of New South Wales that has not been previously available. The list includes Bidens pilosa which has been previously regarded as an introduced species. In 1770 the Europeans set foot on Aboriginal land of the Dharawal people. Since that time the landscape has been altered in response to a succession of different land-uses; farming and grazing, commemorative tree planting, parkland planting, and pleasure ground and tourist visitation. -
Cunninghamia Date of Publication: April 2020 a Journal of Plant Ecology for Eastern Australia
Cunninghamia Date of Publication: April 2020 A journal of plant ecology for eastern Australia ISSN 0727- 9620 (print) • ISSN 2200 - 405X (Online) A Systematic Flora Survey, Floristic Classification and High-Resolution Vegetation Map of Lord Howe Island Paul Sheringham 1*, Peter Richards2, Phil Gilmour3, Jill Smith1 and Ernst Kemmerer 4 1 Department of Planning, Industry and Environment, Locked Bag 914 COFFS HARBOUR NSW 2450 2 17 Coronation Avenue, SAWTELL NSW 2452 3 523 Roses Rd, GLENIFFER, NSW 2454 4 Cradle Coast NRM, PO Box 338, BURNIE TAS 7320 * Author for correspondence: [email protected] Abstract: The present study took advantage of the availability of high resolution ADS40 digital imagery to 1) systematically resample the vegetation of the Lord Howe Island Group (LHIG, excluding Ball’s Pyramid); 2) conduct a numerical analysis of the floristic data; 3) map vegetation extent and the distribution of vegetation communities and 4) compare the resultant classification and mapping with those of Pickard (1983). In July 2013, a total of 86 full floristic and 105 rapid floristic sites were sampled across the island, based on a stratified random sampling design. A hierarchical agglomerative clustering strategy (Flexible UPGMA) and Bray-Curtis dissimilarity coefficient with default beta, along with nearest neighbour analysis to identify anomalous site allocations, was used to analyze the floristic data. In total 33 vegetation communities were delineated and mapped: 19 mapping units from the full floristic analysis; 7 variants identified within five of the above 19 groups; 3 mapping units from analysis of canopy- only floristic data; and 4 mapping units recognised in previous studies that are mapped but were not sampled in this survey. -
Plant of the Month
Plant of the Month - May by Allan Carr Geitonoplesium cymosum scrambling lily Pronunciation: guy-ton-o-PLEEZ-ee-um sy-MOW-sum HEMEROCALLIDACEAE Derivation: Geitonoplesium, from the Greek, geiton – a neighbour and plesio – near (because of its close affinity to the genus, Luzuriaga in which it was originally placed); cymosum, from the Greek, kyma – to swell, grow (presumably referring to the way in which a *cyme of flowers spreads outwards from the centre). Leaves, buds Buds, flower with native bee Leaves with raised mid vein Geitonoplesium is a monotypic genus (contains this single species) found in eastern Australia as well as Pacific Islands and Malaysia. Description: G. cymosum is a wiry twining climber often scrambling over itself. It is usually found in shaded positions and has fibrous roots and edible new growth. In eastern Australia it is found from north Qld down through eastern NSW to Vic. Leaves to 110 mm x 25 mm are alternate, shiny dark green above, paler below and have a distinct raised mid vein above several parallel longitudinal veins. Their shape can vary from *ovate to *lanceolate. Flowers to 15 mm across are borne in drooping *cymes of several white flowers with 6 petals and yellow *stamens from February to July. Fruits are black globular berries to 20 mm diameter with numerous waxy black seeds. This plant is very similar to Eustrephus latifolius (Plant of the Month - April) but can be easily identified by its leaves with an obvious raised mid vein, non-fringed flower petals or the black fruits. *ovate = shaped like an egg in outline, broadest near the base *lanceolate = shaped like a lance, about four times as long as it is wide and tapering to a point *cyme = a rounded arrangement of flowers where the flowers open from the centre first and spread outwards *stamen = one of the male organs of a flower consisting of a stalk (filament) and a pollen-bearer (anther) Habit with fruits . -
Vegetation of the North Cape Area, by J. M. Wheeler, P 63
HE VEGETATION OF THE NORTH CAPE AREA by J. M. Wheeler The vegetation of the North Cape district appears to have received little attention firstly because of its inaccessibility and secondly because of the general impression given in the early writings of Kirk and Cheeseman that the area is uninteresting from the botan• ical point of view. The area is of considerable ecological interest, however, and the present study was initiated with the following aims: (i) To describe the varied plant communities present within a relatively re• stricted area, (ii) To describe the remnants of the Kerr Point vegetation known to exhibit a number of unique features, (iii) To investigate the vegetation dynamics on the cliffs and other eroded areas, and (iv) To construct a vegetation map and species list for future reference. LITERATURE The area was first explored by Colenso in 1839 who travelled north from Kaitaia to Cape Reinga, Spirits Bay and North Cape and collected several plants peculiar to the area. Later, between 1865 and 1867 the area was visited by Buchanan and Kirk. Kirk (1868) published the first notes and species lists by Buchanan and Kirk (1869, 1870) followed. A more extensive description of the district north of Whangaroa was given by Cheeseman in 1896. Mason (1952) extends the notes on the area north of Awanui to Spirits' Bay and the present notes apply to the area lying further to the east of this. LOCATION The area under consideration may be defined as that lying to the east of Tom Bowling Bay, including the high promontory of Kerr Point, North Cape island and the immediately southern and extensive Waikuku flat and bordering sandhills as shown in Fig.