Notes on Radial and Quasiradial Fourier Multipliers

Total Page:16

File Type:pdf, Size:1020Kb

Notes on Radial and Quasiradial Fourier Multipliers NOTES ON RADIAL AND QUASIRADIAL FOURIER MULTIPLIERS ANDREAS SEEGER This is an updated version of notes that were originally prepared for lectures at the Summer School on Nonlinear Analysis, Function Spaces and Applications (NAFSA 10), in Tˇreˇst',Czech Republic. They are based on material in various joint papers ([1], [20], [26], [27], [34], [36], [37]). The notes could not have been written without the contribu- tions of my coauthors Jong-Guk Bak, Gustavo Garrig´os,Yaryong Heo, Sanghyuk Lee, Fedya Nazarov, and Keith Rogers. Any deficiencies and errors in these notes are my responsibility. 1. Fourier multipliers Given a translation invariant operator T which is bounded from S(Rd) to some Lq(Rd) there is a tempered distribution K so that d q T f = K ∗ f for all f 2 S(R ) (see [53]). We denote by Convp the space of all K 2 S0(Rd) such that kK ∗ fkq ≤ Ckfkp for all f 2 S(Rd), and set q kKkConvp = supfkK ∗ fkq : f 2 S; kfkp = 1g The convolution operators can also be written as a multiplier transfor- mation K ∗ f = F −1[mfb] where the Fourier transform of a Schwartz function in Rd is given by Z Ff(ξ) = fb(ξ) = f(y)e−ihy,ξidy and F −1[g](x) = (2π)−d R g(ξ)eihx,ξidξ is the inverse Fourier transform q of g. The space of Fourier transforms of distributions in Convp is q denoted by Mp and the Fourier transform is an isometric isomorphism q q q −1 q F : Convp ! Mp , i.e. kmkMp = kF [m]kConvp . We also abbreviate Date: July 1, 2018. 1991 Mathematics Subject Classification. 42B15. Supported in part by an NSF grant. 1 2 ANDREAS SEEGER p p Convp = Convp and Mp = Mp . Effective characterizations of the spaces q q Convp or Mp are known only in a few cases, see [28], [53]: 1 • Conv1 is the space of finite Borel measures (with the total variation norm). q q • For 1 < p ≤ 1, Conv1 = L , with identifications of the norms. 1 • M2 = L , with identifications of the norms. q q p0 1 1 1 1 Moreover, Mp = f0g for p > q, and Mp = Mq0 , p + p0 = q + q0 = 1. Of particular interest are the radial Fourier multipliers on Rd m(ξ) = h(jξj) : We shall assume throughout that d ≥ 2. The radial multipliers cor- respond to operators commuting with translations and rotations, i.e. convolution operators with radial kernels, and also to spectral multi- plier operators for the Laplace operator, via p h( −∆)f = F −1[h(j · j)fb] : A great deal of research has been done on a class of radial model mul- tipliers which are now called of Bochner-Riesz type. Given a smooth bump function φ supported in (−1=2; 1=2) we define 1−s (1.1) hδ(s) = φ( δ ) so that hδ(j · j) is supported on an annulus of width ∼ δ. 2d Conjecture I: For 1 < p < d+1 , one has −λ(p) (1.2) khδ(j · j)kMp . δ ; λ(p) = d(1=p − 1=2) − 1=2 This is referred to as the Bochner-Riesz conjecture since a resolution would prove that the Bochner-Riesz means of the Fourier integral Z λ 1 jξjλ ihx,ξi R f(x) = d 1 − fb(ξ)e dξ : (2π) jξ|≤t t converge to f in Lp(Rd) if λ > λ(p). Inequality (1.2) is known in two dimensions for the full range, and various partial results have been proved in higher dimensions (see [17],[13], [19], [5], [6], [61], [33], [8]). For the relationships of various related conjectures see [56], [57]. A somewhat more general problem involves classical function spaces 2 2 measuring regularity, in particular the L type Sobolev spaces Lα or NOTES ON RADIAL AND QUASIRADIAL FOURIER MULTIPLIERS 3 2 the Besov spaces Bα,p. The following estimate would be optimal within this class of spaces. Conjecture II: Let h be supported in a compact subinterval J of (0; 1). The estimate (1.3) kh(j · j)k khk 2 ; α = d(1=p − 1=2) Mp . Bα,p 2d holds for 1 ≤ p < d+1 . Partial results with the condition α > d(1=p − 1=2) and related square-function estimates are in [10], [12], [14], [34], and a proof of the 2 2(d+1) endpoint Bd(1=p−1=2);p bound, in the range 1 < p < d+3 can be found in [35]. Inequality (1.3) is still far from a characterization of radial multipliers (even those supported in (1=2; 2)). Consider the multiplier ht(s) = −its 1 χ(s)e where χ 2 Cc (1=2; 2). It is closely related to the solution operator for the wave equation. It is known (see [45]) that kht(j·j)kMp . (d−1)(1=p−1=2) α t for t > 1, 1 ≤ p ≤ 2, but kh k 2 t and thus the t Bα,q & optimal Mp bound cannot be derived from (1.3). An affirmative answer to the following conjecture would close this gap. 2d Conjecture III: Let 1 < p < d+1 , and let h be supported in a compact subinterval J of (0; 1). Then it −1 (1.4) kh(j · j)kMp ≈ F [h(j · j)] p (with the implicit constants depending on J)? Given that the weaker conjectures I and II are not completely re- solved, we may have, for Conjecture III, to settle for smaller ranges of 2(d−1) p. It has been shown to hold in [26] for the range d ≥ 4, p < d+1 , and no such result is currently known in dimensions 2 and 3. As in [26] the proof of this conjecture would likely lead to a simple characterization p 2d of all radial FL multipliers for p < d+1 , as in: Conjecture IV: Let m = h(j · j) be a bounded radial function on Rd and d define the convolution operator Th on R by Tdhf(ξ) = h(jξj)fb(ξ): 2d d Let 1 < p < d+1 . Let η be any nontrivial Schwartz function on R . p Then Th is bounded on L if and only if d=p sup t Th[η(t·)] p < 1 t>0 4 ANDREAS SEEGER The resolution of this conjecture would imply that in the above range p p Th is bounded on L if and only if Th is bounded on the subspace Lrad of radial Lp functions. By Fefferman’s theorem [18] on the ball multiplier 2d (or some variant of it) this is clearly false for d+1 ≤ p ≤ 2. Similar 2d arguments show that the condition p < d+1 is necessary in the three previous conjectures. Finally one can formulate a version of Conjecture IV for Lp ! Lq estimates. Here we focus on the case q ≤ 2. Conjecture V: Let m = h(j · j) be a radial function on Rd which is in 2 d 2d Lloc(R n f0g) and let Tdhf(ξ) = h(jξj)fb(ξ): Let 1 < p < d+1 , p ≤ q ≤ 2, d−1 0 d and q ≤ d+1 p . Let η be any nontrivial Schwartz function on R . Then p q Th is bounded from L to L if and only if d=p sup t Th[η(t·)] q < 1 t>0 d−1 0 2(d+1) 2d The condition q ≤ d+1 p is relevant for the range d+3 ≤ p < d+1 and cannot be dispensed with in general, by a Knapp example. One considers hδ(j · j) as in (1.1) and tests the operatorp on functionsp fδ, for which fbδ is a bump function supported in a δ × δ ×· · ·× δ rectangle addapted to the support of hδ(j · j). These notes. In x2 we consider the case of general quasiradial multipli- 2 ers in Mp and discuss a characterization for the case when the under a decay assumption on the Fourier transform of the surface measure of Σρ. When ρ is the Minkowski functional of a set with smooth bound- q ary (then P = I) we examine further the M1 classes and express the condition F −1[m] 2 Lq in terms of the one dimensional Fourier trans- form of h. This is done in x3. In x4 we discuss a sharp theorem from [20] on the Lp boundedness of convolution operators with radial kernels when acting on radial functions, and in x5 we prove the same result for radial multipliers acting on general functions. We shall focus on the case where the multipliers are supported in (1=2; 2). NOTES ON RADIAL AND QUASIRADIAL FOURIER MULTIPLIERS 5 2 2 2. L Fourier restriction theorems and quasiradial Mp multipliers In this section we shall first discuss a general version of the Stein- Tomas restriction theorem and then deduce as a consequence a straight- 2 forward characterization of radial and quasi radial multipliers in Mp , for the p-range of the L2 restriction theorem. 2.1. L2 Fourier restriction theorems. In the 1960's Stein observed that the Fourier transform of an Lp function can, for a nontrivial range of p > 1 be restricted to some compact hypersurfaces with suitable curva- ture assumptions. An almost sharp theorem for the sphere was proved by Tomas [62], with an endpoint version due to Stein [51]. Further results are in Greenleaf [23] and many other papers. Here we present the rather general setup by Mockenhaupt [43] and by Mitsis [42], with the endpoint version in a joint paper with Bak [1]. We are given a compactly supported Borel measure µ satisfying the Fourier decay bound −β=2 (2.1) jµb(ξ)j .
Recommended publications
  • A Corrective View of Neural Networks: Representation, Memorization and Learning
    Proceedings of Machine Learning Research vol 125:1{54, 2020 33rd Annual Conference on Learning Theory A Corrective View of Neural Networks: Representation, Memorization and Learning Guy Bresler [email protected] Department of EECS, MIT Cambridge, MA, USA. Dheeraj Nagaraj [email protected] Department of EECS, MIT Cambridge, MA, USA. Editors: Jacob Abernethy and Shivani Agarwal Abstract We develop a corrective mechanism for neural network approximation: the total avail- able non-linear units are divided into multiple groups and the first group approx- imates the function under consideration, the second approximates the error in ap- proximation produced by the first group and corrects it, the third group approxi- mates the error produced by the first and second groups together and so on. This technique yields several new representation and learning results for neural networks: 1. Two-layer neural networks in the random features regime (RF) can memorize arbi- Rd ~ n trary labels for n arbitrary points in with O( θ4 ) ReLUs, where θ is the minimum distance between two different points. This bound can be shown to be optimal in n up to logarithmic factors. 2. Two-layer neural networks with ReLUs and smoothed ReLUs can represent functions with an error of at most with O(C(a; d)−1=(a+1)) units for a 2 N [ f0g when the function has Θ(ad) bounded derivatives. In certain cases d can be replaced with effective dimension q d. Our results indicate that neural networks with only a single nonlinear layer are surprisingly powerful with regards to representation, and show that in contrast to what is suggested in recent work, depth is not needed in order to represent highly smooth functions.
    [Show full text]
  • Smooth Bumps, a Borel Theorem and Partitions of Smooth Functions on P.C.F. Fractals
    SMOOTH BUMPS, A BOREL THEOREM AND PARTITIONS OF SMOOTH FUNCTIONS ON P.C.F. FRACTALS. LUKE G. ROGERS, ROBERT S. STRICHARTZ, AND ALEXANDER TEPLYAEV Abstract. We provide two methods for constructing smooth bump functions and for smoothly cutting off smooth functions on fractals, one using a prob- abilistic approach and sub-Gaussian estimates for the heat operator, and the other using the analytic theory for p.c.f. fractals and a fixed point argument. The heat semigroup (probabilistic) method is applicable to a more general class of metric measure spaces with Laplacian, including certain infinitely ramified fractals, however the cut off technique involves some loss in smoothness. From the analytic approach we establish a Borel theorem for p.c.f. fractals, showing that to any prescribed jet at a junction point there is a smooth function with that jet. As a consequence we prove that on p.c.f. fractals smooth functions may be cut off with no loss of smoothness, and thus can be smoothly decom- posed subordinate to an open cover. The latter result provides a replacement for classical partition of unity arguments in the p.c.f. fractal setting. 1. Introduction Recent years have seen considerable developments in the theory of analysis on certain fractal sets from both probabilistic and analytic viewpoints [1, 14, 26]. In this theory, either a Dirichlet energy form or a diffusion on the fractal is used to construct a weak Laplacian with respect to an appropriate measure, and thereby to define smooth functions. As a result the Laplacian eigenfunctions are well un- derstood, but we have little knowledge of other basic smooth functions except in the case where the fractal is the Sierpinski Gasket [19, 5, 20].
    [Show full text]
  • Robinson Showed That It Is Possible to Rep- Resent Each Schwartz Distribution T As an Integral T(4) = Sf4, Where F Is Some Nonstandard Smooth Function
    Indag. Mathem., N.S., 11 (1) 129-138 March 30,200O Constructive nonstandard representations of generalized functions by Erik Palmgren* Department of Mathematics,Vppsala University, P. 0. Box 480, S-75106 Uppa& &v&n, e-mail:[email protected] Communicated by Prof. A.S. Troelstra at the meeting of May 31, 1999 ABSTRACT Using techniques of nonstandard analysis Abraham Robinson showed that it is possible to rep- resent each Schwartz distribution T as an integral T(4) = sf4, where f is some nonstandard smooth function. We show that the theory based on this representation can be developed within a constructive setting. I. INTRODUCTION Robinson (1966) demonstrated that Schwartz’ theory of distributions could be given a natural formulation using techniques of nonstandard analysis, so that distributions become certain nonstandard smooth functions. In particular, Dirac’s delta-function may then be taken to be the rational function where E is a positive infinitesimal. As is wellknown, classical nonstandard analysis is based on strongly nonconstructive assumptions. In this paper we present a constructive version of Robinson’s theory using the framework of constructive nonstandard analysis developed in Palmgren (1997, 1998), which was based on Moerdijk’s (1995) sheaf-theoretic nonstandard models. The main *The author gratefully acknowledges support from the Swedish Research Council for Natural Sciences (NFR). 129 points of the present paper are the elimination of the standard part map from Robinson’s theory and a constructive proof of the representation of distribu- tions as nonstandard smooth functions (Theorem 2.6). We note that Schmieden and Laugwitz already in 1958 introduced their ver- sion of nonstandard analysis to give an interpretation of generalized functions which are closer to those of the Mikusinski-Sikorski calculus.
    [Show full text]
  • Delta Functions and Distributions
    When functions have no value(s): Delta functions and distributions Steven G. Johnson, MIT course 18.303 notes Created October 2010, updated March 8, 2017. Abstract x = 0. That is, one would like the function δ(x) = 0 for all x 6= 0, but with R δ(x)dx = 1 for any in- These notes give a brief introduction to the mo- tegration region that includes x = 0; this concept tivations, concepts, and properties of distributions, is called a “Dirac delta function” or simply a “delta which generalize the notion of functions f(x) to al- function.” δ(x) is usually the simplest right-hand- low derivatives of discontinuities, “delta” functions, side for which to solve differential equations, yielding and other nice things. This generalization is in- a Green’s function. It is also the simplest way to creasingly important the more you work with linear consider physical effects that are concentrated within PDEs, as we do in 18.303. For example, Green’s func- very small volumes or times, for which you don’t ac- tions are extremely cumbersome if one does not al- tually want to worry about the microscopic details low delta functions. Moreover, solving PDEs with in this volume—for example, think of the concepts of functions that are not classically differentiable is of a “point charge,” a “point mass,” a force plucking a great practical importance (e.g. a plucked string with string at “one point,” a “kick” that “suddenly” imparts a triangle shape is not twice differentiable, making some momentum to an object, and so on.
    [Show full text]
  • Radial Basis Functions
    Acta Numerica (2000), pp. 1–38 c Cambridge University Press, 2000 Radial basis functions M. D. Buhmann Mathematical Institute, Justus Liebig University, 35392 Giessen, Germany E-mail: [email protected] Radial basis function methods are modern ways to approximate multivariate functions, especially in the absence of grid data. They have been known, tested and analysed for several years now and many positive properties have been identified. This paper gives a selective but up-to-date survey of several recent developments that explains their usefulness from the theoretical point of view and contributes useful new classes of radial basis function. We consider particularly the new results on convergence rates of interpolation with radial basis functions, as well as some of the various achievements on approximation on spheres, and the efficient numerical computation of interpolants for very large sets of data. Several examples of useful applications are stated at the end of the paper. CONTENTS 1 Introduction 1 2 Convergence rates 5 3 Compact support 11 4 Iterative methods for implementation 16 5 Interpolation on spheres 25 6 Applications 28 References 34 1. Introduction There is a multitude of ways to approximate a function of many variables: multivariate polynomials, splines, tensor product methods, local methods and global methods. All of these approaches have many advantages and some disadvantages, but if the dimensionality of the problem (the number of variables) is large, which is often the case in many applications from stat- istics to neural networks, our choice of methods is greatly reduced, unless 2 M. D. Buhmann we resort solely to tensor product methods.
    [Show full text]
  • [Math.FA] 1 Apr 1998 E Words Key 1991 Abstract *)Tersac Fscn N H Hr Uhrhsbe Part Been Has Author 93-0452
    RENORMINGS OF Lp(Lq) by R. Deville∗, R. Gonzalo∗∗ and J. A. Jaramillo∗∗ (*) Laboratoire de Math´ematiques, Universit´eBordeaux I, 351, cours de la Lib´eration, 33400 Talence, FRANCE. email : [email protected] (**) Departamento de An´alisis Matem´atico, Universidad Complutense de Madrid, 28040 Madrid, SPAIN. email : [email protected] and [email protected] Abstract : We investigate the best order of smoothness of Lp(Lq). We prove in particular ∞ that there exists a C -smooth bump function on Lp(Lq) if and only if p and q are even integers and p is a multiple of q. arXiv:math/9804002v1 [math.FA] 1 Apr 1998 1991 Mathematics Subject Classification : 46B03, 46B20, 46B25, 46B30. Key words : Higher order smoothness, Renormings, Geometry of Banach spaces, Lp spaces. (**) The research of second and the third author has been partially supported by DGICYT grant PB 93-0452. 1 Introduction The first results on high order differentiability of the norm in a Banach space were given by Kurzweil [10] in 1954, and Bonic and Frampton [2] in 1965. In [2] the best order of differentiability of an equivalent norm on classical Lp-spaces, 1 < p < ∞, is given. The best order of smoothness of equivalent norms and of bump functions in Orlicz spaces has been investigated by Maleev and Troyanski (see [13]). The work of Leonard and Sundaresan [11] contains a systematic investigation of the high order differentiability of the norm function in the Lebesgue-Bochner function spaces Lp(X). Their results relate the continuously n-times differentiability of the norm on X and of the norm on Lp(X).
    [Show full text]
  • Be a Smooth Manifold, and F : M → R a Function
    LECTURE 3: SMOOTH FUNCTIONS 1. Smooth Functions Definition 1.1. Let (M; A) be a smooth manifold, and f : M ! R a function. (1) We say f is smooth at p 2 M if there exists a chart f'α;Uα;Vαg 2 A with −1 p 2 Uα, such that the function f ◦ 'α : Vα ! R is smooth at 'α(p). (2) We say f is a smooth function on M if it is smooth at every x 2 M. −1 Remark. Suppose f ◦ 'α is smooth at '(p). Let f'β;Uβ;Vβg be another chart in A with p 2 Uβ. Then by the compatibility of charts, the function −1 −1 −1 f ◦ 'β = (f ◦ 'α ) ◦ ('α ◦ 'β ) must be smooth at 'β(p). So the smoothness of a function is independent of the choice of charts in the given atlas. Remark. According to the chain rule, it is easy to see that if f : M ! R is smooth at p 2 M, and h : R ! R is smooth at f(p), then h ◦ f is smooth at p. We will denote the set of all smooth functions on M by C1(M). Note that this is a (commutative) algebra, i.e. it is a vector space equipped with a (commutative) bilinear \multiplication operation": If f; g are smooth, so are af + bg and fg; moreover, the multiplication is commutative, associative and satisfies the usual distributive laws. 1 n+1 i n Example. Each coordinate function fi(x ; ··· ; x ) = x is a smooth function on S , since ( 2yi −1 1 n 1+jyj2 ; 1 ≤ i ≤ n fi ◦ '± (y ; ··· ; y ) = 1−|yj2 ± 1+jyj2 ; i = n + 1 are smooth functions on Rn.
    [Show full text]
  • Generalized Functions: Homework 1
    Generalized Functions: Homework 1 Exercise 1. Prove that there exists a function f Cc∞(R) which isn’t the zero function. ∈ Solution: Consider the function: 1 e x x > 0 g = − 0 x 0 ( ≤ 1 We claim that g C∞(R). Indeed, all of the derivatives of e− x are vanishing when x 0: ∈ n → d 1 1 lim e− x = lim q(x) e− x = 0 x 0 n x 0 → dx → ∙ where q(x) is a rational function of x. The function f = g(x) g(1 x) is smooth, as a multiplication of two smooth functions, has compact support∙ − (the interval 1 1 [0, 1]), and is non-zero (f 2 = e ). Exercise 2. Find a sequence of functions fn n Z (when fn Cc∞ (R) n) that weakly converges to Dirac Delta function.{ } ∈ ∈ ∀ Solution: Consider the sequence of function: ˜ 1 1 fn = g x g + x C∞(R) n − ∙ n ∈ c where g(x) Cc∞(R) is the function defined in the first question. Notice that ∈ 1 1 the support of fn is the interval n , n . Normalizing these functions so that the integral will be equal to 1 we get:− 1 ∞ − f = d(n)f˜ , d(n) = f˜ (x)dx n n n Z −∞ For every test function F (x) C∞(R), we can write F (x) = F (0) + x G(x), ∈ c ∙ where G(x) C∞(R). Therefore we have: ∈ c 1/n ∞ F (x) f (x)dx = F (x) f (x)dx ∙ n ∙ n Z 1Z/n −∞ − 1/n 1/n = F (0) f (x)dx + xG(x) f (x)dx ∙ n ∙ n 1Z/n 1Z/n − − 1/n = F (0) + xG(x) f (x)dx ∙ n 1Z/n − 1 1/n ∞ ∞ So F (x) fn(x)dx F (x) δ(x)dx = 1/n xG(x) fn(x)dx.
    [Show full text]
  • On Fourier Transforms of Radial Functions and Distributions
    ON FOURIER TRANSFORMS OF RADIAL FUNCTIONS AND DISTRIBUTIONS LOUKAS GRAFAKOS AND GERALD TESCHL Abstract. We find a formula that relates the Fourier transform of a radial function on Rn with the Fourier transform of the same function defined on Rn+2. This formula enables one to explicitly calculate the Fourier transform of any radial function f(r) in any dimension, provided one knows the Fourier transform of the one-dimensional function t 7! f(jtj) and the two-dimensional function (x1; x2) 7! f(j(x1; x2)j). We prove analogous results for radial tempered distributions. 1. Introduction The Fourier transform of a function Φ in L1(Rn) is defined by the con- vergent integral Z −2πix·ξ Fn(Φ)(ξ) = Φ(x)e dx : Rn If the function Φ is radial, i.e., Φ(x) = '(jxj) for some function ' on the line, then its Fourier transform is also radial and we use the notation Fn(Φ)(ξ) = Fn(')(r) ; where r = jξj. In this article, we will show that there is a relationship be- tween Fn(')(r) and Fn+2(')(r) as functions of the positive real variable r. We have the following result. Theorem 1.1. Let n ≥ 1. Suppose that f is a function on the real line such that the functions f(j · j) are in L1(Rn+2) and also in L1(Rn). Then we have 1 1 d (1) F (f)(r) = − F (f)(r) r > 0 : n+2 2π r dr n Moreover, the following formula is valid for all even Schwartz functions ' on the real line: 1 1 d (2) F (')(r) = F s−n+1 ('(s)sn) (r); r > 0 : n+2 2π r2 n ds 1991 Mathematics Subject Classification.
    [Show full text]
  • On the Size of the Sets of Gradients of Bump Functions and Starlike Bodies on the Hilbert Space
    ON THE SIZE OF THE SETS OF GRADIENTS OF BUMP FUNCTIONS AND STARLIKE BODIES ON THE HILBERT SPACE DANIEL AZAGRA AND MAR JIMENEZ-SEVILLA´ Abstract. We study the size of the sets of gradients of bump functions on the Hilbert space `2, and the related question as to how small the set of tangent hyperplanes to a smooth bounded starlike body in `2 can be. We find that those sets can be quite small. On the one hand, the usual norm of the Hilbert space 1 `2 can be uniformly approximated by C smooth Lipschitz functions ψ so that 0 the cones generated by the ranges of its derivatives ψ (`2) have empty interior. 1 This implies that there are C smooth Lipschitz bumps in `2 so that the cones generated by their sets of gradients have empty interior. On the other hand, we 1 construct C -smooth bounded starlike bodies A ⊂ `2, which approximate the unit ball, so that the cones generated by the hyperplanes which are tangent to A have empty interior as well. We also explain why this is the best answer to the above questions that one can expect. RESUM´ E.´ On ´etudie la taille de l’ensemble de valeurs du gradient d’une fonction lisse, non identiquement nulle et `asupport born´edans l’espace de Hilbert `2, et aussi celle de l’ensemble des hyperplans tangents `aun corps ´etoil´edans `2. On montre que ces ensembles peuvent ˆetreassez petits. D’un cˆot´e,la norme de l’espace de Hilbert est approxim´eeuniformement par des fonctions de classe C1 et Lipschitziennes ψ telles que les cˆonesengendr´es par les 0 ensembles de valeurs des d´eriv´ees ψ (`2) sont d’int´erieur vide.
    [Show full text]
  • 1.6 Smooth Functions and Partitions of Unity
    1.6 Smooth functions and partitions of unity The set C1(M; R) of smooth functions on M inherits much of the structure of R by composition. R is a ring, having addition + : R × R −! R and multiplication × : R × R −! R which are both smooth. As a result, C1(M; R) is as well: One way of seeing why is to use the smooth diagonal map ∆ : M −! M × M, i.e. ∆(p) = (p; p). Then, given functions f ; g 2 C1(M; R) we have the sum f + g, defined by the composition ∆ f ×g + M / M × M / R × R / R : We also have the product f g, defined by the composition ∆ f ×g × M / M × M / R × R / R : Given a smooth map ' : M −! N of manifolds, we obtain a natural operation '∗ : C1(N; R) −! C1(M; R), given by f 7! f ◦ '. This is called the pullback of functions, and defines a homomorphism of rings since ∆ ◦ ' = (' × ') ◦ ∆. The association M 7! C1(M; R) and ' 7! '∗ takes objects and arrows of C1-Man to objects and arrows of the category of rings, respectively, in such a way which respects identities and composition of morphisms. Such a map is called a functor. In this case, it has the peculiar property that it switches the source and target of morphisms. It is therefore a contravariant functor from the category of manifolds to the category of rings, and is the basis for algebraic geometry, the algebraic representation of geometrical objects. It is easy to see from this that any diffeomorphism ' : M −! M defines an automorphism '∗ of C1(M; R), but actually all automorphisms are of this form (Why?).
    [Show full text]
  • Examples Discussion 05
    (December 18, 2017) Examples discussion 05 Paul Garrett [email protected] http:=/www.math.umn.edu/egarrett/ [This document is http:=/www.math.umn.edu/egarrett/m/real/examples 2017-18/real-disc-05.pdf] [05.1] Give a persuasive proof that the function 0 (for x ≤ 0) f(x) = e−1=x (for x > 0) is infinitely differentiable at 0. Use this kind of construction to make a smooth step function: 0 for x ≤ 0 and 1 for x ≥ 1, and goes monotonically from 0 to 1 in the interval [0; 1]. Use this to construct a family of smooth cut-off functions ffn : n = 1; 2; 3;:::g: for each n, fn(x) = 1 for x 2 [−n; n], fn(x) = 0 for x 62 [−(n + 1); n + 1], and fn goes monotonically from 0 to 1 in [−(n + 1); −n] and monotonically from 1 to 0 in [n; n + 1]. Discussion: In x > 0, by induction, the derivatives are finite linear linear combinations of functions of the −n −1=x −n −1=x n −x form x e . It suffices to show that limx!0+ x e = 0. Equivalently, that limx!+1 x e = 0, which follows from e−x = 1=ex, and xn xn xn x−ne−1=x = = ≤ −! 0 (as x ! +1) ex P xm xn+1 m≥0 m! (n+1)! (This is perhaps a little better than appeals to L'Hospital's Rule.) Thus, f is smooth at 0, with all derivatives 0 there. === Next, we make a smooth bump function by 8 0 (for x ≤ −1) > <> 1 b(x) = e 1−x2 (for −1 < x < 1) > > : 0 (for x ≥ 1) A similar argument to the previous shows that this is smooth.
    [Show full text]