Fourier Series Windowed by a Bump Function

Total Page:16

File Type:pdf, Size:1020Kb

Fourier Series Windowed by a Bump Function FOURIER SERIES WINDOWED BY A BUMP FUNCTION PAUL BERGOLD AND CAROLINE LASSER Abstract. We study the Fourier transform windowed by a bump function. We transfer Jackson's classical results on the convergence of the Fourier series of a periodic function to windowed series of a not necessarily periodic function. Numerical experiments illustrate the obtained theoretical results. 1. Introduction The theory of Fourier series plays an essential role in numerous applications of contemporary mathematics. It allows us to represent a periodic function in terms of complex exponentials. Indeed, any square integrable function f : R C of period 2π has a norm-convergent Fourier series such that (see e.g. [BN71, Prop.! 4.2.3.]) 1 f(x) = f(k)eikx almost everywhere, k= X−∞ where the Fourier coefficients areb defined according to π 1 ikx f(k) := f(x)e− dx; k Z: 2π π 2 Z− By the classical resultsb of Jackson in 1930, see [Jac94], the decay rate of the Fourier coefficients and therefore the convergence speed of the Fourier series depend on the regularity of the function. If f has a jump discontinuity, then the order of magnitude of the coefficients is (1= k ), as k . Moreover, if f is a smooth function of O j j j j ! 1 period 2π, say f Cs+1(R) for some s 1, then the order improves to (1= k s+1). 2 ≥ O j j In the present paper we focus on the reconstruction of a not necessarily periodic function with respect to a finite interval ( λ, λ). For this purpose let us think of − a smooth, non-periodic real function : R R, which we want to represent by a Fourier series in ( λ, λ). Therefore, we will! examine its 2λ-periodic extension, see − + Figure 1. Whenever ( λ ) = (λ−), the periodization has a jump discontinuity at λ, and thus the Fourier− coefficients6 are (1= k ). An easy way to eliminate these discontinuities at the boundary, is to multiplyO j thej original function by a smooth window, compactly supported in [ λ, λ]. The resulting periodization has no jumps. arXiv:1901.04365v2 [math.CA] 10 Jun 2020 Consequently, one expects faster convergence− of the windowed Fourier sums. The concept of windowed Fourier atoms has been introduced by Gabor in 1946, see [Gab46]. According to [Mal09, chapter 4.2], for (x; ξ) R2 and a symmetric 2 window function g : R R, satisfying g L2( ) = 1, these atoms are given by ! k k R iξy gx,ξ(y) := e g(y x); y R: − 2 Date: June 11, 2020. 2010 Mathematics Subject Classification. 42A16. Key words and phrases. Fourier series; window function; bump function. 1 2 PAUL BERGOLD AND CAROLINE LASSER ψ(x) (Pλψ)(x) Pλ λ λ x λ λ x − − + Figure 1. Effect of the periodization: If ( λ ) = (λ−), then the 2λ-periodic extension produces jump discontinuities− 6 at λ. Consequently, the order of the Fourier coefficients is (1= k ).± O j j The resulting short-time Fourier transform (STFT) of L2(R) is defined as 2 1 iξy (1.1) STFT( )(x; ξ) := ; g 2 = (y)g(y x)e− dy: h x,ξiL (R) − Z−∞ It can be understood as the Fourier transform on the real line of the windowed function g( x). If g is localized in a neighborhood of x, then the same ap- plies to the· windowed• − function. Hence, the spectrum of the STFT is connected to the windowed interval. In particular, Gabor investigated Gaussian windows with respect to the uncertainty principle, see [Chu92, chapter 3.1]. In many engineering applications, windows are discussed in terms of data weighting and spectral leakage. Depending on the type of signal, numerous windows have been developed, see e.g. [Har78, chapter IV]. More recently, in [MRS10] a smooth C1-bump window has been suggested for the analysis of gravitational waves. It is an essential property of this window, that it is equal to 1 in a closed subinterval of its support (plateau). Although the Fourier coefficients of such windows may exceed spectral convergence (faster than any fixed polynomial rate), it is their compact support which limits the order to be at most root exponential and the actual convergence rate depends on the growth of the window's derivatives, see e.g. [Tad07]. For example, in [Boy06] a smooth bump is designed such that the order of the windowed Fourier coefficients is root-exponential (at least for the saw wave function), wheres in [Tan06] we find a non-compactly supported window, for which we obtain true exponential decay. We note that Boyd and Tanner focus on an optimal choice of window parameters in order to obtain the best possible approximation results. We investigate the convergence speed of Fourier series windowed by compactly supported bump functions with a plateau. The properties of these bump windows will allow an effortless transfer of Jackson's classical results on the convergence of the Fourier series for smooth functions. The main new contributions of this paper can be found in Theorem 3.3 and Theorem 4.6, respectively. In the first one we show that pointwise multiplication (in the time domain) by a window with plateau yields smaller reconstruction errors in the interior of the plateau, compared to those windows without plateau. We complement this result by a lower error bound for the Hann window, a member of the set of cosα functions. In Theorem 4.6 we connect the decay rate of windowed Fourier coefficients to a new bound for the variation of windowed functions, which is based on the combination of two main ingredients: the Leibniz product rule and a bound for intermediate derivatives due to Ore. FOURIER SERIES WINDOWED BY A BUMP FUNCTION 3 1.1. Outline. We start by recalling basic properties of the Fourier series for func- tions of bounded variation in 2. Afterwards, in 3 we present the windowed trans- form, see Proposition 3.2, andx estimate the reconstructionx errors in Theorem 3.3. In 4 we introduce the Cs-bumps and transfer the results of chapter 3 to this class. Asx a special candidate of C1-bumps, we consider the Tukey window in 4.1. Finally, we present numerical experiments in 5, that underline our theoreticalx results and illustrate the benefits of bump windows.x 2. Functions of bounded variation and their Fourier series 2.1. Functions of bounded variation. We denote by BVloc the set of functions f : R R, which are locally of bounded variation, that is of bounded variation on every! finite interval. In particular, we assume that such functions are normalized for any x in the interior of the interval of definition, see [BN71, 0.6], by x 1 + 1 f(x) = f(x ) + f(x−) = lim f(x + t) + lim f(x t) : 2 2 t 0+ t 0+ − ! ! We recall that a function of bounded variation is bounded, has at most a countable set of jump discontinuities, and that the pointwise evaluation is well-defined. 2.2. The classical Fourier representation. Any 2π-periodic function f BVloc has a pointwise converging Fourier series, see [BN71, Prop. 4.1.5.]. Let us2 transfer this representation to an arbitrary interval of length 2λ: Lemma 2.1. (Fourier series of the periodization) Suppose that BVloc as well as λ > 0 and t R. Then, 2 2 ik π x (x) = c (k)e λ ; x (t λ, t + λ); 2 − k X2Z where the coefficients c (k) are given by t+λ 1 ik π x c (k) := (x)e− λ dx; k Z: 2λ t λ 2 Z − For the proof of Lemma 2.1 and our subsequent analysis, we will use a translation, a scaling and a periodization operator. For the center t R and a scaling factor a > 0, we introduce: 2 T : BV BV ; (T )(x) := (x + t); t loc ! loc t S : BV BV ; (S )(x) := (ax): a loc ! loc a For the period half length λ > 0, we set P : BV BV ; λ loc ! loc (x); if x ( λ, λ); 2 − (Pλ )(x) := 81 + > ( λ ) + (λ−) ; if x = λ. <2 − > Proof. Consider the 2π-periodic: function f = PπSλ/πTt . Then, it follows from Lemma A.1 that f BV and therefore 2 loc 1 ikx f(x) = f(k)e ; x R: 2 k= X−∞ b 4 PAUL BERGOLD AND CAROLINE LASSER The Fourier coefficients of f are given by π π 1 ikx 1 ikx f(k) = f(x)e− dx = Sλ/πTt (x)e− dx 2π π 2π π Z− Z− t+λ b 1 ik π (x t) = (x)e− λ − dx: 2λ t λ Z − Consequently, for all x (t λ, t + λ) we obtain 2 − ik π x (x) = T tSπ/λf (x) = c (k)e λ : − k X2Z 2.3. The classical result of Jackson. In general, even if is a smooth function, the periodic extension f = PπSλ/πTt BVloc has jump discontinuities at π. Let V (f) < denote the total variation2 of f. Then, by [Edw82, chapter 2.3.6],± 1 1 k c (k) = k f(k) V (f); for all k Z: j · j j · j ≤ 2π 2 Hence, the coefficients are (1= k ). Moreover, the rate of the coefficients transfers O j jb to an estimate for the reconstruction errors. For an arbitrary function f BVloc of period 2π let us introduce the partial Fourier sum 2 n ikx Snf(x) := f(k)e ; n 1; x R: ≥ 2 k= n X− Our analysis relies on the following classicalb result by Jackson on the convergence of the Fourier sum, see [Jac94, chapter II.3, Theorem IV]: Proposition 2.2.
Recommended publications
  • A Corrective View of Neural Networks: Representation, Memorization and Learning
    Proceedings of Machine Learning Research vol 125:1{54, 2020 33rd Annual Conference on Learning Theory A Corrective View of Neural Networks: Representation, Memorization and Learning Guy Bresler [email protected] Department of EECS, MIT Cambridge, MA, USA. Dheeraj Nagaraj [email protected] Department of EECS, MIT Cambridge, MA, USA. Editors: Jacob Abernethy and Shivani Agarwal Abstract We develop a corrective mechanism for neural network approximation: the total avail- able non-linear units are divided into multiple groups and the first group approx- imates the function under consideration, the second approximates the error in ap- proximation produced by the first group and corrects it, the third group approxi- mates the error produced by the first and second groups together and so on. This technique yields several new representation and learning results for neural networks: 1. Two-layer neural networks in the random features regime (RF) can memorize arbi- Rd ~ n trary labels for n arbitrary points in with O( θ4 ) ReLUs, where θ is the minimum distance between two different points. This bound can be shown to be optimal in n up to logarithmic factors. 2. Two-layer neural networks with ReLUs and smoothed ReLUs can represent functions with an error of at most with O(C(a; d)−1=(a+1)) units for a 2 N [ f0g when the function has Θ(ad) bounded derivatives. In certain cases d can be replaced with effective dimension q d. Our results indicate that neural networks with only a single nonlinear layer are surprisingly powerful with regards to representation, and show that in contrast to what is suggested in recent work, depth is not needed in order to represent highly smooth functions.
    [Show full text]
  • Configuring Spectrogram Views
    Chapter 5: Spectrographic Analysis Configuring spectrographic views To create a new spectrogram, spectrogram slice, or selection spectrum view, click on the appropriate New View button in the view toolbar (Figure 5.3) or choose a view type from the View > New menu. Figure 5.3. New View buttons Figure 5.3. The New View buttons, in Raven’s view toolbar. 112 Raven Pro 1.4 User’s Manual Chapter 5: Spectrographic Analysis A dialog box appears, containing parameters for configuring the requested type of spectrographic view (Figure 5.4). The dialog boxes for configuring spectrogram and spectrogram slice views are identical, except for their titles. The dialog boxes are identical because both view types calculate a spectrogram of the entire sound; the only difference between spectrogram and spectrogram slice views is in how the data are displayed (see “How the spectrographic views are related” on page 110). The dialog box for configuring a selection spectrum view is the same, except that it lacks the Averaging parameter. The remainder of this section explains each of the parameters in the configuration dialog box. Figure 5.4 Configure Spectrogram dialog Figure 5.4. The Configure New Spectrogram dialog box. Window type Each data record is multiplied by a window function before its spectrum is calculated. Window functions are used to reduce the magnitude of spurious “sidelobe” energy that appears at frequencies flanking each analysis frequency in a spectrum. These sidelobes appear as a result of Raven Pro 1.4 User’s Manual 113 Chapter 5: Spectrographic Analysis analyzing a finite (truncated) portion of a signal.
    [Show full text]
  • Smooth Bumps, a Borel Theorem and Partitions of Smooth Functions on P.C.F. Fractals
    SMOOTH BUMPS, A BOREL THEOREM AND PARTITIONS OF SMOOTH FUNCTIONS ON P.C.F. FRACTALS. LUKE G. ROGERS, ROBERT S. STRICHARTZ, AND ALEXANDER TEPLYAEV Abstract. We provide two methods for constructing smooth bump functions and for smoothly cutting off smooth functions on fractals, one using a prob- abilistic approach and sub-Gaussian estimates for the heat operator, and the other using the analytic theory for p.c.f. fractals and a fixed point argument. The heat semigroup (probabilistic) method is applicable to a more general class of metric measure spaces with Laplacian, including certain infinitely ramified fractals, however the cut off technique involves some loss in smoothness. From the analytic approach we establish a Borel theorem for p.c.f. fractals, showing that to any prescribed jet at a junction point there is a smooth function with that jet. As a consequence we prove that on p.c.f. fractals smooth functions may be cut off with no loss of smoothness, and thus can be smoothly decom- posed subordinate to an open cover. The latter result provides a replacement for classical partition of unity arguments in the p.c.f. fractal setting. 1. Introduction Recent years have seen considerable developments in the theory of analysis on certain fractal sets from both probabilistic and analytic viewpoints [1, 14, 26]. In this theory, either a Dirichlet energy form or a diffusion on the fractal is used to construct a weak Laplacian with respect to an appropriate measure, and thereby to define smooth functions. As a result the Laplacian eigenfunctions are well un- derstood, but we have little knowledge of other basic smooth functions except in the case where the fractal is the Sierpinski Gasket [19, 5, 20].
    [Show full text]
  • Robinson Showed That It Is Possible to Rep- Resent Each Schwartz Distribution T As an Integral T(4) = Sf4, Where F Is Some Nonstandard Smooth Function
    Indag. Mathem., N.S., 11 (1) 129-138 March 30,200O Constructive nonstandard representations of generalized functions by Erik Palmgren* Department of Mathematics,Vppsala University, P. 0. Box 480, S-75106 Uppa& &v&n, e-mail:[email protected] Communicated by Prof. A.S. Troelstra at the meeting of May 31, 1999 ABSTRACT Using techniques of nonstandard analysis Abraham Robinson showed that it is possible to rep- resent each Schwartz distribution T as an integral T(4) = sf4, where f is some nonstandard smooth function. We show that the theory based on this representation can be developed within a constructive setting. I. INTRODUCTION Robinson (1966) demonstrated that Schwartz’ theory of distributions could be given a natural formulation using techniques of nonstandard analysis, so that distributions become certain nonstandard smooth functions. In particular, Dirac’s delta-function may then be taken to be the rational function where E is a positive infinitesimal. As is wellknown, classical nonstandard analysis is based on strongly nonconstructive assumptions. In this paper we present a constructive version of Robinson’s theory using the framework of constructive nonstandard analysis developed in Palmgren (1997, 1998), which was based on Moerdijk’s (1995) sheaf-theoretic nonstandard models. The main *The author gratefully acknowledges support from the Swedish Research Council for Natural Sciences (NFR). 129 points of the present paper are the elimination of the standard part map from Robinson’s theory and a constructive proof of the representation of distribu- tions as nonstandard smooth functions (Theorem 2.6). We note that Schmieden and Laugwitz already in 1958 introduced their ver- sion of nonstandard analysis to give an interpretation of generalized functions which are closer to those of the Mikusinski-Sikorski calculus.
    [Show full text]
  • Windowing Techniques, the Welch Method for Improvement of Power Spectrum Estimation
    Computers, Materials & Continua Tech Science Press DOI:10.32604/cmc.2021.014752 Article Windowing Techniques, the Welch Method for Improvement of Power Spectrum Estimation Dah-Jing Jwo1, *, Wei-Yeh Chang1 and I-Hua Wu2 1Department of Communications, Navigation and Control Engineering, National Taiwan Ocean University, Keelung, 202-24, Taiwan 2Innovative Navigation Technology Ltd., Kaohsiung, 801, Taiwan *Corresponding Author: Dah-Jing Jwo. Email: [email protected] Received: 01 October 2020; Accepted: 08 November 2020 Abstract: This paper revisits the characteristics of windowing techniques with various window functions involved, and successively investigates spectral leak- age mitigation utilizing the Welch method. The discrete Fourier transform (DFT) is ubiquitous in digital signal processing (DSP) for the spectrum anal- ysis and can be efciently realized by the fast Fourier transform (FFT). The sampling signal will result in distortion and thus may cause unpredictable spectral leakage in discrete spectrum when the DFT is employed. Windowing is implemented by multiplying the input signal with a window function and windowing amplitude modulates the input signal so that the spectral leakage is evened out. Therefore, windowing processing reduces the amplitude of the samples at the beginning and end of the window. In addition to selecting appropriate window functions, a pretreatment method, such as the Welch method, is effective to mitigate the spectral leakage. Due to the noise caused by imperfect, nite data, the noise reduction from Welch’s method is a desired treatment. The nonparametric Welch method is an improvement on the peri- odogram spectrum estimation method where the signal-to-noise ratio (SNR) is high and mitigates noise in the estimated power spectra in exchange for frequency resolution reduction.
    [Show full text]
  • Windowing Design and Performance Assessment for Mitigation of Spectrum Leakage
    E3S Web of Conferences 94, 03001 (2019) https://doi.org/10.1051/e3sconf/20199403001 ISGNSS 2018 Windowing Design and Performance Assessment for Mitigation of Spectrum Leakage Dah-Jing Jwo 1,*, I-Hua Wu 2 and Yi Chang1 1 Department of Communications, Navigation and Control Engineering, National Taiwan Ocean University 2 Pei-Ning Rd., Keelung 202, Taiwan 2 Bison Electronics, Inc., Neihu District, Taipei 114, Taiwan Abstract. This paper investigates the windowing design and performance assessment for mitigation of spectral leakage. A pretreatment method to reduce the spectral leakage is developed. In addition to selecting appropriate window functions, the Welch method is introduced. Windowing is implemented by multiplying the input signal with a windowing function. The periodogram technique based on Welch method is capable of providing good resolution if data length samples are selected optimally. Windowing amplitude modulates the input signal so that the spectral leakage is evened out. Thus, windowing reduces the amplitude of the samples at the beginning and end of the window, altering leakage. The influence of various window functions on the Fourier transform spectrum of the signals was discussed, and the characteristics and functions of various window functions were explained. In addition, we compared the differences in the influence of different data lengths on spectral resolution and noise levels caused by the traditional power spectrum estimation and various window-function-based Welch power spectrum estimations. 1 Introduction knowledge. Due to computer capacity and limitations on processing time, only limited time samples can actually The spectrum analysis [1-4] is a critical concern in many be processed during spectrum analysis and data military and civilian applications, such as performance processing of signals, i.e., the original signals need to be test of electric power systems and communication cut off, which induces leakage errors.
    [Show full text]
  • Discrete-Time Fourier Transform
    .@.$$-@@4&@$QEG'FC1. CHAPTER7 Discrete-Time Fourier Transform In Chapter 3 and Appendix C, we showed that interesting continuous-time waveforms x(t) can be synthesized by summing sinusoids, or complex exponential signals, having different frequencies fk and complex amplitudes ak. We also introduced the concept of the spectrum of a signal as the collection of information about the frequencies and corresponding complex amplitudes {fk,ak} of the complex exponential signals, and found it convenient to display the spectrum as a plot of spectrum lines versus frequency, each labeled with amplitude and phase. This spectrum plot is a frequency-domain representation that tells us at a glance “how much of each frequency is present in the signal.” In Chapter 4, we extended the spectrum concept from continuous-time signals x(t) to discrete-time signals x[n] obtained by sampling x(t). In the discrete-time case, the line spectrum is plotted as a function of normalized frequency ωˆ . In Chapter 6, we developed the frequency response H(ejωˆ ) which is the frequency-domain representation of an FIR filter. Since an FIR filter can also be characterized in the time domain by its impulse response signal h[n], it is not hard to imagine that the frequency response is the frequency-domain representation,orspectrum, of the sequence h[n]. 236 .@.$$-@@4&@$QEG'FC1. 7-1 DTFT: FOURIER TRANSFORM FOR DISCRETE-TIME SIGNALS 237 In this chapter, we take the next step by developing the discrete-time Fouriertransform (DTFT). The DTFT is a frequency-domain representation for a wide range of both finite- and infinite-length discrete-time signals x[n].
    [Show full text]
  • Delta Functions and Distributions
    When functions have no value(s): Delta functions and distributions Steven G. Johnson, MIT course 18.303 notes Created October 2010, updated March 8, 2017. Abstract x = 0. That is, one would like the function δ(x) = 0 for all x 6= 0, but with R δ(x)dx = 1 for any in- These notes give a brief introduction to the mo- tegration region that includes x = 0; this concept tivations, concepts, and properties of distributions, is called a “Dirac delta function” or simply a “delta which generalize the notion of functions f(x) to al- function.” δ(x) is usually the simplest right-hand- low derivatives of discontinuities, “delta” functions, side for which to solve differential equations, yielding and other nice things. This generalization is in- a Green’s function. It is also the simplest way to creasingly important the more you work with linear consider physical effects that are concentrated within PDEs, as we do in 18.303. For example, Green’s func- very small volumes or times, for which you don’t ac- tions are extremely cumbersome if one does not al- tually want to worry about the microscopic details low delta functions. Moreover, solving PDEs with in this volume—for example, think of the concepts of functions that are not classically differentiable is of a “point charge,” a “point mass,” a force plucking a great practical importance (e.g. a plucked string with string at “one point,” a “kick” that “suddenly” imparts a triangle shape is not twice differentiable, making some momentum to an object, and so on.
    [Show full text]
  • Understanding the Lomb-Scargle Periodogram
    Understanding the Lomb-Scargle Periodogram Jacob T. VanderPlas1 ABSTRACT The Lomb-Scargle periodogram is a well-known algorithm for detecting and char- acterizing periodic signals in unevenly-sampled data. This paper presents a conceptual introduction to the Lomb-Scargle periodogram and important practical considerations for its use. Rather than a rigorous mathematical treatment, the goal of this paper is to build intuition about what assumptions are implicit in the use of the Lomb-Scargle periodogram and related estimators of periodicity, so as to motivate important practical considerations required in its proper application and interpretation. Subject headings: methods: data analysis | methods: statistical 1. Introduction The Lomb-Scargle periodogram (Lomb 1976; Scargle 1982) is a well-known algorithm for de- tecting and characterizing periodicity in unevenly-sampled time-series, and has seen particularly wide use within the astronomy community. As an example of a typical application of this method, consider the data shown in Figure 1: this is an irregularly-sampled timeseries showing a single ob- ject from the LINEAR survey (Sesar et al. 2011; Palaversa et al. 2013), with un-filtered magnitude measured 280 times over the course of five and a half years. By eye, it is clear that the brightness of the object varies in time with a range spanning approximately 0.8 magnitudes, but what is not immediately clear is that this variation is periodic in time. The Lomb-Scargle periodogram is a method that allows efficient computation of a Fourier-like power spectrum estimator from such unevenly-sampled data, resulting in an intuitive means of determining the period of oscillation.
    [Show full text]
  • [Math.FA] 1 Apr 1998 E Words Key 1991 Abstract *)Tersac Fscn N H Hr Uhrhsbe Part Been Has Author 93-0452
    RENORMINGS OF Lp(Lq) by R. Deville∗, R. Gonzalo∗∗ and J. A. Jaramillo∗∗ (*) Laboratoire de Math´ematiques, Universit´eBordeaux I, 351, cours de la Lib´eration, 33400 Talence, FRANCE. email : [email protected] (**) Departamento de An´alisis Matem´atico, Universidad Complutense de Madrid, 28040 Madrid, SPAIN. email : [email protected] and [email protected] Abstract : We investigate the best order of smoothness of Lp(Lq). We prove in particular ∞ that there exists a C -smooth bump function on Lp(Lq) if and only if p and q are even integers and p is a multiple of q. arXiv:math/9804002v1 [math.FA] 1 Apr 1998 1991 Mathematics Subject Classification : 46B03, 46B20, 46B25, 46B30. Key words : Higher order smoothness, Renormings, Geometry of Banach spaces, Lp spaces. (**) The research of second and the third author has been partially supported by DGICYT grant PB 93-0452. 1 Introduction The first results on high order differentiability of the norm in a Banach space were given by Kurzweil [10] in 1954, and Bonic and Frampton [2] in 1965. In [2] the best order of differentiability of an equivalent norm on classical Lp-spaces, 1 < p < ∞, is given. The best order of smoothness of equivalent norms and of bump functions in Orlicz spaces has been investigated by Maleev and Troyanski (see [13]). The work of Leonard and Sundaresan [11] contains a systematic investigation of the high order differentiability of the norm function in the Lebesgue-Bochner function spaces Lp(X). Their results relate the continuously n-times differentiability of the norm on X and of the norm on Lp(X).
    [Show full text]
  • Airborne Radar Ground Clutter Suppression Using Multitaper Spectrum Estimation Comparison with Traditional Method
    Airborne Radar Ground Clutter Suppression Using Multitaper Spectrum Estimation Comparison with Traditional Method Linus Ekvall Engineering Physics and Electrical Engineering, master's level 2018 Luleå University of Technology Department of Computer Science, Electrical and Space Engineering Airborne Radar Ground Clutter Suppression Using Multitaper Spectrum Estimation & Comparison with Traditional Method Linus C. Ekvall Lule˚aUniversity of Technology Dept. of Computer Science, Electrical and Space Engineering Div. Signals and Systems 20th September 2018 ABSTRACT During processing of data received by an airborne radar one of the issues is that the typical signal echo from the ground produces a large perturbation. Due to this perturbation it can be difficult to detect targets with low velocity or a low signal-to-noise ratio. Therefore, a filtering process is needed to separate the large perturbation from the target signal. The traditional method include a tapered Fourier transform that operates in parallel with a MTI filter to suppress the main spectral peak in order to produce a smoother spectral output. The difference between a typical signal echo produced from an object in the environment and the signal echo from the ground can be of a magnitude corresponding to more than a 60 dB difference. This thesis presents research of how the multitaper approach can be utilized in concurrence with the minimum variance estimation technique, to produce a spectral estimation that strives for a more effective clutter suppression. A simulation model of the ground clutter was constructed and also a number of simulations for the multitaper, minimum variance estimation technique was made. Compared to the traditional method defined in this thesis, there was a slight improve- ment of the improvement factor when using the multitaper approach.
    [Show full text]
  • The Sliding Window Discrete Fourier Transform Lee F
    The Sliding Window Discrete Fourier Transform Lee F. Richardson Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA The Sliding Window DFT Sliding Window DFT for Local Periodic Signals Leakage The Sliding Window Discrete Fourier Transform (SW- Leakage occurs when local signal frequency is not one DFT) computes a time-frequency representation of a The Sliding Window DFT is a useful tool for analyzing data with local periodic signals (Richardson and Eddy of the Fourier frequencies (or, the number of complete signal, and is useful for analyzing signals with local (2018)). Since SW-DFT coefficients are complex-numbers, we analyze the squared modulus of these coefficients cycles in a length n window is not an integer). In this periodicities. Shortly described, the SW-DFT takes 2 2 2 case, the largest squared modulus coefficients occur at sequential DFTs of a signal multiplied by a rectangu- |ak,p| = Re(ak,p) + Im(ak,p) frequencies closest to the true frequency: lar sliding window function, where the window func- Since the squared modulus SW-DFT coefficients are large when the window is on a periodic part of the signal: Frequency: 2 Frequency: 2.1 Frequency: 2.2 Frequency: 2.3 Frequency: 2.4 20 Freq 2 20 Freq 2 20 Freq 2 20 Freq 2 20 Freq 2 tion is only nonzero for a short duration. Let x = Freq 3 Freq 3 Freq 3 Freq 3 Freq 3 15 15 15 15 15 [x0, x1, . , xN−1] be a length N signal, then for length 10 10 10 10 10 n ≤ N windows, the SW-DFT of x is: 5 5 5 5 5 0 0 0 0 0 0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250 1 n−1 X −jk Frequency: 2.5 Frequency: 2.6 Frequency: 2.7 Frequency: 2.8 Frequency: 2.9 ak,p = √ xp−n+1+jω 20 Freq 2 20 Freq 2 20 Freq 2 20 Freq 2 20 Freq 2 n n Freq 3 Freq 3 Freq 3 Freq 3 Freq 3 j=0 15 15 15 15 15 k = 0, 1, .
    [Show full text]