IN-SITU REMOVAL OF HYDROGEN

SULPHIDE FROM GAS ARISING FROM THE INTERACTION BETWEEN MUNICIPAL

SOLID AND SULPHIDE MINE ENVIRONMENTS WITHIN BIOREACTOR CONDITIONS

David Andrew Lazarevic

Master of Science Thesis Stockholm 2007

David Andrew Lazarevic IN-SITU REMOVAL OF HYDROGEN SULPHIDE FROM - ARISING FROM THE INTERACTION BETWEEN AND SULPHIDE MINE ENVIRONMENTS WITHIN BIOREACTOR CONDITIONS Supervisor and Examiner: Lennart Nilson, Industrial Ecology STOCKHOLM 2007

PRESENTED AT

INDUSTRIAL ECOLOGY ROYAL INSTITUTE OF TECHNOLOGY www.ima.kth.se

TRITA-IM 2007:30 ISSN 1402-7615

Industrial Ecology, Royal Institute of Technology www.ima.kth.se RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

ABSTRACT

ThisprojectwascompiledincooperationwiththeRoyalInstituteofTechnology,Stockholmand VeoliaEnvironmentalServices(Australia)attheWoodlawnBioreactorinNSW,Australia. Hydrogen sulphide is an unwanted component of landfill gas, raising occupational health and safety concerns, whilst leading to acid gas corrosion of power generation equipment and increasedemissionsofSOx,aprimaryconstituentofacidification. Australiangovernmentalrequirementstoplaceaperiodiccoverovertheunusedproportionofthe tippingsurfaceofandbioreactorscreateaninterestingopportunityfortheremovalofthe hydrogen sulphide component of landfill gas. Using waste materials containing a high concentrationofmetalsaswastecovercanenhancetheprecipitationofsulphurintheformof metalsulphides.Thereductionofsulphateviasulphatereducingbacteriaisprevalentinsitesthat have a sizeable inflow of sulphate. The Woodlawn Bioreactor is located in an area where the influence of sulphate has a critical influence of bioreactor performance and production of hydrogensulphide. Throughaseriesofexperimentalbioreactorsitwasestablishedthatfromtheuseofmetalliferous periodic waste covers, the hydrogen sulphide component of landfill gas was maintained at an extremelylowlevelwhencomparedtothelevelsofhydrogensulphideproducedinwasteunder theinfluenceofhighsulphateloadswithnowastecover. KEY WORDS

Hydrogensulphide,sulphatereduction,sulphatereducingbacteria,metalsulphideprecipitation, sulphidemineenvironments,acidminedrainage,bioreactor,alternativewastecover. ACKNOWLEDGEMENTS

Manythanksmustgototheorganisationsandindividualsfortheirexpertise,timeandsupportin completing this project. Firstly to Veolia Environmental Services (Australia) for their continued supportbothtechnicallyandfinanciallyforthedurationoftheproject.Specificmentionmustbe made to VES’s Technical General Manager Shaun Rainford, Woodlawn’s Engineering and DesignManagerChrisAlexander,PabloGonzalez,JustinHoughtonandHenryGundryfromthe WoodlawnBioreactorfortheirsupport. LennartNilsonfromtheDepartmentofIndustrialEcologyattheRoyalInstituteofTechnologyfor hissupervisionthroughoutthisproject,andDrDamienBatstonefromtheAustralianWastewater ManagementCentreattheUniversityofQueenslandwasagreathelpintheareaofanaerobic digestionandmetalsolubility.

D.A.Lazarevic i RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

EXECUTIVE SUMMARY

The production of hydrogen sulphide gas results fromthe reduction ofsulphate to sulphide by sulphatereducingbacteria,itisofgreatconcernandisacauseofongoingissuesintermsofacid gascorrosionandincreasedSOxemissionsduringtheburningoflandfillgas,atsitesthathave sustained sources of sulphate, much like the Woodlawn Bioreactor. Bioreactor biochemical processatWoodlawnhavebeendirectlyaffectedbytheinfluenceofacidminedrainage,hence subjecttowaterscontainingextremelyhighsulphateconcentrations,highheavymetalloadsand alowpH. AlongtermstrategyforthemanagementofacidminedrainageatWoodlawnincludesphysical barriers preventing sulphate rich waters from entering the bioreactor and a treatment system to remove sulphate from bioreactor leachate prior to leachate recirculation. During the design, construction and commission of this plant and equipment, sulphate reduction and hydrogen sulphide is still of great concern, especially whilst the bioreactor is ‘young’ and the proportionofacidminedrainageinfluencetothewastemassisgreatestatthistime. Thedeliberatelyenhancedprecipitationofmetalssulphidesviatheadditionofironrichmaterials usedasalternativeperiodicwastecoverswastested.Thesematerialswouldactasanalternative dailywastecover,fulfillingtheEPArequirementtointermittentlycoverthewastesurfaceonareas wherewasteplacementisnottakingplace.Aseriesof6laboratorybioreactorswereestablished to determine the influence of four different cover materials, an additional bioreactor tested the abilityofmetalscontainedwithintheacidminedrainagetoprecipitatemetalsulphides. Twoscenariosweretested,thefirstapointloadofacidminedrainage(sulphateconcentration 5000mg/l)recirculatedthroughthebioreactorsandsecondlyacontinuouschargeofacidmine drainageat4Lofacidminedrainageaddedperweek(sulphateconcentration34000mg/l). Thebioreactorwithno alterativedailycovermaterialexperiencedanegligibleriseinhydrogen sulphidegasaftertheinitialpointload,eventhoughleachateindicatorsshowedthatreductionof sulphatewastakingplace.Metalsoccurringwithinthewaste,primarilyiron,precipitatedwiththe sulphideproduced,trappingthesulphurinthewasteasasolidmetalsulphideprecipitate.When the continuous acid mine drainage load was introduced, leachate chemistry showed a prolific reductionofsulphatetosulphide,howeverlittlemetalionswereavailabletoprecipitatewiththe sulphideproduced,astheywereconsumedinthepreviousstage.Thenetresultofthissulphate reductionwashydrogensulphidegasconcentrationsofmorethan1700ppmor0.17%volume (hydrogensulphideisfataltohumansat>1000ppm). All bioreactors containing iron rich alternative daily cover materials experienced very similar results, with hydrogen sulphide gas concentrations remaining below 0.5 ppm in almost all measurement. In most cases there was a small peak of hydrogen sulphide after the initial continuous acid mine drainage addition, after which hydrogen sulphide gas stabilised to below 1ppminallcases.Leachatechemistrydatashowsthatwhilesulphatereductionwasevidentin thesebioreactorstheironwasabletoprecipitatesulphideuponitsformation.Datasuggestthat whilst sulphate reduction was evident in these bioreactors it was not as pronounced as the previousbioreactor. Itisrecommendedthatwhilstasystemfortheremovalofsulphatefrombioreactorleachateis beingdevelopedthatanyoneofthealternativedailycoverstestedshouldbeaddedasalterative dailycovertopreventtheformationofhazardouslevelsofhydrogensulphidewithinthelandfill gas.

D.A.Lazarevic ii RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

TABLE OF CONTENTS

ABSTRACT ...... I KEYWORDS ...... I ACKNOWLEDGEMENTS...... I EXECUTIVESUMMARY...... II LISTOFTABLES...... IV LISTOFFIGURES...... V 1 INTRODUCTION ...... 1 2 BACKGROUND...... 2 2.1 WASTEMANAGEMENTINNSW...... 2 2.2 BIOREACTORSDURINGNSWWASTEMANAGEMENTTRANSITIONALPERIOD...... 3 2.3 WOODLAWNBIOREACTOR ...... 4 3 AIMSANDOBJECTIVES ...... 7 3.1 AIMS ...... 7 3.2 OBJECTIVES ...... 7 3.3 LIMITATIONS ...... 7 4 METHODOLOGY ...... 8 5 BIOREACTORTECHNOLOGY ...... 9 5.1 BIOREACTORLANDFILLS ...... 9 5.2 CELLDESIGN...... 11 5.3 LEACHATERECIRCULATION ...... 12 5.4 LFGRECOVERY ...... 12 6 LANDFILLGASBIOCHEMICALPROCESSES ...... 13 6.1 DECOMPOSITIONSTAGESWITHINBIOREACTORLANDFILLS...... 13 6.2 FACTORSINFLUENCINGPOTENTIAL ...... 17 7 SULPHURINTERACTIONSINBIOREACTORPROCESSES ...... 20 7.1 SULPHURINFLOWS ...... 21 7.1.1 SulphidicMineEnvironments ...... 21 7.1.2 Woodlawn ...... 22 7.2 PROCESSESSULPHURREDUCTION ...... 23 7.2.1 SulphateReduction–competitionforsubstrates ...... 23 7.2.2 Sulphatereduction–oxidisationofmethane...... 23 7.2.3 SulphateReducingBacteriaCompetitionwithMethanogenesis...... 24 7.3 SULPHUROUTFLOWS...... 26 7.3.1 GaseousSulphur ...... 26 7.3.2 AqueousSulphur ...... 28 7.3.3 SolidSulphur...... 31 8 PERIODICWASTECOVERANDINSITUHYDROGENSULPHIDECONTROL...... 32 8.1 ENVIRONMENTALPROTECTIONAUTHORITYREQUIREMENTFORALTERNATIVEDAILYCOVERTRIAL .... 32 8.2 ALTERNATIVECOVERMATERIALSTOBEINVESTIGATED ...... 34 9 BIOREACTORTESTCOLUMNS ...... 37 9.1 AIMS&OBJECTIVES...... 37 9.2 BIOREACTORDESIGN...... 37 9.3 METHODOLOGY ...... 38 9.4 BIOREACTORCOMPOSITION ...... 39 9.5 MUNICIPALSOLIDWASTE...... 40 9.6 MONITORING ...... 41 10 RESULTSANDDISCUSSIONS ...... 42 10.1 LANDFILLGASCOMPOSITION...... 42 10.2 SULPHATE–SULPHIDE–HYDROGENSULPHIDECORRELATION...... 55 10.3 BIOREACTORPERFORMANCE ...... 73 11 CONCLUSIONANDRECOMMENDATIONS...... 75 11.1 CONCLUSION ...... 75 11.2 RECOMMENDATIONS ...... 76 12 REFERENCES ...... 77 13 APPENDICIES...... 81

D.A.Lazarevic iii RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

LIST OF TABLES

Table5.1:AdvantagesandDisadvantagesofBioreactors...... 10 Table5.2:TypicalLandfillGasComposition ...... 10 Table6.1:MethanogenesispHranges...... 17 Table6.2:Methaneproducingbacteriatemperatureranges...... 17 Table6.3:Optimalmoisturecontentrange...... 18 Table7.2:WoodlawnLeachateAnalysis–2006/11/21...... 23 Table7.3:ReducedSulphurCompoundspresentinLandfillGas...... 26 Table7.4:WoodlawnLFGAnalysis...... 26 Table7.5:HealthEffectsfromshorttermexposuretohydrogensulphide ...... 27 Table7.6:Sourcevs.Sulphateconcentrations2006/11/10 ...... 28 Table7.7:MetalSulphideSolubilityProducts ...... 31 Table8.1:AlternativeDailyCoverMaterial ...... 34 Table9.1:TestBioreactorCompositions...... 39 Table9.2:AverageWasteCompositionSydney ...... 40 Table9.3:WasteCompositioninTestColumns...... 40 Table10.1:AcidMineDrainageComposition ...... 55 Table10.2:Toxicconcentrationsforvariousmetalsduringanaerobicdigestion...... 74 Table10.3:Limitingconcentrationsforvariousmetalsduringanaerobicdigestion ...... 74

D.A.Lazarevic iv RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

LIST OF FIGURES

Figure2.1:WasteManagementHierarchyEuropeanUnionvAustralia...... 2 Figure2.3:AerialviewoftheWoodlawnBioreactor...... 5 Figure5.1:WoodlawnBioreactorProposedCellDesign ...... 11 Figure6.1:Idealisedrepresentationof‘LandfillgasgenerationvsTime’afterplacement ...... 13 Figure6.2:MethanogenicBacteria...... 15 Figure6.3:Majorstepsinthedecompositionofbiodegradablewastetoformlandfillgas ...... 16 Figure6.4:Effectofmetaboliteconcentrationongrowthrateformethanogens...... 18 Figure7.1:SulphurOxidisationandReductionwithinBioreactorProcesses ...... 20 Figure7.5:pHVsYieldgrowthcoefficient&specificgrowthrate ...... 25 Figure7.2:HydrosulphidevspH...... 29 Figure7.3:SulphidevspH...... 29 Figure7.4:HydrogenSulphidevspH...... 30 Figure9.1:TestBioreactorDesign ...... 37 Figure9.2:TestBioreactorComposition ...... 39 Figure10.1:TypicalLFGCompositionbyVolume ...... 42 Figure10.2:Bioreactor1–LFGCompositionAnalysis(GC–TCD) ...... 44 Figure10.3:Bioreactor1–LFGCompositionAnalysis(IR&Dräger) ...... 44 Figure10.4:Bioreactor2–LFGCompositionAnalysis(GC–TCD) ...... 46 Figure10.5:Bioreactor2–LFGCompositionAnalysis(IR&Dräger) ...... 46 Figure10.6:Bioreactor3–LFGCompositionAnalysis(GC–TCD) ...... 48 Figure10.7:Bioreactor3–LFGCompositionAnalysis(IR&Dräger) ...... 48 Figure10.8:Bioreactor4–LFGCompositionAnalysis(GC–TCD) ...... 50 Figure10.9:Bioreactor4–LFGCompositionAnalysis(IR&Dräger) ...... 50 Figure10.10:Bioreactor5–LFGCompositionAnalysis(GC–TCD) ...... 52 Figure10.11:Bioreactor5–LFGCompositionAnalysis(IR&Dräger) ...... 52 Figure10.12:Bioreactor6–LFGCompositionAnalysis(GC–TCD) ...... 54 Figure10.13:Bioreactor6–LFGCompositionAnalysis(IR&Dräger) ...... 54 Figure10.14:TypicalLeachateComposition ...... 55 Figure10.15:Bioreactor1–SulphateandSulphidevsTime ...... 57 Figure10.16:Bioreactor1–TotalFe,Zn,CuandPbvsTime...... 57 Figure10.17:Bioreactor2–SulphateandSulphidevsTime ...... 60 Figure10.18:Bioreactor2–TotalFe,Zn,CuandPbvsTime...... 60 Figure10.19:Bioreactor3–SulphateandSulphidevsTime ...... 63 Figure10.20:Bioreactor3–TotalFe,Zn,CuandPbvsTime...... 63 Figure10.21:Bioreactor4–SulphateandSulphidevsTime ...... 66 Figure10.22:Bioreactor4–TotalFe,Zn,CuandPbvsTime...... 66 Figure10.23:Bioreactor5–SulphateandSulphidevsTime ...... 69 Figure10.24:Bioreactor5–TotalFe,Zn,CuandPbvsTime...... 69 Figure10.25:Bioreactor6SulphateandSulphidevsTime...... 72 Figure10.26:Bioreactor6–TotalFe,Zn,CuandPbvsTime...... 72

D.A.Lazarevic v

RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

1 INTRODUCTION TheVeoliaEnvironmentalServices(VES)WoodlawnBioreactorinNSW,Australiaprovidesan interestingresearchopportunityduetotheinteractionbetweensitegeology,hydrogeology,and bioreactorbiochemicalprocesses.Situatedinthevoidofaformerlead,zincandcoppermine, acidminedraining(AMD),duetotheoxidisationofmetalsulphideminerals,playsanimportant roleineffectingbiochemicalprocesseswithinthebioreactor. The primary goal of the Woodlawn bioreactor is the production of landfill gas (LFG) for the combustion in LFG engines and production of renewable energy. LFG is composed of approximately60%methaneand40%carbondioxide,howeverthecombustionoftracegassesis asourceoffluegaspollutantsandinfrastructuredegradation.Hydrogensulphideisacommon tracegaswithinLFG,andwhencombustedcontributestotheproductionofSOxemissions. The reduction of sulphate to sulphide, by sulphate reducing bacteria (SRB), is prevalent in conditionswithanongoingsourceororganiccarbonandsulphate,suchconditionsexistwithin the Woodlawn bioreactor. Hydrogen sulphide is a product from the reduction of this sulphate. Leachate and gas data from the Woodlawn bioreactor suggests that the proliferation of SRB colonieshasbeenprevalentandresponsibleforhydrogensulphideconcentrationsofupto1.7% volume. Whilst the development of a leachate treatment system is underway, to remove sulphate from bioreactorleachate,theimplementationofthisprojectmaybeupto1–1.5yearsaway.Hence aninterimsolutionthatisquicklyandeasytoimplementisneededduringthisperiod,tocontrol theamountofhydrogensulphidewithintheLFG. VES were given advice to add a soluble form of iron to the bioreactor in order to precipitate sulphide and mitigate the formation of hydrogen sulphide gas. Although municipal solid waste contains a contain percentage of ferrous and non ferrous metals (0.7% Sydney average), programmesmaintainalowmetalcomponentofmunicipalsolidwaste.Woodlawndata also shows the acid mine drainage influencing the bioreactor contains a high concentration of heavymetals,howeverithasbeenshownbythehighlevelsofhydrogensulphidewithintheLFG thatthereareinsufficientmetalstoprecipitatetheamountofsulphidebeingformed. InadditiontotheabovethereisalsoalicenceconditionfortheWoodlawnbioreactortoprovidea daily waste cover to the tipping surface of the waste, to prevent the escape of LFG and stop waste from exiting the void. However, the placement of conventional soil covers is a costly exerciseandalsodetrimentaltobioreactorperformanceintermsofleachaterecirculationandgas extraction. TheEPAencouragestheuseofanalternativematerialotherthan‘virginexcavatedmaterial’that will not be detrimental to bioreactor performance. However the EPA requires the licensee to provide scientific evidence that demonstrates that these products can ‘beneficially influence landfillleachateandgasqualitywhenusedasdailycover’.Haematitecurrentlybeingusedasan alternative daily cover material, however this is only permitted whilst evidence is gathered to provethismaterialisbeneficialtobioreactorperformance. This thesis will look at addressing both of the issues raised above, by the use of an iron rich wastecoverthedailywastecoverrequirementwillbefulfilledandtheironwithinthecoverwill expeditetheprecipitationofsulphideformedbythereductionofsulphate,hencedecreasingthe amount of hydrogen sulphide within the LFG. A series of experimental bioreactors will be established to test the performance of various industrial waste products for use as alternative dailywastecovers.Fromtheresultsoftheseexperimentsitisanticipatedthatanyoneofthese materials will fulfil the above requirements and be used as an interim solution for the managementofhydrogensulphide,whilstasolutionfortheremovalofsulphatefrombioreactor leachateisdevelopedandimplemented.

D.A.Lazarevic Page1of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

2 BACKGROUND

2.1 IN NSW Australianwastemanagementpoliciesandpracticesdiffersomewhatfromthosecurrentlybeing utilised in Europe, with regard to approaches taken and technology used. Using New South Wales (NSW), Australia’s most populus state, as an example, past and present government policieshaveleadtoacrisisinwastemanagementandtreatment.Conventionallandfillsareused to treat the majority of municipal solid waste (MSW) produced, however space for waste placementisrapidlyrunningoutaspopulationandwastegenerationincreases. Comparing waste management hierarchies of the EU and Australia in Figure 2.1, the most apparentdifferencebetweenthehierarchiesisenergyrecovery.Landfillgasistheonlyavenue currentlybeingutilisedas‘energyrecovery’intheAustralianwastehierarchy,howeverthisisat thelowestendoftheenergyrecoveryscale,asitaproductofthelandfillingprocess. Figure 2.1: Waste Management Hierarchy - European Union v Australia

- European Union Waste Hierarchy - Australia

Waste Reduction Avoidance Reuse Reuse Recycling & Composting Recycling & reprocessing materials Energy Recovery (CHP, , Landfill gas) Disposal Landfill

Source: (EPA NSW, 1996) ThisdifferenceinapproachhasbeenpartlyaddressedbyJoseph(2003)in‘WasteManagement Policies and the Impact of Past Decisions – an Australian Case Study’ as he investigated the impact of waste management policies and past government decisions in the area of waste management.Thefollowingconclusionswerereached: • Thehandlinganddisposalofputresciblewastewasastatemonopolyuntilasrecentas 2000,thepreventionofcompetitionhasleadtonodriverstoimproveoperatingpractices, developandimplementnewtechnologies,consultandinformadequately,orkeepprices undercontrol. • AnopengovernmentdecisionnottogoagainstlocalopinionhasmadetheNIMBY(notin mybackyard)attitudeprevalent,makingitdifficultandinsomecasesimpossibletoget newprojectapproval. • Thedevelopmentofwastemanagementpolicies,wasteregulationsanddecisiontomake bodies charged with waste disposal operations are all under the same government minister,causingagreatconcernofconflictofinterestduetotheseconverginglinesof responsibility(Joseph,2003).

D.A.Lazarevic Page2of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Lack of innovation of technological development in terms of energy recovery, specifically CHP and incineration, has been caused primarily by the governments ongoing decision not to go againstpublicopinion,decisionsmadebylessinformedmembersofthepublicwithnodialogue between experts in the area and the general public have stifled the development of these technologies.Thelackofopportunitiesforthedevelopmentofalternativewastetreatmenthasleft landfillgasrecoveryastheonlyareainenergyrecoverytechnologytobedeveloped. Since 2000 only one privately owned company has been given approval to accept putrescible MSW.VEScommencedoperationsattheWoodlawnBioreactor(Woodlawn)in2004.Whilstother facilities in NSW have LFG extraction and flaring in place, Woodlawn is currently the only bioreactorinNSWwithprimaryfocusondevelopingoptimumconditionsforwastedegradation andtherecoveryofLFG. 2.2 BIOREACTORS DURING NSW WASTE MANAGEMENT TRANSITIONAL PERIOD The objective to dispose of only inert materials in landfills is a goal yet to be achieved, waste reductionstrategies,recyclingprogrammesandrecentlargescalecompostingprogrammeshave beenputinplacetoreducetheamountofwastegoingtolandfill.Whilsttheseprogrammesare maturingtherewillbeatransitionalperiodinwhichlandfillswillcontinuetoacceptwastethatwill havepotentialadverseenvironmentalimpacts.ReinhartandTownsend(1998)haveshownthat ‘whereleachablematerialsarelanddisposed,impenetrablebarriersmustbeprovidedandwaste stabilisationmustbeenhancedandacceleratedsoastooccurwithinthelifeofthesebarriers’.By operatingalandfillasabioreactor,acceleratedwastedegradationandstabilisationcanincrease biogasproductionyieldsduringashortertimespan,improveleachatequalityandassistinmore rapidwastesettlement. The availability of void space within the Sydney region is sparse, in 1991 the then ‘Waste ManagementAuthorityofNSW’reportedthat‘Sydneyisnowfacingalandfillcrisis.Lessthan6 yearslandfillcapacityremains’(WMA,1991).Duringthistimeexistingwastedisposalsiteshave beenexpandedtofacilitatetheacceptanceoftheeverincreasingMSWstream. AstraditionalvoidspaceforMSWislimited,innovativemethodshavetobedeveloped,VEShas developed a former open cut lead, zinc and copper mine to accept volumes of waste of up to 400,000tonnesperannumforaprojected75years.Theuseofthesetypesofvacantvoidsnot onlyalleviatestherequirementtocreatevoidspacebutalsoactsasvitalmineremediationand rehabilitation. TheuseofdeepvoidssuchastheformerWoodlawnminecreatetheirownproblemsinherentin workinginsuchgeologicallyuniqueenvironments,deepvoidsexertgreatpressureonthewaste, thus enhancing settlement and gas recovery and leachate recirculation infrastructure are predisposedtodamage,duetohighsettlementrates. Probably the greatestfactor influencing bioreactor performance, henceLFG production, is void geology. Bioreactors operate in semiopen systems, interactions between surface and ground waters, and geological materials have an affect on environmental conditions, in this case high heavymetalconcentrations,sulphatelevelsandhighacidity.

D.A.Lazarevic Page3of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

2.3 WOODLAWN BIOREACTOR Woodlawnwastheformersiteofa25millioncubicFigure 2.2: Woodlawn Bioreactor Location metre open cut and subterranean copper, lead and zinc mine, mining ceased in 1998 after 20 yearsofoperation.Theminevoidisapproximately 200m deep and 800m across, the mining lease consists of around 3,000 hectares and includes evaporation dams, dams and a decommissionedplantandequipmentarea,allof which is to be rehabilitated at the end of the project.Woodlawnislocated250kmSouthWest ofSydneyandisservicedbybothroadandrail. TheWoodlawnBioreactor(Woodlawn)isoperated by VES and commenced operation in September 2004. Woodlawn is permitted to receive up to 400,000 tonnes of MSW per annum, 652,766 tonnesofwastehasbeenplacedasofthe6thof Source:VES,2006. September2006,atthisratethevoidwilltake approximately 75 years to fill. Woodlawn has a planned peak energy production capacity of 20MWperannumandwitha50MWWindFarm(underdevelopment),locatedonanadjacent 6,000hectaresoflandaroundthebioreactoractingasabuffer,approximately37,500homescan bepoweredbytheproject.WasteiscollectedinSydneyandprocessedatthepurposebuiltClyde TransferTerminalinWesternSydney,thentransportedviarailtoWoodlawn. Bioreactor landfills utilise leachate recirculation and landfill Gas (LFG) recovery systems to increase waste degradation, enhance gas production and advance waste stabilisation. The accelerated degradation process facilitates the production of LFG for utilisation in energy conversionmuchsoonerafterwasteplacementthantraditionallandfills.Thisallowsrevenuesto be realised earlier and advanced waste stabilisation allows a greater volume of waste to be placed in the void. The first Jenbacher J320GS 1.064 Mw landfill gas engine was delivered in January 2006 and power generation is expected to commence towards the end of 2007. A bioreactormanagesthedecompositionoforganicmaterialmuchlikeahighsolidsbatchprocess anaerobicdigester,developedingeologicmaterials.Howeverbioreactorsaresemiopensystems with interactions between geological materials, atmospheric conditions, surface and groundwater’s. Severalchallengesthathavearisenduringplanningandoperationofthebioreactorinclude: • Composition of MSW entering the void Due to factors inherent in a competitive waste services industry, recent intensified competitionhasleadtolowervolumesofputresciblewastethanpredicted. • Leachate recirculation and gas recovery Highlevelsofgroundwaterandsurfacewaterrunoffinfiltrationaretryingtoreachanatural equilibrium with surrounding ground water levels. The heterogeneous nature of waste, nonuniform waste moisture levels and waste saturation all cause difficulties in maintaininganoptimalwastewaterbalance,thisinturncaneffectleachaterecirculation andLFGextraction. • Acid mine drainage and hydrogen sulphide production The mine is the site of massive sulphide ore’s consisting mainly of Pyrite (FeS2), Sphalerite(ZnFe)S,Galena(PbS),andChalcopyrite(CuFeS2).Groundandsurfacewater runoffhascausedwaterenteringthevoidtohavehighlevelsofmetals,sulphateanda

D.A.Lazarevic Page4of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

low pH. These conditions are conducive to production of hydrogen sulphide gas, an unwantedtoxic,corrosiveandexplosivegas. This thesis will focus on the last of these issues, sulphate reducing bacteria and hydrogen sulphideproductionasaresultofacidminedrainage.Acidminedrainagehasleadtoleachate withlowpHandahighconcentrationofsulphate(2500–9000mg/lsulphate)(VES,2006),these conditions have resulted in the establishment of sulphate reducing bacteria colonies and production of large amounts of hydrogen sulphide, maximum recorded levels of 1.7% volume around leachate recirculation wells. Sulphate reducing bacteria has the ability to retard methanogenicactivity,isanoccupationalhealthandsafetyconcern,whilstalsoleadingtoacid gascorrosionofLFGcombustionequipmentandincreasedSOxemissionsfromLFGcombustion duringpowergeneration. LFGcompositionhasshownhydrogensulphidelevelsashighas1.7%volume,symptomaticof prolificsulphatereduction,whilstreadingsof120ppmhavebeensustained. Figure 2.3: Aerial view of the Woodlawn Bioreactor Source: VES

D.A.Lazarevic Page5of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Arangeofmitigationstrategiesworkingincooperationmustbeusedtocombatthisproblem.A hierarchyofstrategiesissuggestedbelow: • Prevention of sulphate entering the void: o Currentapplicationsandfutureinvestigationsinclude,removalofprimarysources ofsulphateanddiversionofgroundwaterandsurfacewaterrunofffromthevoid. • Prevention of sulphate entering the waste mass: o Currentapplicationsandfutureinvestigationsinclude,pressuregrouting(sealingof cracks/faults) of void walls preventing groundwater from entering the void and collectionofwaterrunoffwithinthevoidbeforecomingincontactwiththewaste. • Sulphate removal from leachate: o Removal of sulphate from leachate via leachate treatment; including processes suchascalciumadditionandprecipitationofcalciumsulphate(gypsum)inbatch reactorvessels. o The use of an alternative waste cover to precipitate metal sulphides within the wastemass,preventingsulphurfromenteringthegaseousphase. • LFG treatment (last resort): o ScrubbingofHydrogensulphidefromLFGpriortocombustion. The first two strategies are future planning measures and can be resolved by physical engineering solutions and the last strategy should be used as a last resort, due to high operationalcostsandworkersafety. Amitigationstrategythatcanbeimplementedimmediatelyandusedtoaddresssulphateexisting inthevoid,whilstthedesignandconstructionofalongtermleachatetreatmentstrategyisbeing developed,istheuseofanalternativewastecoverforinsituremovalofhydrogensulphidefrom thelandfillgas,andisthefocusofthisproject.

D.A.Lazarevic Page6of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

3 AIMS AND OBJECTIVES 3.1 AIMS The aim of this project is to investigatethe use of various alternative waste covermaterials to reduce the production of hydrogen sulphide gas from within the waste mass. Alternative daily cover materials will be tested in laboratory conditions, replicating actual field conditions with respecttowastecompositionandsulphatesource. Arangeofcommerciallyavailableproductsandindustrialhavebeenselectedfortesting, theseincludeironoxidecompoundsandironrichindustrialwastes.Itisimportanttonotethatthe use of industrial waste products is an attractive option, because reduces adverse impacts of producing virgin materials, and utilises waste materials as a material source for secondary processes,thusclosingcurrentlyopenmaterialloops. The general aim of this document is to investigate if the addition of iron rich compounds as a wastecover,will(underanaerobicconditions)reactwiththevariousformsofsulphideproduced asaresultofsulphatereducingbacteriatoprecipitatemetalsulphides,suchasironsulphideand pyrite.Stemmingfromtheaboveasasecondaryinvestigationistodetermineifthesourceofthe sulphate,acidminedrainagecontaininghighconcentrationsofbothsulphateandvariousheavy metals,isabletoprecipitatemetalssulphidesinitsownright. 3.2 OBJECTIVES Theobjectivesofthisprojectare: • Toconductaliteraturereviewintheareasof;majorbiochemicalprocessestakingplacein bioreactor degradation, inflows of sulphur to the system: acid mine drainage and the productionofacidandsulphaterichwaters,sulphurreductionwithinthesystem:sulphate reducing bacteria and hydrogen sulphide production, sulphur outflows of the system: in both the gaseous form (reduced sulphur compounds) and solid from (metal sulphide precipitation) • Determinetheexpectedoutcomesfromtheadditionofalternativedailycovermaterialson municipal solid waste, under actual site conditions, low pH and high sulphate concentrations. • Test the ability of the combination of municipal solid waste and metals present in the sulphatesource,acidminedrainage,toprecipitatemetalsulphidesandreducehydrogen sulphideconcentrationsinlandfillgas. • Test the ability of alternative waste cover materials to remove sulphur from the system (retain in the waste as a solid precipitate) and lower hydrogen sulphide gas concentrations, this will occur in controlled laboratory test columns whilst reproducing actualconditionsoccurringwithintheWoodlawnBioreactor. • Analysiswillconsistofcomparisonsinlandfillgasandleachatecomposition,todetermine iftheacidminedrainageoralternativewastecovermaterialsreducehydrogensulphide concentrationwhilstmaintainingoptimalmethanogenicactivity. • Recommend the optimum alternative daily cover for use in an integrated acid mine drainagemitigationstrategy. 3.3 LIMITATIONS Certainlimitationsinvolvedinconductingthisthesisarepresentedbelow: • Timeisimportantfactorwhenconsideringthisdocument,cantakefrom6 – 18 months to reach maturity, however this time scale is unfeasible for this project, howeverthecompletionofthisreportwithina7–8monthperiodmeansbioreactor’smay nothavereachedmaturitypriortoAMDaddition. • Whilst conducting the experiments onsite was beneficial in terms of simulating actual conditionsintermsofMSWandAMDused,laboratoryconditionsonsitewerelimited,and onlyalimitedamountofsampletestingcouldbedoneonsite.Testingthatcouldnotbe

D.A.Lazarevic Page7of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

conductedatWoodlawnweresenttothesameindependentlaboratorythatVESusesfor allitscompliancetesting. 4 METHODOLOGY

AnindepthliteraturereviewwillbeconductedonspecificissuesrelatingtoWoodlawn(andother siteswithsimilaroperatingenvironments),namely: a) Theoperationofbioreactorsandprevailingbiochemicalprocessed b) Acidminedrainage c) Sulphatereducingbacteriaandhydrogensulphideproduction d) Alternativewastecover,andtheinsituremovalofhydrogensulphidegas. a) Bioreactor Biochemical Processes Aliteraturereviewwillbeconductedfromrecentandrelevantliteraturetoinvestigatethemajor biochemical processes and reactions during the various stages of waste degradation in bioreactors. A quick review will also be done of the operational techniques used in bioreactor technologies,specificallytheWoodlawnbioreactor. b) Acid Mine Drainage A review of the major reactions causing acid mine drainage will be investigated, and the relationshipstheseeffectshaveuponbioreactorperformance,specificallymethaneandhydrogen sulphideproduction. c) Sulphate reducing bacteria and hydrogen sulphide production Currentmonitoringoflandfillgascompositionhasshownthatcoloniesofmethanogensarewell establishedwithgascompositionstypicalofanaerobicwastedegradationduringacetogenicand methanogenicphases.Highlevelsofhydrogensulphidepresentwithinthewasteduringmid2006 (120ppm – 17,000 ppm, (Veolia, 2006)) suggest the presence of sulphate reducing bacteria colonies. A literature review will be conducted on sulphate reducing bacteria and hydrogen sulphide production, the relationships existing between sulphate reducing bacteria and methanogens,operationalissuesandconcernsduetotheproductionofhydrogensulphide. d) Alternative , retarding sulphate reduction and removal of hydrogen sulphide TheEnvironmentalProtectionAuthorityhighlyencouragestheuseofanalternativedailycover materialtobeusedonthewaste,whichwillnotinhibitbiologicaldecomposition.Thisprojectwill takethisonestepfurtherininvestigatingdailycovermaterialsthatwillactivelyimprovebioreactor performance, methane generation and reduction of unwanted noxious gasses. A review of suitable materials including, materials source, major reactions, and expected benefits of these materialswillbeinvestigated. e) Experimental column testing, investigating the use of alternative daily covers on removal of hydrogen sulphide Materialsidentifiedintheprevioussectionwillbetestedinacontrolledlaboratoryenvironment, whilst replicating ‘real life’ on site conditions. Six columns will be constructed, one control bioreactortogainbackgroundactivityandlandfillgasproduction,anothertotestifmetalspresent withintheMSWandsulphatesourceareabletoreducelevelsofhydrogensulphideintheLFG, andtheremainingfourtotesttheidentifiedalternativewastecovermaterialsandtheirabilityto preventtheproductionofhydrogensulphidegas. f) Recommendations from Results Arising from the analysis of results, landfill gas and leachate composition, the performance of thesematerialscanbeassessedtoselectthemostappropriatematerialtobeusedonsiteasa partofthetotalAMDandsulphatemanagementplan.

D.A.Lazarevic Page8of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

5 BIOREACTOR TECHNOLOGY

5.1 BIOREACTOR LANDFILLS Bioreactor Landfills A bioreactor landfill is an ‘engineered landfill or landfill cell where liquid and gas are actively managed in order to accelerate or enhance Biostabilization of waste’ (SWANA, 2004). Bioreactors involve controlling the environmental conditions within a waste mass in order to enhance MSW biodegradation. It has been shown that pH, temperature, nutrients, absence of toxins,moisturecontent,particlesizeandoxidationreductionpotentialareallinfluentialfactors (Reinhart&Townsend,1998).Moisturecontentisthemostcriticaloftheseparametersandcan be regulated by leachate recirculation. Environmental conditions for MSW degradation are facilitated through leachate recirculation which, recirculates and distributes nutrients and enzymes, allows for pH buffering, dilutes any inhibitory compounds, recycles and distributes methanogens, provides for leachate storages and evaporation at lower construction and operatingcosts(Reinhart&Townsend,1998).Wastestabilisationtimescanbereducedfrom10’s ofyearsto23years,whichallowsforfasteraccesstoLFGforenergyconversionpurposes. Thegoalsassociatedwiththedevelopmentofbioreactorsinclude: • Increasedspeedofwastestabilisation • Enhancedgasproduction • Increasedavailablevoidspaceduetoincreasedsettlementofwaste • Improvedleachatetreatmentandstorage,reducingleachatemanagementcosts • Reducedlengthandcostsassociatedwithpostclosureactivities Inordertocontrolthedegradationprocess,bioreactormanagementbecomesmorecomplicated. Liner design, gas extraction, leachate recirculation and treatment, daily cover materials, waste placement and monitoring are all required to be actively managed in order to have the utmost controlofthesystem. Bioreactor Advantages and Disadvantages Withregardtowastedisposal,bioreactortechnologyisfarsuperiortotraditional‘dryentombment’ of waste; by facilitating the degradation of waste, bioreactor technology is able to reduce environmentalimpactsassociatedwithwastedisposal,bioreactortechnologycanonlybeutilised forthebiodegradableportionofwaste. Throughtherecirculationofleachateandgasextractionsystems,bioreactorsareabletospeed upthedegradationprocesseswithinthewastemass,allowingformorerapidwastestabilisation andsettlement.Bioreactorsenhancelandfillgasproduction,bothintermsofqualityandquantity, gas is available earlier for conversion to energy allowing a faster realisation of income for operators,enhancedqualitygivesgreatercalorificvalueandhigherenergyproducingpotential. Leachaterecirculationreducesleachatetoxicityandtreatmentcosts,andminimisesthelongterm liabilityoftheoperation.Onagreaterscalebioreactorsbothincreasetheoperationalcapacityof thesite,viaenhancewastesettlement,andalsoreducethetimeofpostclosureoperations. Adverse impacts of bioreactors are the potential for an increase in odours, resulting from increasedvolatileorganicacidformation,thepossibilityofhighdissolvedsaltconcentrationsand clogging of leachate recirculation systems. Williams (2005) summarises the advantages and disadvantagesofbioreactorsinTable5.1.

D.A.Lazarevic Page9of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Table 5.1: Advantages and Disadvantages of Bioreactors Advantages Disadvantages Encourages early waste establishment and Surface flooding may be caused by either maintenance of methanogenesis. A high moisture irrigation rates being locally too high or by the contentandthemovementofmoisturehavebothbeen formationofinorganicsolidlayers showntopromotemethanogenesis. Developsamoreuniformqualityofleachate(measured Spraydriftfromleachaterecirculationmayresult COD),sothatthedesignandoperationoftreatmentand in health concerns and increased smells, disposalfacilitiesiseasier particularlyduringtheacetogenicphase Optimises the removal of hazardous organic Breakouts of leachate accumulated as perched contaminantsby,forexample,optimisingconditionsfor water from the side slopes of landfills may biodegradationandstrippingvolatileorganicmaterialby occur,increasedbythepresenceofcompacted increasinggasproduction orlowpermeabilitylayerswithinthewaste Minimises dry zones in waste, which could otherwise Clogging of subsurface recirculation systems remainlargelyundergradeformanyyears mayoccur Takes up the absorptive capacity of the biodegradable Extremelyhighconcentrationsofdissolvedsalts wasteandreducesthefluctuationsinleachateflowrate may occur in sites accepting predominantly inorganicwaste Promotes enhanced evaporative losses of leachate by surfacespraying Provides temporary storage of shortlived peak flow rates, allowing treatment facilities to be designed for flowsclosertoaveragevalues Source: Williams, 2005. Landfill Gas Composition Landfillgasisprincipallycomposedofmethaneandcarbondioxide,thesegasesareproducedby methanogens as outlined in section 6. There are an abundance of trace gas components, resultingfromthevariousstagesofthebiodegradationprocess,materialswithintheMSWand interactions with site geology and hydrology. Table 5.2 represents a summary of landfill gas components. Table 5.2: Typical Landfill Gas Composition Component TypicalValue ObservedMaximum (%byvolume) (%byvolume) Methane 63.8 88.0 Carbondioxide 33.6 89.3 Oxygen 0.16 20.9 Nitrogen 2.4 87.0 Hydrogen 0.05 21.1 Carbonmonoxide 0.001 0.09 Ethane 0.005 0.0139 Ethene 0.018 Acetaldehyde 0.005 Propane 0.002 0.0171 Butanes 0.003 0.023 Helium 0.00005 Higheralkanes <0.05 0.07 Unsaturatedhydrocarbons 0.009 0.048 Halogenatedcompounds 0.00002 0.032 Hydrogensulphide 0.00002 35.0 Organosulphurcompounds 0.00001 0.028 Alcohols 0.00001 0.127 Others 0.00005 0.023 Source: Waste Management Paper 27, 1994.

D.A.Lazarevic Page10of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Bioreactor’s and reduction of greenhouse gas emissions A key aim of bioreactors is to utilise LFG for conversion to energy, this helps to reduce greenhousegas(GHG)emissionsinthefollowingways: • Energy derived from LFG can substitute fossil fuel based energy, thus reducing anthropogenicGHGemissions • Capture of LFG reduces methane and carbon dioxide (key components of LFG) from directlyenteringtheatmosphere • Conversionofmethanetocarbondioxide,duringthegastoenergyphase,reducesthe globalwarmingpotential(GWP)ofemissionsfromtheentireprocess. 5.2 CELL DESIGN Forgreatercontrolofwastedegradation,bioreactorsaredesignedasaseriesofpurposebuilt cells,inwhichgasextractionandleachaterecirculationcanbecontrolled.Developmentofcells notonlyallowsoperationalplacementofwastetobeconductedinamorecontrolledmanner,but environmental conditions, such as pH, nutrient distribution and moisture content can be manipulatedmucheasierinsmallervolumesasopposedtoalargeopenwastemass. TheWoodlawnbioreactorcelldesignisshowninfigure5.1,wasteisplacedin3mlayersandthe constructionandsectionsofwasteareseparatedintovariouscells.Eachcellhastheirhorizontal gasextractionblanketsandverticalgasextractionwells. Figure 5.1: Woodlawn Bioreactor Proposed Cell Design

Source: VES 2006

D.A.Lazarevic Page11of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

5.3 LEACHATE RECIRCULATION The importance of leachate recirculation has been outlined in section 5.1, however uniform movementofleachatethroughoutthewastemassisdifficulttoachieve. MSWhasamoisturecontentofbetween15–40%(Moss,1997inWilliams,2005),theoptimum moisturecontentforbioreactorwastedegradationisbetween40–70%(Reinhart&Townsend, 1998).Tobringthewastetofieldcapacity(4070%)leachatecanberecirculatedthroughoutthe wastecellbyeitherhorizontalinfiltration,verticaldisplacementorsurfacespraying. Horizontalinfiltrationinvolveslayingleachatedistributionpipesingravellinedtrenches.Leachate can infiltrate the waste mass up to 8m horizontally and 10m vertically (Reinhart & Townsend, 1998),dependinguponwastedensityandhydraulicconductivity. Verticaldisplacementinvolvesplacingaseriesofperforatedverticalwellsthroughoutthewaste mass and pumping leachate thought these wells, the advantage of this system is that the leachatecanbedistributeddeepintothewastemass,howeverhorizontalsaturationofthewaste istypicallyonlyina2–6mradiusofthewell. Surface spraying involves spraying leachate on the surface of the waste each day after placement,thistechniquegivesthewasteauniformsaturationandhelpsbringthewastetofield capacity directly after placement. Although the surface spraying of leachate does allow for the volatilisationofgassesfromleachate,thispracticeisallowedbyNSWregulations.Sitelocation andthelargebufferzoneinrelationtoneighbouringpropertiespreventsodourfromspreading, howevergassesthatvolatilisedoescapefromthesystem. Woodlawn currently uses surface spraying as a method of leachate recirculation, a total of 9 verticalwellspumpleachatefromtheleachatesumptothesurfacewhereitisspreadoverthe wasteviaawatersprayingunit. 5.4 LFG RECOVERY Landfillgasmustbeextractedfromthewastemassforconversiontopower,thisisfacilitatedbya combinationofverticalextractionwellsandhorizontalgasblankets. Verticalwellscanbeinstalledasthewasteisplaced,risingwiththewastemass,ordrilledintoan existing waste mass. Perforated pipe is connected to a gas extraction system under negative pressuretodrawthegasfromthewastemass.Thebenefitofwellsisthattheycanbeinstalledto anexistingwastemasstoaccessgasimmediatelyafterplacement,reducingthetimebetween infrastructureoutlayandgasrecovery. Horizontalgasblanketsareplacedinlayersasthewastemassisrising.Perforatedpipesarelaid ingraveltrenchestofacilitatepreferentialpathwaysofgasflow.Gasblanketsactivelydrawgas fromalayerofwasteaboveandbelowtheblanket,henceafterlayingthegasextractionsystem wastehastobelefttomaturebeforedrawinggas. Woodlawn utilised a combination of vertical gas extraction wells and gas blankets to obtain optimumvolumeofgasextraction.

D.A.Lazarevic Page12of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

6 LANDFILL GAS BIOCHEMICAL PROCESSES

6.1 DECOMPOSITION STAGES WITHIN BIOREACTOR LANDFILLS The various stages of the decomposition of the biodegradable fraction on MSW are well documented in Reinhart & Townsend, 1998, Williams, 2005, Christensen, et al 1996, UK EnvironmentAgency,2004.Thefollowingsectiondrawsfromthesesourcestogiveabriefview ofthedecompositionstagesinMSWdegradation. Figure 6.1 summaries the ‘ideal’ waste degradation process, showing LFG concentrations as eachstagesofdegradationdevelops.Methaneandcarbondioxideconcentrationscanreach60% and40%respectivelyasthemethanogenicstagebecomesestablished.

Figure 6.1: Idealised representation of ‘Landfill gas generation vs Time’ after placement

Source: Willumsen, 1990

Stage 1: Hydrolysis/aerobic degradation Aerobichydrolysisoccurswithinitialplacementofwasteandtheaccumulationofwaterwithinthe waste mass. Aerobic microorganisms metabolise available oxygen and the biodegradable fraction of waste (organic carbon)to producesimpler hydrocarbons, carbon dioxide, water and heat.Theexothermicreactioncanreachtemperaturesupto90°C,dependingonwastedepth. Carbon dioxide produced is released as a gas or is absorbed by water to form carbonic acid, givingtheleachateacidity.Theaerobichydrolysiswilllastforaslongasoxygenispresent,itmay range from days to weeks, depending upon variables such as compaction and daily cover material.

D.A.Lazarevic Page13of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Stage 2: Hydrolysis & Fermentation Associated with the onset of anaerobic conditions, hydrolytic and cellulolytic bacteria initiate hydrolysisandacetogenicprocesses,thesefacultativeanaerobescantoleratereducedoxygen conditions. Carbohydrates, proteins and lipids are broken down to form smaller organic compounds such as organic acids, primarily acetic acid, but also propanoic, butyric, lactic and formic acids and their derivatives. Proteins decompose toform ammonia, carboxylic acids and carbondioxide,whilsthydrogen,waterandheatarealsoproducedasapartofthefermentation stage. Typicalreactionsduringthisphaseinclude: C6H12O6+2H2O2CH3COOH+4H2+2CO2 (6.1) (glucose + Water  acetic acid + hydrogen + carbon dioxide) C6H12O6CH3C2H4COOH+2H2+2CO2 (6.2) (glucose  butyric acid + hydrogen + carbon dioxide) C6H12O62CH3CH2OH+2CO2 (6.3) (glucose  ethanol + carbon dioxide) (Christensen,etal1996) Typical gas concentrations are approximately 80 % carbon dioxide and 20 % nitrogen, with temperaturesdroppingtobetween30and50°C. Stage 3: Acetogenesis Acetogen microorganisms dominate this anaerobic stage, converting organic acids formed in stage 2 to acetic acid and its derivatives, carbon dioxide and hydrogen. Hydrogen and carbon dioxide levels start to decrease allowing methanogens to establish, forming methane primarily fromthecarbondioxideandhydrogenavailableandtoalesserextenttheorganicacids,primarily aceticacid. Typicalreactionsintheconversionoforganicacidsintoaceticacid,hydrogenandcarbondioxide areasfollows: CH3C2H4COOH+2H2O2CH3COOH+2H2 (6.4) (butyric acid + water  acetic acid + hydrogen) CH3CH2OH+H2OCH3COOH+2H2 (6.5) (ethanol + water  acetic acid + hydrogen) CH3CH2COOH+2H2OCH3COOH+CO2+3H2 (6.6) (propionic acid + water  acetic acid + carbon dioxide + hydrogen) C6H5COOH+6H2O3CH3COOH+CO2+3H2 (6.7) (benzoic acid+ water  acetic acid + carbon dioxide + hydrogen) CO2+2C2H5OHCH4+2CH3COOH (6.8) (carbon dioxide + ethanol methane + acetic acid) (Christensen,etal1996)

This stage typically sees concentrations of metal ions in leachate increase as acidity rises, resulting from increased organic acid concentrations. Hydrogen sulphide may start being producedifthereisanabundanceofsulphurcompounds,assulphatereducingbacteriafavours moreacidicconditionsthanmethanogens.

D.A.Lazarevic Page14of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Stage 4: Methanogenesis Stage Methanogenesisistheprimarystageinlandfillgasproduction,whenhydrolysis/acetogenesisand methanogenesisareinequilibrium,substratesformethanogenesisareprovidedatasteadyrate, conductivetostablemethaneproductionatconcentrationsofapproximately60%methaneand 40%carbondioxide. Methaneisproducedintwoways,bycarbondioxidereductionwithhydrogen,andfromorganic acids formed in the acetogenic stage, acetic acid is the most abundant substrate available for methaneproduction.Thepredominatingreactionsinthisstagearesummarisedbelow: Methanogenesisbyorganicacidcleavage: CH3COOHCH4+CO2 (6.9) (acetic acid  methane + carbon dioxide) HCOOH+3H2CH4+2H2O (6.10) (formic acid + hydrogen  methane + water) CH3OH+H2CH4+H2O (6.11) (methanol + hydrogen  methane + water) Methanogenesisbycarbondioxidereductionwithhydrogen: CO2+4H2CH4+2H2O (6.12 (carbon dioxide + hydrogen  methane + water) 2CO2+4H2CH3COOH+2H2O (6.13) (carbon dioxide + hydrogen  acetic acid + water) Figure 6.2: Methanogenic Bacteria Both mesophilic and thermophilic methanogens are present in this stage, and have a combined range of operationfrom3065°C.Asorganicacidsareconsumed leachatepHincreasestobetween7and8,whichiswithin theoptimalpHrangeformethanogenesisof6.8–7.5pH. The methanogenic stage is the longest stage of waste degradation,significantmethaneproductionisfrom312 months,howeverLFGcancontinuetobegeneratedfora periodof15years. Source:SpaceRef.com

D.A.Lazarevic Page15of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Stage 5: Oxidation The final stage of waste degradation is established after all organic acid substrates are exhausted. Aerobic microorganism gradually replace the anaerobic methanogens and convert theresidualmethanetocarbondioxideandwater. Figure 6.3 summaries the inputs and outputs of each stage described above. Below sulphate reductionisonlyshownintheacetogenicstage,howeversulphatereducingbacteriacanbecome established during the fermentation stage and progress throughout the methanogenic stage, dependinguponenvironmentalconditions. Figure 6.3: Major steps in the decomposition of to form landfill gas

Source: Environmental Agency, 2004

D.A.Lazarevic Page16of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

6.2 FACTORS INFLUENCING METHANE POTENTIAL Acidity MethanogenesishasanoptimalpHrangeasoutlinedintable6.1,consensusisthatpHshouldbe maintained between pH 6.5 and pH 7.7 (average value), however methanogenic activity can occurbetweenextremesofpH5andpH9. Table 6.1: Methanogenesis pH ranges pHrange Source 6.4–7.2 (Kotze,etal1969inFarquharandRovers,1973) 6–8 (Zehnder,etal1982inChristensen,etal1996) 6.8–7.4 (Reinhart&Townsend,1998) 6.5–8.5 (EnvironmentalAgency,2004) 6.8–7.5 (Williams,2005) DuringAcetogenesistheproductionofacids,primarilyaceticacidanditsderivatives,canlower pHto4orless(Williams,2005).TheheterogeneousnatureofwastehastheabilitytobufferpH andwhenequilibriumhasbeenreachedbetweenacetogenesisandmethanogenesisanoptimum pHof7.4canbemaintained(EnvironmentalAgency,2004). Temperature Temperature is an important factor influencing biochemical reactions and methane production; temperature varies depending upon waste decomposition stages. Temperatures can reach as high as 80 – 90 °C during hydrolysis and stabilise to 30 35 °C upon methanogenesis. Methanogenic microorganisms can be classified by temperature range into psychrophilic, mesophilicandthermophilic,temperaturerangesfromthesemicroorganismsaresummarisedin table6.2. Table 6.2: Methane producing bacteria temperature ranges Methanogens SOURCE Psychrophilic Mesophilic Thermophilic <22°C 20–44°C >44°C (Kotze,etal1969inFarquharandRovers,1973) 3545 (EnvironmentalAgency,2004) 30–35°C 45–65°C (Williams,2005) Williams (2005) reports the majority of landfill sites have temperatures between 30 and 35 °C duringthemainlandfillgasgenerationphase.Temperatureisalsodependentonwastedepth, increasing depth allows for greater insulation of the waste and deeper landfills can have temperaturesover60°C(EnvironmentalAgency,2004).

D.A.Lazarevic Page17of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Moisture Content Much has been written (Farquhar and Rovers, 1973; Christensen, et al 1996; Reinhart & Townsend,1998;EnvironmentalAgency,2004;Sponza&Agdag,2005;Williams,2005)onthe moisturecontentofwastetopromoteoptimalwastedegradation.Asummaryofoptimalmoisture contentrangeisprovidedinthetablebelow. Table 6.3: Optimal moisture content range MoistureContent Minimum Optimumrange Typical Source Average ForrawMSW 15–40% 30% (Moss,1997inWilliams,2005) 15–25% 15% Woodlawn Bioreactor – own observations ForBioreactorOperation 25–60% (FarquharandRovers,1973) 25% 40–70% (Reinhart&Townsend,1998) 65% Woodlawn–ownobservations NobelandArnold(1991)inReinhartandTownsend(1998)notethatwateradditionandleachate recirculation serve as a reactant in the hydrolysis reactions, provides pH buffering, dilutes inhibitory compounds, exposes surface area to microbial attack and controls microbial cell swelling.Excessmoisturecontentandsaturationofthewastecanhavenegativeimpactsdueto poormoisturecirculation,accumulationofvolatileorganicacids,andsaturationofgasextraction layerscanleadtodiminishedLFGextraction. Nutrients BothmacroandmicronutritionalrequirementsofdegradationaregenerallymetbytheMSW.An optimum ratio of organic matter (COD), nitrogen and phosphorous as 100: 0.44: 0.08 was expressed in Christensen (1996). Research into the addition of nutrients to promote methane generation was outlined in Reinhart and Townsend (1998) with no conclusive results on increasedmethaneyields.Nutrientssuchassodium,potassium,calcium,magnesium,chlorine, ironcopper,zinc,manganese,molybdenum,nickelandvanadiumhavebeenidentifiedasmicro nutrientsinChynowethandPullammanappallil(1996).Generallythenutritionalrequirementsfor biodegradationarenotexcessiveandaretypicallymetbythemunicipalsolidwaste. Inhibitors/Toxicity Micronutrients,metals,etc.,areessentialtothegrowthofmicroorganisms,KuglemanandChin (1971)illustratedtherelationshipbetweentheconcentrationtheseinputsonmethanogengrowth rate,figure6.4. Figure 6.4: Effect of metabolite concentration on growth rate for methanogens

Source: Kugleman and Chin, 1971

D.A.Lazarevic Page18of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Concentrations below the optimum are not conducive to maximum growth, where as concentrationsabovetheoptimumconcentrationcanhaveaninhibitoryeffect. Potentially toxic inhibitors such as; alternative electron acceptors (oxygen, nitrate, sulphate), sulphides,heavymetals,halogenatedhydrocarbons,volatileorganicacids,ammoniaandcations have been identified in Chynoweth and Pullammanappallil (1996). Heavy metals in high concentrationmayhaveaneffectontheWoodlawnBioreactor,beingthatWoodlawnisthesiteof a former metal sulphide mine. Whilst metal concentrations can be addressed by precipitation through pH control or leachate treatment, the effect of metals on LFG production and reactor performanceisbeyondthescopeofthisproject. Oxygen An anaerobic environment is paramount in the cultivation methanogens and production of methane,methanogensaresensitivebacterium’sandrequirealowredoxpotential(Eh),redox potentials of –200 mV and –300 mV have been noted by Farquhar & Rovers (1973) and Christensen,etal(1996)respectively. Ammonia Thebuildupofammonia,fromthedecompositionofproteinsandfats,canalsohaveaninhibitory affectuponmethaneproduction.DeBaereet al(1984)foundthatammoniaof50–80mg/lcan decrease methanogenesis by up to 50%. This said, the average values for ammonia for bioreactors range from 32 – 1850 mg/l (Reinhart & Townsend, 1998) in the methanogenesis phaseofwastedecomposition. Sulphate Theeffectofsulphateonbioreactorperformanceisafundamentalpartofthisthesisandwillbe addressedinsection7.

D.A.Lazarevic Page19of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

7 SULPHUR INTERACTIONS IN BIOREACTOR PROCESSES

Inmanybioreactorandlandfillsitesaroundtheworldtheissuesassociatedwiththereductionof sulphurcompoundareonerous.Themajorityofsitesthatdealwiththisissuearesitesthataccept construction and demolition waste, and today the trend is towards separating these sites from thosethatacceptbiodegradablewaste.Insitesthatacceptbiodegradablewastetheamountof sulphurwithinthewasteisusuallyfiniteandbelongstotheMSWbeingacceptedbythesite. TheWoodlawnBioreactorisauniquesituation,thevoidgeology,ofsulphidicmineraldeposits, allowsforacontinuoussupplyofsulphurintheformofsulphatetothewastemass.Surfacewater runoffandgroundwatersareabletoprovideaconstantsourceofsulphateandmetals,whichis readilyconsumedbysulphatereducingbacteria,andhasthepotentialtoformdangerouslevels ofhydrogensulphidegas. Figure 7.1 below shows the relationships between the sulphate sources and the production of hydrogensulphidegas. Figure 7.1: Sulphur Oxidisation and Reduction within Bioreactor Processes

Inflow Process Outflow

H2S(g) 2- SO4 Surface water Runoff

2- SO4 SRB Ground Water

- 2- 2- H2S(aq),HS , S SO4 MSW

MeS

SystemBoundary

Source: Own SulphatefromgroundwaterandsurfacewaterrunoffentersthewasteandisreducedbySRBto formeithersulphide(S2)orhydrosulphide(HS).Thehydrosulphidecanthenvolatilisetofrom hydrogensulphidegas.Sulphideionscanreactwithhydrogenionsinthewastetoformhydrogen sulphideions,thatthenfollowtheaboveprocess. Limiting the input of sulphate is obviously the primary objective, however total exclusion of sulphate from the waste mass is almost impossible, once in the system the sulphur will either remain as aqueous sulphate or sulphide, volatilise to form reduced sulphur compounds (RSC) predominantlyintheformofhydrogensulphideorprecipitatetoformmetalsulphides. UndernormalcircumstancestheproductionofLFGisnotoverlycomplicated,therecirculationof leachate acts as an insitu treatment measure and distributes beneficial bacteria. However in situationswherethereisaninfluenceoflargeconcentrationofsulphurcompounds,management ofLFGproductionbecomesmorecomplicated.

D.A.Lazarevic Page20of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

7.1 SULPHUR INFLOWS 7.1.1 Sulphidic Mine Environments AsdetailedbyHarris(1997)andMudder(2004)inWinchester(2005),acidminedrainage(AMD) isarguablythelargestthreattolongtermsustainabilityoftheminingindustry,theglobaleffects areecologicallyandfinanciallydamagingtotheminingindustry,withimpactsprimarilyaffecting surface waters and associated ecosystems. AMD results in amplified metal and sulphate concentrationsandlowpH,thesefactorsarenonconducivetooptimumbioreactorperformance andmethanogenesis. AMD at Woodlawn is a result of the aerobic oxidation of massive deposits of metal sulphide minerals, primary pyrite (FeS2), as well as galena (PbS), sphalerite (ZnS) and chalcopyrite (CuFeSs).SourcesofAMDatWoodlawnoccuratvariouslocationsincluding,waterrunofffrom waste rock dumps (adjacent to the void), water runoff from exposed rock throughout the void wallsandwaterinfiltrationfromboreholes,faultsandfracturesinthevoidwalls. As pyrite is the largestcontributorto AMD, thefollowing is a brief overview of the oxidation of pyriteasdescribedinWinchester(2005)andParker&Robertson(1999).

Pyriteoxidisesinthepresenceofwaterandoxygen,liberatingferrousiron,sulphateandprotons.

2+ 2 + FeS2+3.5O2+H2OFe +2SO4 +2H (7.1) (pyrite + oxygen + water  ferrous iron + sulphate + protons) As the pH lowers during Equation 7.1 ferrous iron further oxidises to ferric iron (depending on redoxpotential).Thisaqueousoxidationofferrousirondoesnotdirectlyinvolvepyrite. 2+ 3+ Fe +0.25O2Fe +0.5H2O (7.2) (ferrous iron + aqueous oxygen + proton  ferric iron + water) TheferricironproducedinEquation7.2canhydrolyse(ferrolysis)toformferrichydroxide.Ferric hydroxidecanprecipitatewhenpHislowered. 3+ + Fe +3H2OFe(OH)3+3H (7.3) (ferric iron + Water  ferric hydroxide + protons) AsummaryofEquation6.2and6.3resultsinferrichydroxideand2protons,thusfurtherlowering pH. 2+ + Fe +0.25O2+3H2OFe(OH)3+2H (7.4) (ferrous iron + oxygen +Water  ferric hydroxide + protons)

Theoverallsummaryofreactions(Equations1–4)fortheoxidationofpyriteis: 2+ + FeS2+3.75O2+3.5H2O2SO4 +Fe(OH)3+4H (7.5) (pyrite + oxygen + water  sulphate +ferric hydroxide + protons) WhenpHreachesapproximately3.5orlower,ferricironbecomestheprimarypyriteoxidant,this furtherreducesthepH,viatheadditionofprotons,untilferricironbecomestheexclusivepyrite oxidantatapHlessthan3. 3+ 3+ 2 + FeS2+14Fe +8H2O15Fe +2SO4 +16H (7.6) (pyrite + ferric iron + water  ferric iron +sulphate + protons)

D.A.Lazarevic Page21of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

ThenetresultofAMD(Equation6.6)arehighacidity,pHcanreach1,andhighconcentrationsof sulphate and metals. In addition to pyrite oxidation, gelana (PbS), sphalerite (ZnS) and chalcopyrite(CuFeSs)areoxidisedbyferriciron,contributingtoAMD. Themassiveextentofsulphidemineralsexposedtooxygen,theamountofwaterincontactwith the minerals and the rate of oxidisation controls the load and duration of acid, metals and sulphatefromthemine.Atthemajorityofmassivebasemetalsulphideminingsites,theeffectof theseacidgeneratingprocessescanbeexpectedtocontinueforhundredsofyears,postmine closure.Theeffectofacidminedrainageisdetrimentaltheimmediatesurroundingecosystems and has potential consequences further ‘down stream’. The Woodlawn site, with extensive sulphidemineralsexposedisexpectedtobehavesimilarlytoothersuchminesites. 7.1.2 Woodlawn Whilebioreactorcellsaredesignedtomaintainisolationbetweengroundwater/waterrunoffand landfill leachate during methanogenesis, the infiltration of groundwater runoff of approximately 2L/second intothe waste has had the effect ofintroducing sulphate rich, low pH, metalliferous waterintothewaste.HighsulphateandlowpHconditionsareconducivetosulphatereduction resultingintheformationofreducedsulphurcompounds,mainlyhydrogensulphide. MSW contributes sulphur to the system in different forms, trade waste (especially from the constructionindustry)isalsosourceofsulphurintheformofgypsum,howevertheamountofthis wastestreamcomparedtothesulphurinflowsrelatedtoacidminedrainagewouldbenegligible totheoverallsulphurinflowsofthetotalsystem. AnimportantpartofreducingtheeffectofAMDonbioreactorperformancehasbeenmentioned insection2.3,reducingtheamountofwaterrunoffintothevoidandcollectionofwaterinthevoid before contact with the waste surface will limit the introduction of sulphate into the system. However it is a reality that some infiltration of water with high sulphate concentrations will inevitablyreachthewaste. Woodlawn Depending upon location, sulphate concentration, acidity and metal concentration vary considerably.Specificlocationswithinthesitecontainhigherlevelsofmetalsulphidethanother, theresultsbelowshowhowlevelsofsulphateandmetaldifferdependingonlocation. Table7.1:WoodlawnSurfaceWaterRunoffAnalysis Location PARAMETER UNITS NorthernWall SouthernWall GroundWater 2006/11/21 2006/12/27 2007/01/08 pH pHUnits 7.2 2.8 4.6 SpecificConductance uS/cm 3300 16000 21000 OxidationReductionPotential mV 111 286 Sulphate mg/l 1400 17000 14000 Iron mg/l 740 280 Lead ug/l 1200 250 Copper ug/l 2600 110 Zinc mg/l 57000 27000 Source: VES, 2006

D.A.Lazarevic Page22of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Levelsofsulphateandmetalsinleachateshowamarkedreductioninsulphateandmetals.This isduetoSRBreducingsulphate,metalprecipitationandbufferingoccurringwithinthewaste. Table 7.2: Woodlawn Leachate Analysis – 2006/11/21 Location PARAMETER UNITS LE4 LE6 LE7 LE15 pH pHUnits 5.4 5.9 5.4 2.8 SpecificConductance uS/cm 36000 38000 37000 38000 OxidationReductionPotential mV 155 120 110 125 BOD mg/l 78000 78000 70000 59000 COD mg/l 120000 140000 140000 110000 Ammonia mg/l 2700 2800 2500 3100 TotalIron mg/l 1100 710 1500 1500 TotalCopper ug/l 89 57 47 13 TotalLead ug/l 4900 1800 1100 670 Totalzinc mg/l 150 130 160 120 Sulphate mg/l 2600 2500 2500 2100 Sulphide mg/l 2.2 2.2 1.0 6.8 Source: VES, 2006 7.2 PROCESSES - SULPHUR REDUCTION 7.2.1 Sulphate Reduction – competition for substrates Sulphatereducingbacteria(SRB)areresponsibleforthereductionofsulphatetosulphideduring the biodegradation process. The presence of sulphate reducing bacteria in bioreactors is inevitable, several types of SRB have the ability to establish colonies in the fermentation and acetogenicbiodegradationstages.TheseSRBcanalsoexistintheabsenceofsulphatesurviving onsubstratessuchaslactate,ethanol,propanol,fumarate,malate,fructoseandacetate(Elferink, etal1994). SRB compete with methanogens for the derivatives of organic acids formed during the fermentativestage;hydrogen,formate(formicacid),acetate(aceticacid),propionate(propanoic acid),butyrate(butyricacid),ethanolandlactate(lacticacid)areallutilisedbySRB(Elferink,etal 1994).TypicalreactionsareillustratedinChristensenetal(1996): 2 + 4H2+SO4 +H HS +4H2O (7.7) (Hydrogen + sulphate + proton  hydrosulphide ion + water) 2 CH3COOH+SO4 CO2+HS +HCO3 +H2O (7.8) (acetic acid + sulphate  carbon dioxide + hydrosulphide ion + hydrogen carbonate ion +water) 2 + 2CH3C2H4COOH+SO4 +H 4CH3COOH+HS (7.9) (Butyric acid + sulphate + proton  acetic acid + hydrosulphide ion) 7.2.2 Sulphate reduction – oxidisation of methane NotonlydoSRBcompeteforthesamesubstratesasmethanogensbutSRBcanalsoconsume methaneformedduringmethanogenesis.Equation6.10illustratestheconsumptionofmethane bySRB:

2 + 2CH4+SO4 +2H 4H2+2CO2+H2S (7.10) (methane) + (sulphate) + (proton)  (hydrogen) + (carbon dioxide) + (hydrogen sulphide) (VES,2006) Thisreactiondirectlyaffectsthebioreactorsmethaneproducingpotential,reducingperformance inthelaterenergyconversionprocesses. D.A.Lazarevic Page23of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

7.2.3 Sulphate Reducing Bacteria Competition with Methanogenesis GurijalaandSuflita(1993)outlinedthatmethanogenesisofMSWmaybelimitedtoadegreeby theavailabilityofsulphate. The inhibition of methanogenesis by sulphate reduction has been observed in a variety of environments. Raskin et al (1996) showed that in methanogenic bioreactors, prior to sulphate injectionthereactorcontainedupto25%methanogensand15%SRB,uponinjectionofsulphate theSBRpopulationsincreasedto30–40%.AsacetateconcentrationsdecreasesduetoSRB, the methanogenic populations decreased to approximately 8% and methane production decreased.50daysaftertheinitialsulphateinjectionmethanogensbegantoincreaseassulphate becameexhausted.SimilarfindingshavebeenshowninGurijalaandSuflita(1993). SRButilisearangeofsubstratesasshowninElferinket al.InsulphaterichenvironmentsSRB tendtooutcompetemethanogensforspecificsubstratessuchashydrogenandacetate,butdo notcompeteforsubstratessuchasmethanoltoanecologicallysignificantextent(Gurijalaand Suflita1993). HoweverinexperimentsthatwereconductedspecificallyonMSW,trendswerenotsoobvious. Fairweather and Barlaz (1998) have conducted researchto evaluate the effect of a number of sulphate sources on hydrogen sulphide production and on competition between methane productionandsulphatereductionduringrefusedecomposition.Testswereconductedinreactors thatcontainedacombinationofMSWanddecomposedrefuse(asseed)andvarioussulphate sources; digested polymertreated sludge, anaerobically digested lime stabilised sludge and gypsum wallboard (calcium sulphate). Results showed that the reactors with sulphate added (calciumsulphate)showedasignificantincreaseinhydrogensulphideasexpected,yetmethane productionwasconcurrentwithsulphatereduction.EventhoughSRBpopulationsincreasedby nearly 3 orders of magnitude, between 2.9 and 7 times organic carbon was consumed by methanogensthanbySRB.

Yoda et al (1987) conducted a series of experiments on anaerobic fluidised beds, varying the concentrationsofacetateandsulphateandfoundthat: • SRBdominatedthesupplyoforganicsubstratewhentherewasalimitedsupply,i.e.the growth rate of SRB activity was not limited by substrate, except when the substrate droppedbelow2mg/l.LovelyandKlug(1986)supportedthisfindingandfoundthatSRB only became dominant when acetate concentrations were lower than what is viable for methanogens. • The activity of SRB was limited when sulphate levels dropped below 45mg/l, however Lovely and Klug (1986) estimated SRB to thrive in sulphate concentrations as low as 3mg/l. InpersonalcommunicationswithDrDamienBatstoneoftheAdvancedWastewaterManagement Centre at the University of Queensland, personal experience showed that even with the establishmentofSRBcoloniespotentialmethaneyieldonlyreducedbyafactorintheorderof1– 2 % and was negligible in overall bioreactor performance compared to other environmental factors.ReducedmethanepotentialyieldcausedbyotherfactorssuchaspH,toxicity,availability ofsubstrate,oxygeningressetc.causeadeclineinvolumeofgasproduced.Whilstamethane carbondioxideratio’sof50:50willbemaintainedvolumeofthesegasesmaybegreatlyreduced andreplacedbyothergasessuchasnitrogen,oxygen,carbonmonoxide,etc. This said the amount of sulphate available to the system at Woodlawn is far greater than experienced in ‘normal’ circumstances, hence there is a possibility that due to the volume of sulphatereductiontakingplaceareductioninmethaneyieldmaybeevident.

D.A.Lazarevic Page24of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Figure 7.5: pH Vs Yield growth coefficient & specific growth rate Sulphate reducing bacteria has an optimum pH range of pH 5 – pH 9 (Prostgate, 1979 in Christensen, et al 1996),Reis(1992)givesareducedrange ofpH5.8–pH7withanoptimumgrowth rateofpH6.7asshowninfigure7.2. By maintaining a neutral or slightly alkaline pH around 7.5, methanogens growth is optimised whilst pH for SRB growth is higher than the optimal growth ranger. Sulphide reduction can be reduced and formation of H2S(aq) productionwillberetardedbykeepingthe sulphurinanaqueousstate,asthepHis shifted out of the optimum range for production of hydrosulphide ions and hydrogen sulphide, thus reducing hydrogensulphideproduction. Source:Reis,1992

D.A.Lazarevic Page25of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

7.3 SULPHUR OUTFLOWS 7.3.1 Gaseous Sulphur Reducedsulphurcompounds(RSC)aretraceelementsoflandfillgasthatoccurinlandfillsites withsulphateloads,theselandfillsitesaretypicallythosethatacceptconstructionanddemolition (C&D) waste. Substantial quantities of gypsum in the form of drywall/gyprock (CaSO4 .2HsO) provideareadilyavailablesourceofdissolvablesulphate,utilisedbytheSRB(Lee,etal2006). ThefollowingRSCintable7.3belowwouldbelikelytobefoundintheLFGatWoodlawnasa resultofsulphateinflowsduetoAMD. Table 7.3: Reduced Sulphur Compounds present in Landfill Gas RSC(REDUCEDSULPHURCOMPOUNDS) HydrogenSulphide Ethylmethylsulphide CarbonylSulphide Thiophene Methylmercaptan Methylisopropylsulphide Dimethylsulphide Dimethyldisulphide Ethylmercaptan 2Methylthiophene Carbondisulphide 3Methylthiophene Isopropylmercaptan sec-Butylmercaptan TertButylmercaptan Source: Lee, et al 2006. Ofthesegasses;hydrogensulphide(H2S),carbondisulphide(CS2),dimethylsulphide(CH3SCH3, DMS), methyl mercaptan (CH3SH) and dimethyl disulphide (CH3SSCH3, DMDS) are the most abundantinlandfillsituations(Shon,etal2005). HydrogensulphidehasbeenestablishedasthemostabundantSRCbyvolumeinthemajorityof landfillsites.ResearchconductedbyKimetal(2005)intoSRCinlandfillgasinKoreashowsthat hydrogen sulphide production is greater that other SRC by some orders of magnitude, some landfill sites show hydrogen sulphide levels of 539,600 (ppb) whilst other SRC such as methyl mercaptan, DMS, carbon disulphide and DMDS have values of 104, 84, 1370 and 7.30 (ppb) respectively. Hydrogensulphideisacolourless,poisonousandflammablegas.Itcanbedetectedbysmellat 0.01–0.3ppm,howeveratconcentrationsabove100ppmsenseofsmellisdeadenedwithina fewminutesanddeathcanoccurfrom500ppm. Woodlawn Table7.4belowshowasummaryofhydrogensulphidelevelsmeasuredfromtheHAASEflare, whenLFGiscombustedpriortocommissioningofthefirstLFGengine.Levelsof>100ppmare consideredtobedetrimentaltocombustioninfrastructureasaresultofacidgascorrosion. Table 7.4: Woodlawn LFG Analysis Date SamplePoint CH4(%) CO2(%) O2(%) N2(%) H2(%) H2S(ppm) 2006/10/18 HAASEFlare 47.8 39.5 0.1 12.6 0.0 35.5 2006/10/26 HAASEFlare 49.3 40.5 0.1 10.1 0.0 47.8 2006/11/01 HAASEFlare 17.8 34.4 0.2 47.7 0.0 120.0 2006/11/08 HAASEFlare 38.6 36.2 0.1 25.1 0.0 20.0 2006/11/15 HAASEFlare 43.7 51.5 0.7 4.1 0.0 16.3 Source: VES, 2006

D.A.Lazarevic Page26of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Operational Concerns of Hydrogen Sulphide Health and safety Increasedlevelsofhydrogensulphidecanbeanoccupationalhealthandsafetyrisk,especiallyin asitesuchasWoodlawnwherethereisanabundantsupplyofsulphatetobereduced.

Acuteexposureeffectsinclude;eye,nose,throat,lungandeyeirritationandhighconcentrations can cause serious health effects and death. Longerterm effects of hydrogen sulphide include; reducedlungfunction,neurologicaleffects(headaches,depression),cardiovasculardamage,eye andmucousmembraneirritation(AlbertaHumanResource&Employment,2005). Table 7.5: Health Effects from short-term exposure to hydrogen sulphide Concentration(ppm) HealthEffect 0.01–0.3 Odourthreshold 1–20 Offensiveodour,possiblenausea,tearingoftheeyesorheadacheswith prolongedexposure 20–50 Nose, throat and lung irritation; digestive upset and loss of appetite; senseofsmellstartstobecomefatigued;acuteconjunctivitismayoccur (pain,tearingandlightsensitivity) 100–200 Severenose,throatandlungirritation;abilitytosmellodourcompletely disappears 250–500 Pulmonaryoedema(buildupoffluidinthelungs) 500 Severe lung irritation, excitement, headache, dizziness, staggering, suddencollapse,unconsciousnessanddeathwithinafewhours,lossof memoryfortheperiodofexposure 500–1000 Respiratory paralysis, irregular heart beat, collapse and death without rescue >1000 Rapidcollapseanddeath Source: Alberta Human Resource & Employment, 2005. Acid gas corrosion of gas recovery system Acid gas corrosion arises from hydrogen sulphide reacting with gas recovery and power generation equipment and results in the formation of black iron sulphide scales, underdeposit corrosioncanoccurbeneaththelayersofscalesandmayresultindeep,isolatedandrandomly scattered pits in pipe work and power conversion infrastructure. Acid gas corrosion causes an increaseinmachinerydowntimeandincreasedmaintenanceandreplacementcosts. Increased SOx emissions from flaring and other combustion processes The combustion of fuels with high sulphur content can lead to flue gases with high levels of sulphur dioxides. The incomplete combustion of hydrogen sulphide forms SOx emissions, predominantlysulphurdioxide,whichalongwithnitrogenoxidesarethemainprecursorsofacid rain. Sulphur dioxide can readily form acid aerosols contributing to global warming and having serioushealthimplications.

D.A.Lazarevic Page27of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

7.3.2 Aqueous Sulphur 2 2 Sulphurpresentinleachateispredominantlyintheformofsulphate(SO4 ),sulphide(S ,HS ), 2 hydrogensulphide(H2S(aq))andtransitionallymayexistassulphite(SO3 ). Sulphate Sulphate present in Woodlawn bioreactor leachate is a direct result of AMD water runoff and affected groundwater entering the waste mass. Sulphate concentrations vary depending upon surface or ground water ingress and the location of water ingress. Rain events are directly responsibleforelevatedpeaksofsulphateinflowsduetolocalisedincreaseinmineraloxidisation andweathering. Table 7.6: Source vs. Sulphate concentrations 2006/11/10 Location Parameter Units Bioreactor Groundwater Water Runoff Leachate–LE7 –LMB5 –SW01 pH pHUnits 5.4 3.5 2.8 SpecificConductance uS/cm 36000 10900 16000 OxidationReductionPotential mV 155 168 286 Sulphate mg/l 2600 9300 17000 Sulphide mg/l 1.0 Source: VES, 2006 Asseenintable7.6aboveconcentrationsvarygreatlydependingonsource.Themostpureform ofAMDisfromthewaterrunoff,heresulphateconcentrationsareextremelyhighandpHverylow duetothesulphidicrockoxidisingwithrunoffwater.Astherunoffwaterpeculatesthroughtothe water table characteristics remain similar, groundwater concentrations of sulphate may drop howeverthismaybeduetodilutionwithinthewatertable.Uponenteringthebioreactor,sulphate concentrationsdropdramaticallyasthesulphateactsasasubstrateforSRBalongwithvarious organic matter,mainly in theform of volatile fatty acids including acetic, butyric and propanoic acids and their respective derivatives. The sulphate is consumed according to reactions 6.7 – 6.10. Sulphide

SulphidethatisproducedasaresultofSRBmaybepresentinvariousforms,includingH2S(aq), HS andS2 .TheformofsulphidepresentisdependentuponleachatepH,H2S(aq)ispredominate frompH1–5,HS ispredominateinpHrangeof6–9.5andS2 isthemajorspeciesabovepH 10(VES,2006). Whilst sulphate reduction is inevitable, environmental conditions can be manipulated to reduce the negative effects of hydrogen sulphide production (see section 7.3.1). Sulphate reduction becomesamajorproblemwhenthereducedsulphurformsashydrogensulphide. ByraisingthepHofleachatetheformationofhydrosulphideionsisfavouredreducingtheamount ofsulphurenteringthegaseousstate. 2 CH3COOH+SO4 HCO3 +HS +CO2+H2O (moderate to high pH) (7.11) (acetic acid + sulphate  hydrogen carbonate ion + hydrosulphide anion + carbon dioxide + water) InFigure7.2,hydrosulphideconcentrationisplottedagainstpH,aspHincreaseshydrosulphide concentrationincreases,thuslimitingtheamountofsulphuravailableforconversiontoH2S(aq).

D.A.Lazarevic Page28of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Figure 7.2: Hydrosulphide vs pH

[HS-] vs pH

10000

1000

100

10

1 1 2 3 3.44 4 5 6 6.89 7 8 9 9.5 [HS] 0.1 [HS-] - g/L - [HS-] 0.01

0.001

0.0001

0.00001 pH Source:VES,2006 When pH is raised to even higher pH >8 sulphide (S2 ) becomes the predominate form of aqueoussulphur. Figure 7.3: Sulphide vs pH

[S2-] vs pH

1000

100

10

1 7 8 9 9.5 10 11 12 13 14 0.1 [S2]

[S2-] - g/L - [S2-] 0.01

0.001

0.0001

0.00001 pH Source:VES,2006 AtlowerpHtheformationofhydrogensulphideasagasisfavoured: 2 CH3COOH+SO4 2HCO3 +H2S(g) (moderate to low pH) (7.12) (acetic acid + sulphate  hydrogen carbonate ion + hydrogen sulphide) Figure7.4showstheriseinhydrogensulphideconcentrationaspHdecreases.

D.A.Lazarevic Page29of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Figure 7.4: Hydrogen Sulphide vs pH

[H2S] vs pH

4.000

3.500

3.000 [H2S]20oC 2.500 [H2S]25oC [H2S]30oC 2.000 [H2S]35oC

[H2S] - g/L - [H2S] 1.500 [H2S]40oC [H2S]45oC 1.000

0.500

0.000 1 2 33.44 4 5 6 7 pH Source:VES,2006 Bothoftheseprocessesarealkalinegenerating(acidconsuming)process,throughtheformation of hydrogen carbonate ions. Hydrogen sulphide will be the predominantly reduced sulphur speciesinsolutionswithpHlevelsbelowapproximately7.0.Hydrosulphide(HS)ionswillbethe predominantly reduced sulphur species in solution with pH levels above or near neutral. The relationshipbetweenthesespeciesisshowninreaction7.3below. + H2S(aqueous)↔HS (aqueous)+H (aqueous) (7.13) (hydrogen sulphide  hydrosulphide anion + hydrogen cation/proton) Hydrogen sulphide exists in equilibrium between soluble and gaseous hydrogen sulphide, the hydrosulphideanionsandprotonsvolatilisetoproducehydrogensulphidegas.

H2S(aqueous)↔H2S(gas) (7.14) SulphideconcentrationinWoodlawnleachatearetypicallylow,thissuggestthattwoprocessare occurring: 1) Environmental conditions are conducive to producing hydrogen sulphide gas rather than hydrosulphide ions. This is supported by high LFG hydrogen sulphide concentrations and low sulphideconcentrations. 2) The hydrosulphide ions that are present are being precipitated as metal sulphides, due the abundanceofmetalionsfromwaterinflows. SulphideconcentrateswithintheWoodlawnbioreactorarerelativelylow,Yodaetal(1987)found that sulphide concentrations up to 80mg/l did not inhibit methanogenic activity. This differs to Khan and Trottier (1978) (in Yoda, 1987) who found that various sulphur compounds have an inhibitoryeffectonthedegradationofcelluloseandtheinhibitiononmethanogens.Theyfound 2 thefollowingrelationshipbetweensulphurcompoundsandincreasingtoxicity,S2O3<SO3 <S < 2 H S.Theyalsofoundthatconcentrationsaslowas60mg/lofH2Sinhibitedmethanogenesis. A possible reason for this contention could be do to the fact that Yoda used acetate as a substrate as opposed to starch, acetogenesis may have been affected by sulphide, not methanogenicactivity.Ineithercaselevelsofsulphidearewellbelowthelevelsgivenabovefor methaneinhibition.

D.A.Lazarevic Page30of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

7.3.3 Solid Sulphur Theabundanceofsolublemetalionsfromwaterrunoffandgroundwaterinfiltrationprovideakey factorinthecaptureofsulphurwithinthebioreactorpreventingexcesshydrogensulphidefrom being formed. In anaerobic conditions the precipitation of metal sulphides by the reduction of hydrogensulphidefollowsthefollowingequation. 2+ + Me +H2S(aq)MeS(s)+2H (7.15) (metal iron + hydrogen sulphide  iron mono-sulphide + protons) Metal ions react with hydrogen sulphide to form various metal sulphide precipitates. These precipitatescapturethesulphurinasolidstatewithinthewastemass.Bothferricandferrousions reactwithhydrogensulphidetoproduceironsulphideandacid. 2+ + Fe +H2S(aq)FeS+2H (7.16) (ferrous iron + hydrogen sulphide  iron(II) sulphide + protons) 3+ + Fe +2H2S(aq)FeS2+2H +H2 (7.17) (ferric iron + hydrogen sulphide  pyrite + protons + hydrogen) Totalmetalconcentrationsofzinc,leadandcopperarefoundinabundanceintheAMDentering the bioreactor void due to the oxidisation of the minerals sphalerite, galena and cuprite. Upon interactionwithhydrogensulphideprecipitationofthesemetalsinthefollowformscantakeplace. 2+ + Zn +H2S(aq)ZnS+2H (7.18) (zinc ion + hydrogen sulphide  zinc sulphide + protons) 2+ + Pb +H2S(aq)PbS+2H (7.19) (lead ion + hydrogen sulphide  lead sulphide + protons) 2+ + Cu +H2S(aq)CuS+2H (7.20) (copper ion + hydrogen sulphide  copper sulphide + protons) The ability of metals to precipitate in various forms is dependent upon a number of functions including,solubilityproductconstants(Ksp),pH,metalconcentrations,presenceandinteractions between various compounds and species. However due to the nature of waste and the vast number of unknown reactions taking place there are many different factors effecting metal precipitation. Table 7.7: Metal Sulphide Solubility Products K pK (logK ) Compound Formula sp sp sp Copper(II)Sulphide CuS 6x1037 Iron(II)Sulphide FeS 6x1019 Lead(II)Sulphide PbS 3x1029 ZincSulphide ZnS 2x1025 Source:UniversityofRhodeIsland,NoDate. Table7.7givesthevarioussolubilityproducts(Ksp)forvariouskeymetalsfoundinabundanceat Woodlawn,theKspisanequilibriumconstantthatequalstheproductconcentrationofsolubleions atequilibrium.CompoundswithlowerKspvalueswilloftenbepreferentiallyprecipitated(although thisisnotastrongrule).Ofthecompoundsintable7.7,Coppersulphideistheleastsoluble,then lead sulphide, zinc sulphide and finally iron sulphide, however all of these metal sulphides are veryinsoluble. It should also be noted that iron sulphide can also form pyrite (FeS2), a complex of a neutral sulphur atom and FeS,which is less soluble, but slower forming thanzinc sulphide (Batstone, 2007).

D.A.Lazarevic Page31of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

8 PERIODIC WASTE COVER AND IN-SITU HYDROGEN SULPHIDE CONTROL

8.1 ENVIRONMENTAL PROTECTION AUTHORITY REQUIREMENT FOR ALTERNATIVE DAILY COVER TRIAL The NSW EPA in their publication ‘Environmental Guideline: Solid Waste Landfills’ states that ‘Dailysoilcovershouldbeappliedtoaminimumdepthof15centimetresoverwastes.Allwaste shouldbecoveredpriortoceasingoperationsattheendofeachday’(EPANSW,1996). However, the placement of typical daily cover (excavated material) in bioreactors is non conducive to optimal bioreactor performance and optimal daily operation. The placement of a daily 15cm cover (EPA, 2004) not only incurs time and material costs but also inhibits the recirculation of leachate and hinders LFG extraction, both vital processes in bioreactor operations. The use of an alternative daily cover (ADC) is encouraged as a part of the Environmental Protection Licence (#11436) and the Conditions of Consent set below, as established by the EnvironmentalProtectionAuthority: 8(b)takeallpracticablemeasuretooperatethelandfillasabioreactortoensurethemaximum extentpracticable,thebiologicalconditionsofallorganicwasteandproductivecaptureof methane. 37. Cover material must be virgin excavated natural material, unless otherwise approved in writingbytheEPA. Note:Theapplicantisencouragedtoidentifyalternativedailycovermaterialsandexaminethe feasibility of adopting such materials as to minimise impacts of utilising virgin natural excavatedmaterial. 38. Cover material must be of a quality that will not inhibit the biological decomposition of excavatedwaste.(EPA,ConditionsofConsent) Requirements for ADC are also covered/replicated in the Woodlawn Environmental Protection Licence(#11436). FortheuseofalternativecoverstheEPArequiresthelicenseetoprovidescientificevidencethat demonstrates that these products can ‘beneficially influence landfill leachate and gas quality whenusedasdailycover’(EPA,2004). Theuseofironrichproductsinthemitigationhydrogensulphidegaswasidentifiedinlate2005in various consultants reports to VES. It was stated that among other strategies, such as the removalofwasterockwithhighsulphatepotentialanddiversionofsurfacewaterrunoff,thatthe availability of excess soluble iron is needed to maintain soluble iron at high enough concentrationstoenabletheprecipitationofmetalsulphides.

D.A.Lazarevic Page32of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Theuseofironrichmaterialstoactasadailycoverforwastewouldworkintwoways;tofulfilthe roleofadailycoverandtoaidtheinsitucaptureofsulphurpreventingtheformationofexcess hydrogensulphidegasasoutlinedinsection6.3.3. The relationships between iron rich ADC’s and the requirements of a daily cover material are outlinedbelow: 1. Limiting run-off and infiltration of water The nature of bioreactors purport that leachate recirculation is extremely important in the accelerationofwastedegradation.Theuseofironrichproductsallowsforleachaterecirculation tobecarriedoutmoreeffectively,leachatecanbesurfacespreadwithouttheneedoftraditional dailycoverremoval.Thereisnoneedtokeeprainfalloutofthewasteasitbeneficialacquiring optimalleachatevolumes. 2. Controlling and minimising risk of fire The products selected for testing as ADC are noncombustible. AdditionallyWoodlawn has an EmergencyResponsePlanthatcoversfirefightingwithinthevoid.Theconstantrecirculationof leachate maintains high moisture within the waste mass and combined with waste compaction theseeffortsreducetheriskoffire. 3. Minimising emission of landfill gas BioreactorgasextractionsystemsaredesignedtoremovetheLGFproducedwithinthewaste.It isexpectedthatgasemissionswillbemanagedasaresultoftheneedtooptimisegasextraction as a part of the bioreactor operations. This differs to traditional landfills where the lack of a negativepressuregasextractionsystemallowsLFGtobereleasedintotheatmosphere. 4. Suppressing site odour While the ADC will not control the fresh waste odours it is expected that the bioreactor gas extractionsystemwillassistinreducingbuildupofodourswithinthevoid.Alsothelocationofthe bioreactormeansthatodourissuesfromthevoidwillhaveanegligibleimpactonlocalresidents. 5. Reducing fly propagation and rodent attraction and Chemical spraying and baiting for flies is undertaken regularly on the emplaced waste. The compactorisfittedwithasprayunitsothatwastecanbesprayedpriortodailycoverapplication. A rat baiting program is in operation with a significant reduction in numbers being recorded (measuredbyamountofbaitstobereplaced)sinceJanuary2006(VES,2006).

D.A.Lazarevic Page33of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

8.2 ALTERNATIVE COVER MATERIALS TO BE INVESTIGATED Four materials were tested for use as Alternative Daily Cover materials at the Woodlawn Bioreactor. The material selection criteria were based upon iron content of the material, availability, location, various particle sizes and appropriate waste products that could be used. Thefollowingproductswereselectedfortestingasalternativedailycovermaterials,materialdata sheetsareavailableinAppendixA. Haematite,whichhasbeenintermittentlyaddedtothewastesurface,wasselectedasasoluble sourceofironduetoitshighironcontentanditsabundance.Howeverthismaterialissourced fromWesternAustralia,thereforematerialpriceincreasesandenvironmentalimpactsassociated with the transportation of the material. Other materials selected for testing were selected with materialsourceinmind,andallmaterialsweresourcedclosetotheWoodlawnregion. Magnetiteisamaterialverysimilartohematiteandisexpectedtobehaveinrelativelythesame way.ThesourceofthismaterialisveryclosetotheWoodlawnareaandcostsignificantlylower than hematite. The addition of either hematite or magnetite does not incur the ‘landfill levy’ a governmentaltaximposedby weightupontheamountofwastematerialsdepositedinlandfills andbioreactors. FerrichydroxideandtheMultiServiceBaghouseDustarebothwastematerialsfromindustrial process,intermsof‘industrialecology’theyareabetteroption,becausetheyaresourceofwaste notminedmaterials.Howeverbecausethesematerialsarewastematerialstheyincurthe‘landfill levy’,ataxthathematiteandmagnetitearenotsubjectto. Table8.1belowoutlinesthematerialsourcelocations,ironcontentandparticlesize. Table 8.1: Alternative Daily Cover Material Material MaterialSource IronContent(max ParticleSize %) CommerciallyAvailableProducts HaematiteFerrousOxide WesternAustralia 95 20microns MagnetiteFerricOxide Yass(NSW) 69.5 53microns IndustrialWasteProducts Drinking Water Treatment Waste KemblaGrange(NSW) 110g/kg 0.5–2mm ProductFerricHydroxide Illawarra Resource Recovery – PortKembla(NSW) 61.7 Unknown MultiServiceBaghouseDust Source: Own

D.A.Lazarevic Page34of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Haematite - Ferrous Oxide Material Haematite is a very common mineral and used as a primaryoreiniron/steelproduction.Itisminedasparts of banded iron formations (grey hematite) or as clay sized hematite crystals that occur as a secondary mineral from the weathering of soil, iron oxides and oxyhydroxides. The red colour of this form allows it to beusedasapigment. Supplier:Unimin MaterialSource:WesternAustralia Predominate reactions Asummaryofthepredominatereactionsthatareexpectedtotakeplacearesummarisedbelow. 2+ + Fe +H2SFeS+2H (7.16) (ferrous iron + hydrogen sulphide  iron mono-sulphide + protons) Magnetite - Ferric Oxide Material Magnetiteisearthsmostabundantmagneticore,hence itsname.Itisusedasanoreintheproductionofiron and steel and can be found in banded formations in sedimentaryrocks,andinsands.Theoxidisedproduct ofmagnetiteishematite. Supplier:Unimin MaterialSource:Gulgong,NewSouthWales Predominate reactions 3+ + Fe +2H2SFeS2+2H +H2 (7.17) (ferric iron + hydrogen sulphide  pyrite + protons + hydrogen)

D.A.Lazarevic Page35of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Drinking Water Treatment Waste Product - Ferric Hydroxide Material The material is the function of two key chemical processed used in drinking water treatment, calcium hydroxide (lime) is added to adjust water pH and increase hardness, calcium concentrations are subsequently lowered by sparging with carbon dioxide.Calciumcarbonate(limestone)isprecipitated asaresultofthisprocess.Ferricchlorideisusedin water treatment for clarification, upon contact with waterferrichydroxideisformed,absorbingparticulate matter and flocculating out of the water column. (SydneyWater,Nodate).Theferrichydroxidesludge is then moved to drying beds where the ferric hydroxidegranulesform. Supplier:VeoliaWater MaterialSource:KemblaGrange,NSW Predominate reactions

Fe(OH)3+H2SFeS+2.5H2O+0.25O2 (8.1) (ferric hydroxide) +(hydrogen sulphide) (ferrous mono-sulphide) + (water) + (oxygen) Fe(OH)3+2H2SFeS2+3H2O+0.25H2 (8.2) (ferric hydroxide) +(hydrogen sulphide) (pyrite) + (water) + (hydrogen) Illawarra - Multi Service Baghouse Dust Material Illawarra Resource Recovery is company involved in the recovery and recycling of productsfrom the Port Kemblasteelworksregion.PortKemblaislocatedin the Illawarra, one of Australia’s largest and oldest steel works, processes taking place at Port Kembla includeironmaking,steelmaking,continuouscasting, hot rolling and further steel processing. Illawarra Resource Recovery is involved in the recovery of steelwastesfromthevariousprocessesandproducts include, roll shop swarfs, mill sludges, baghouse dusts and casters cakes. These materials are then marketed for recycling in the steel works or other industrialapplications. Supplier:IllawarraResourceRecovery MaterialSource:PortKembla,NSW Predominate reactions Duetothenatureofthismaterialbeingawasteitcontainsvariousmetals,whistpredominantly iron (61%) the waste contains zinc, lead, nickel, fluoride and other trace heavy metals. The reactions taking place would follow those of equation 7.1 with each metal forming a metal sulphideprecipitatedependingontheirvarioussolubilityproductconstants(Ksp)andbioreactor conditions,pH,redoxpotentialetc. 2+ + Me +H2S(aq)MeS(s)+2H (7.15) (metal ion + hydrogen sulphide  iron mono-sulphide + protons)

D.A.Lazarevic Page36of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

9 BIOREACTOR TEST COLUMNS

9.1 AIMS & OBJECTIVES Laboratorysizedbioreactorswereestablishedtotesttheabilityofvariousalternativedailycover materialstoprecipitatemetalsulphides,thusremovinginsitu,hydrogensulphidegas,negating theneedforcostlyhydrogensulphidescrubbingpriortogascombustion. The study assessed the ability of four various alternative daily cover materials to reduce concentrationsofhydrogensulphidelandfillgasby,precipitatingironsulphide’s.AlternativeDaily Covers tested were 1) Haematite 2) Magnetite 3) Ferric Hydroxide 4) Steel industry waste baghousedust. 9.2 BIOREACTOR DESIGN Aseriesoftestbioreactorswereconstructedforthepurposesofthisexperiment.Thebioreactors were constructed from 600mm diameter x 1800mm high HDPE reinforce corrugated pipe, the baseofthecolumnsconsistedofa10mmweldedHDPEplateandthecolumnsweresealedwith adoubleOringlidlockingmechanism. Aleachateextractionportwasplacedatthebaseofthecolumn,inordertodrainandrecirculate leachate.Aportatthetopofthecolumnwithavalveconnectiontoa2000mlmeasuringcylinder was used in the recirculation of bioreactor leachate. A gas extraction valve was located approximately1300mmfromthebaseofthecolumnthatallowedLFGventingandtesting. Figure 9.1: Test Bioreactor Design

Source:Own D.A.Lazarevic Page37of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

9.3 METHODOLOGY Laboratory scale bioreactors were used to simulate the degradation process of MSW. The experiment included 6 columns to simulate theeffects various alternative daily cover materials andsulphatelevelsonbioreactorperformance,methaneandhydrogensulphideproduction. Two sulphate loads were introduced to bioreactors 2 – 6, an initial sulphate point load and a continuoussulphateloadforaperiodof4weeks.Twosulphateloadswheretestedtoobtainany variationsinbothgasandleachateparametersofthesetwodifferentscenarios. • Column 1 - Control Control used to generate a baseline reading of landfill gas production, landfill gas and leachatecomposition. • NoADC(AlternativeDailyCover) • Column 2 – No ADC Column2wasusedsimulatetheabilityofwastetobufferAMDinfluencedleachate. • NoADC • Point Sulphate LoadDay1053190mlofAMDfromtheWoodlawnwithsulphate concentrations20000mg/Lwasaddedtotheapproximate10Lofexistingleachateto givetheAMD/leachatemixa5004mg/l(calculatedvalue)sulphateconcentration. • Continuous Sulphate Load–Day138 • Column 3 - Haematite Column3containedHaematite(Fe2O3)asanADCmaterial. • Haematite(Fe2O3)asADC • Point Sulphate LoadDay1052980mlofAMDfromtheWoodlawnwithsulphate concentrations20000mg/Lwasaddedtotheapproximate10Lofexistingleachateto givetheAMD/leachatemixa5008mg/l(calculatedvalue)sulphateconcentration. • Continuous Sulphate Load–Day138 • Column 4 – Magnetite Column4containedMagnetite(Fe3O4)asanADCmaterial. • Magnetite(Fe3O4)asADC • Point Sulphate LoadDay1052920mlofAMDfromtheWoodlawnwithsulphate concentrations20000mg/Lwasaddedtotheapproximate10Lofexistingleachateto givetheAMD/leachatemixa5008mg/l(calculatedvalue)sulphateconcentration. • Continuous Sulphate Load–Day138 • Column 5 – Ferric Hydroxide Column5containedDrinkingWaterTreatmentbyproduct–ferrichydroxide(FeOH3)as anADCmaterial.

• DrinkingWaterTreatmentbyproduct(FeOH3)asADC • Point Sulphate LoadDay723290mlofAMDfromtheWoodlawnwithsulphate concentrations20000mg/Lwasaddedtotheapproximate10Lofexistingleachateto givetheAMD/leachatemixa5007mg/l(calculatedvalue)sulphateconcentration. • Continuous Sulphate Load–Day105 • Column 6 – Steel Works Waste Column 6 contained Illawarra Resource Recovery – MultiService Baghouse Dust as an ADCmaterial. • IllawarraResourceRecovery–MultiServiceBaghouseDustasADC • Point Sulphate LoadDay722910mlofAMDfromtheWoodlawnwithsulphate concentrations20000mg/Lwasaddedtotheapproximate10Lofexistingleachateto givetheAMD/leachatemixa5007mg/l(calculatedvalue)sulphateconcentration. • Continuous Sulphate Load–Day105 D.A.Lazarevic Page38of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

9.4 BIOREACTOR COMPOSITION A 200mm deep gravel drainage layer at the base of the bioreactor allowed for easy leachate drainageandpreventedanywastefrombecomingsaturated.120kgofMSWwasusedineach column,two10kglayersofADCwasplacedatapproximately460mmintervals,onelayerinthe middleofthewasteandacappinglayer.Finallya50mmlayerofgravelwasplacedonthetopof theADCandwaste. Table 9.1: Test Bioreactor Compositions Material Height Volume Density B1 B2 B3 B4 B5 B6 (m) (m3) (t/m3) AirGap 0.55 0.156 Gravel/SandTop 0.05 0.014 1.59 0.014 0.014 0.014 0.014 0.014 0.014 Haematite 0.01 0.006 5.205 20kg Magnetite 0.01 0.006 5.046 20kg Waste Water by 0.01 0.006 20kg product IRRWaste 0.01 0.006 20kg MSW 0.91 0.258 0.39 120kg 120kg 120kg 120kg 120kg 120kg Gravel(m3) 0.2 0.057 1.59 0.057 0.057 0.057 0.057 0.057 0.057 Source: Own Figure 9.2: Test Bioreactor Composition

AirGap

GravelLayer ADC

MSW

ADC

MSW

GravelLayer

Source:Own

D.A.Lazarevic Page39of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

9.5 MUNICIPAL SOLID WASTE A typical sample of MSW was sourced from the Woodlawn Bioreactor, utilising waste from a transportcontainer.Wastewasreconstitutedforeachcolumntobeascloseaspossibletothe compositionasoutlinedbythe‘NorthernSydneyWastePlanningandManagementBoard’,table 9.2. Table 9.2: Average Waste Composition Sydney WasteCategory Description PercentageofTotal RapidlyDegradable Food/KitchenWaste 29.6 Garden/GreenWaste 26.6 SlowlyDegradable Paper/Cardboard 15.6 Other 3.2 InertorHardlyDegradable Glass 5.2 Plastic 1.2 FerrousMetal 0.2 NonferrousMetal 0.5 Nonrecyclablematerial 17.9 TotalDomesticWaste 100 Source: Northern Sydney Waste Planning and Management Board Regional Waste Reference Guide However,duetothedifficultiesassociatedwithhandling,sortingandplacingtheMSWthewaste category proportions could only be approximately matched. Freshfood wastes sourced from a localsupermarket(primarilypotatoes)wereusedtomakeupthefreshfoodwastefraction.Grass clippingsanddryleafmatterwasusedtomakeupthegarden/vegetationwastefraction.Waste office paper was used to bringthe paper/cardboardfraction closerto the North SydneyWaste Planningwastefractionpercentage.Table9.3representstheactualwastecompositionusedin eachbioreactor. Table 9.3: Waste Composition in Test Columns WasteCategory Columns1–6(Kg) Columns1–6(%) Food/KitchenWaste 36 30% GrassClippings/LeafMatter 32 27% Paper/Cardboard 20 17% Glass 6 5% Plastic 2 2% Textile 2 2% Metal 3 3% AluminiumCans 1 1% Nonrecyclablematerial 18 15% 120Kg 100% Source: Own

D.A.Lazarevic Page40of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

9.6 MONITORING LFG Sampling Gassampleswerecollectedin3LTetlargassamplebagsandanalysedbyDrDavidStoneof ANSTO(AustralianNuclearScienceandTechnologyOrganisation)by‘GasChromatographywith Thermal Conductivity’ (GCTCD) analysis. GCTCD was used to determine bioreactor gas composition for methane (CH4), carbon dioxide (CO2), oxygen (O2), hydrogen sulphide (H2S), nitrogen(N2)andhydrogen(H2). Gas samples analysed fortnightly after month 1. Some issues arose during the course of the experimentswiththeGCTCDequipment,andduringthelast8weeksoftheexperimentsample wereonlysentwhentheequipmentwasavailableforuse. Hydrogensulphidewasmeasuredonsiteusing‘Drägertubeanalysis’.1litreofeachgassample waspassedthroughareactivetubemeasuringhydrogensulphideinrangesof0.5–15ppmand 5–600ppm.Usingthistypeofanalysisreducedthepossibilityforhydrogensulphidetooxidise withanyairpresentinthegassample,givingincreasedaccuracy.Drägertubeanalysishasan accuracyof±10%. DailygassamplesweretakenwithaGeotechnicalInstrumentsGA2000–anIndustryStandard LandfillGasmonitor,methane(CH4),carbondioxide(CO2),oxygen(O2),carbonmonoxide(CO) andaremaindergasbalancewassampledwiththismonitoringdevice. Leachate Sampling Leachate samples were analysed by Ecowise Environmental Laboratories, a NATA (National Association of Testing Authorities) certified laboratory, for pH, specific conductance, sulphate, sulphide,totalirontotallead,totalcopper,totalzinc,BODandCOD,ammoniaandvolatilefatty acids (VFA). These are the same laboratories that conduct all environmental compliance and licencemonitoringfortheWoodlawnBioreactorsite. Leachatesamplesanalysedfortnightlyaftermonth1andthenweeklyuponsulphateinjection. The lack of laboratory equipment on site meant that only a limited amount of testing could be conducted on site. On site testing was conducted every alternate day for pH, specific conductance, dissolved oxygen, and oxidisation/reduction potential. A Hydrolab Water Quality MonitoringSystemwasusedtorecorddailyvariationsinpHandredoxpotentialtomonitorthe degradation of waste within the test columns. The field samples were used as an indicator to tracktheprogressionofbiodegradationofthewasteagainstthetypicalstagesofbiodegradation.

D.A.Lazarevic Page41of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

10 RESULTS AND DISCUSSIONS

As stated is section 9.6, two separate sets of data were recorded whilst conducting this experiment, field data was recorded with the above mentioned equipment immediately after samplesweretaken.GassamplestestedbyDrDavidStoneofANSTOandweretestedwithin2 5daysofsampling.Leachatesamplestakenonsiteweretestedimmediatelyafterthesample wastaken,samplestestedbyEcowisewererefrigeratedto4°Candresultswereobtainedwithin 7daysofthesamplesbeingsent.Generallythetwosetsofresultscorrespondwitheachother howeverthefollowingfactorscouldcontributetosomedeviationinresults: • Duration before sampling: testing immediately after sampling reduces the possibility of variouscomponentsreactingwithoneanotherandhencechangingthechemistryofthe samplefromwhenitwassampled. • Accuracyofequipment:equipmentusedintheanalyticalanalysisofsamplestakenwillbe ofahigheraccuracyduetothequalityofequipmentbeingutilised.Whilstfieldequipment wasofhighqualityandregularlycalibrated,itcannotproducetheaccuracyoflaboratory equipment. By utilising two different methods of testing samples trends within data can be supported and inconsistenciesindatacanbemoreeasilyidentified. 10.1 LANDFILL GAS COMPOSITION Typical LFG composition ThevariouscomponentsofLFGareaproductoftheresultantgassesformedduringthe5stages of waste biodegradation. Figure 10.1 (Christensen and Kjeldsen, 1989) illustrates typical LFG compositionasafunctionoftime. Figure 10.1: Typical LFG Composition by Volume 100 CO2 N2 80 N2 CH4 60 40 O2 H2 O2 20 Source:Christensen&Kjeldsen,1989. Duringthehydrolysis/aerobicdegradationstage,oxygenisrapidlyconsumedbyaerobicmicro organismsdepletingoxygen,thuscreatinganaerobicconditions.Carbondioxideconcentrations increase as a result of the breakdown of organic matter into simpler hydrocarbons. The breakdown of carbohydrates, proteins and lipids into organic acids in the hydrolysis and fermentationstagesresultsintheproductionofcarbondioxideandhydrogen.Theinertnitrogen fromairinitiallyinthebioreactorisalsoexpelledfromthewastemasswiththegassesproduced duringbiodegradation,thusreducingnitrogenconcentrations.Duringacetogenesis,methanogens initially produce methane from the available carbon dioxide and hydrogen, hence methane concentrationsstarttoincreaseandcarbondioxideandhydrogendegreaseuntilallhydrogenis consumed. Methanogenesis is characterised by the increase in LFG volume and production of methaneandcarbondioxideatanapproximateratioof60:40methanetocarbondioxide. D.A.Lazarevic Page42of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

General Comments SomegeneralcommentscanbemadeinregardtoLFGcompositionalchanges,whichoccurred inallbioreactors.Therapidchangesinmethaneanddecreaseincarbondioxideconcentrations experiencedfromday9498,day115125andday147–150occurredduetorecalibrationof equipment used in the field analysis of the LFG. The same LFG compositional changes are evident throughout all the bioreactors. This factor does not change the validity of the data recordedbecauseatday98,125and150theresultstakenweretruereadings,whatthisdoes mean though is that the rate ofgas compositional change is somewhat more pronounced that wouldhaveotherwiseoccurred. Difference in hydrogen sulphide concentration between GCTCD and Dräger analysis differed considerablyinsomecases.ProblemswithGCTCDequipmentwithinthelast2monthsofthe experimentmeantthatsampleswerestoredforaperiodofupto2monthsbeforetheycouldbe tested.Duringthistime,leaksoccurredwithininthesamplebagsandtheoxidationofhydrogen sulphide may have occurred. Due to this fact Dräger results were used for hydrogen sulphide analysis. Bioreactor 1 (Control) Bothgraphsbelowshowthetypicalprogressionthroughthebiodegradationstagesinregardto LFGcomposition.Withintheinitial13weeksofbiodegradationalloxygenwasconsumedand within a short period after, all nitrogen had been purged from the bioreactor. Hydrogen levels remained below 0.1% throughoutthe initial fermentation and acetogenesis stages, this is most likelyduetotheimmediatereductionofhydrogenandcarbondioxidebymethanogenstoproduce methane. Both graphs also show that methane was produced almost immediately after the depletionofoxygen.Biodegradationprogressedextremelyquicklyinthisbioreactorandwithina periodof30–40daysmethanogenesishadbecomewellestablished,thiscouldbeduetothe factthatthewastepriortotheexperimentcommencementmayhavebeendegradedtoagreater extent to that used in the other bioreactors. Methane and carbon dioxide concentrations had reached50–50%atday35. Methaneandcarbondioxideconcentrationsshowedstableprogressionfrombetween50–60% and35–45%respectivelyafterday50. After an initial peak of 20 ppm hydrogen sulphide within the first 18 days of commencement, hydrogen sulphide concentrations were measured at a stable 4 – 5 ppm, during sulphate concentrationsfrom5–340mg/l.5ppmcanthereforebeinterpretedasabackgroundrateof hydrogensulphideproductionforthisselectionofMSWduringmethanogenesis. Data Discrepancies Thegreatestdiscrepancywithinthedataisthebalanceofgaswithintheperiodofday47–83, field data shows that the balance of gas remained at 0% throughout this period where as analyticaldatashowedthebalanceofgasmeasuredasnitrogenreachedamaximumof16.73% at day 63. This could be the result of a number of factors including an 1) air leak within the columnallowingairtoingressintothebioreactors,2)anairleakwithinthegassamplebagor3) the reaction of gasses within the samples bags during the time from sampling to testing. The second two hypothesis seem to be supported by both sets of data as the field data shows no increase in oxygen or balance gases and the increase in balance gases in the analytical data correspondstoaproportionalinverserelationshipwithmethaneandcarbondioxide.

D.A.Lazarevic Page43of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Figure 10.2: Bioreactor 1 – LFG Composition Analysis (GC – TCD)

BIOREACTOR 1 - LFG COMPOSION ANALYSIS (GC-TCD)

100 22 21 90 20 19 18 80 17 16 70 15 14 Methane 60 13 CarbonDioxide 12 50 11 Oxygen 10 Nitrogen Hydrogen 40 9 8 HydrogenSulphide

7 Hydrogen Sulphide (PPM) 30 6 CH4, CH4, CO2, O2,H2, N2 (% Volume) 5 20 4 3 10 2 1 0 0

0 19 33 47 68 83 96 5 116 12 151 173 Time (Days) Figure 10.3: Bioreactor 1 – LFG Composition Analysis (IR & Dräger)

BIOREACTOR 1 - LFG COMPOSITION ANALYSIS (IR & DRÄGER)

100 25

90

80 20

70

60 15 Methane(CH4) CarbonDioxide(CO2) 50 Oxygen(O2) Balance(Nitogen/Hydroen/other) H2S (ppm) 40 10 HydrogenSulphide(H2S)

30 CH4,CO2, O2, Bal. (% Volume)

20 5

10

0 0

0 10 17 24 31 41 52 69 93 3 105 129 139 147 159 17 Time (Days)

D.A.Lazarevic Page44of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Bioreactor 2 (NO ADC) Pre-sulphate addition Bioreactor2showedsimilarLFGdevelopmenttobioreactor1withareductionofbothoxygenand nitrogenconcentrationsto0.04%withina3weekperiod.Hydrogenconcentrationsoflessthan 0.1%throughoutfermentationandacetogenesiswereexperiencedandearlymethaneproduction waspresentinbioreactor2.Theproliferationofmethanogeniccolonieswerelatertodevelopin bioreactor2andanequalconcentrationof50–50%methanetocarbondioxidewasreachedat day52. Point Sulphate Load Atday105aloadof3.190litresofAMDfromWoodlawn(surfacewaterrunoff)withasulphate concentration of 20000 mg/l was added to the existing 10.0 litres of leachate with a 220 mg/l concentration to give a total leachate concentration of 5004 mg/l (see appendix D for calculations). Subsequentgassamplestakenafterthispointloadofsulphateshowedaverynegligiblerisein theconcentrationofhydrogensulphidegasreachingamaximumof9ppm. Whilstsulphatereductionwasevident,sulphideproducedwasprecipitatedbymetalswithinthe leachatehencearelativelylowhydrogensulphidegasconcentration.Sulphideatthispointwas 14mg/landthesignificantdropoftotalironfrom460–84mg/lwithin2weeksandtotalcopper from600–250um/lwithinoneweek,supportstheabovehypothesis. Continuous Sulphate Load From day 138 a continuous load of sulphate consisting of 4.0 litres per week, of AMD from Woodlawn(surfacewaterrunoff)withasulphateconcentrationof34000mg/lwasaddedtothe bioreactor. After an initial period of inactivity with hydrogen sulphide concentrations of between 0.5 and 9 ppm,hydrogensulphiderosefrom9.9ppm(±10%)onday147to168.9(±10%)ppmonday 159.Fromday159today167hydrogensulphideconcentrationslevelledoutfor8daysandthen experiencedasharpriseto1758.9(±10%)ppmonday171,thefinaldayoftesting.Itwouldbe expectedthathydrogensulphidelevelswouldcontinuetoriseafterthisdate,aslongasthereis the required concentration of sulphate to be reduced. As previously mentioned in the general comments for this section the GCTCD analysis was not performed for some months after samples were taken, due to equipment unavailability. GCTCD data from this period was unreliableandonlyDrägerdatawasusedforanalysis This rapid increase in hydrogen sulphide is primarily due to the lack of available metals to precipitatethereducedsulphide.Thesemetalswerepreviouslyprecipitatedwhenthepointload of sulphate was introduced, and hence low hydrogen sulphide after the point load. When the continuous sulphate load was added the availability of metals (including those from within the AMD) were of insignificant concentration to make any impact on hydrogen sulphide gas production. Data Discrepancies Adiscrepancyofbalancegassesbetweenanalyticalandfielddataisshownagainincolumn2 withapeakof11%onday83shownintheanalyticaldata.Aslightdropinmethaneandcarbon dioxide is also apparent, the theory presented in bioreactor 1 can be used to explain this irregularity. Hydrogen sulphide data shows discrepancies duringthe GCTCD reading on days 151 & 173, data taken during these time periods proved to be unreliable, as samples were analysed approximately 2 months after sample collection due to equipment failure and maintenance. Resultsthatwereobtainedfromthesesampleswerecorrectedforairleaksinsamplesbags,due tothisandthepossibilityforthegassestoreactwitheachothertheseresultsarenotreliable.

D.A.Lazarevic Page45of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Figure 10.4: Bioreactor 2 – LFG Composition Analysis (GC – TCD)

BIOREACTOR 2 - LFG COMPOSION ANALYSIS (GC-TCD)

Point Continuous Sulphate Load Sulphate Load 100 100

90 90

80 80

70 70

60 60 Methane CarbonDioxide 50 50 Oxygen Nitrogen Hydrogen 40 40 HydrogenSulphide

30 30 Hydrogen Sulphide (PPM) CH4, CH4, CO2, O2,H2, N2 (% Volume)

20 20

10 10

0 0

0 19 33 47 68 83 96 1 116 125 15 173 Time (Days) Figure 10.5: Bioreactor 2 – LFG Composition Analysis (IR & Dräger)

BIOREACTOR 2 - LFG COMPOSITION ANALYSIS (IR & DRÄGER)

Point Continuous Sulphate Load Sulphate Load 100 2000 1900 90 1800 1700 80 1600 1500 70 1400 1300 60 1200 Methane(CH4) 1100 CarbonDioxide(CO2) 50 1000 Oxygen(O2) 900 Balance(Nitogen/Hydroen/other) H2S (ppm) 40 800 HydrogenSulphide(H2S) 700 30 600 CH4,CO2, O2, Bal. (% Volume) 500 20 400 300 10 200 100 0 0

0 10 17 24 31 41 52 69 82 6 104 125 138 14 157 172 Time (Days)

D.A.Lazarevic Page46of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Bioreactor 3 (Ferrous Oxide) Pre-sulphate addition Oxygenandhydrogenconcentrationsshowaverysimilarrateofchangeandconcentrationas theabovebioreactors. Methanogenesis was evident from the establishment of the bioreactor, meaning reduction of hydrogen and carbon dioxide and hence a maximum hydrogen concentration of 0.1 %. As opposedtobioreactor1and2themethanogenicstageinthisbioreactortookagreatertimeto establish,withmethanetocarbondioxideratioof50:50%beingreachedatday138.Bothsetsof data show a correlation in the steady rise of methane and reduction in carbon dioxide concentrationsasthebiodegradationofthewasteprogressed.Thisismostlikelyduetotheinitial wastebeingofalessdegradedstatethatofthefirsttobioreactors. Point Sulphate Load Atday105aloadof2.980litresofAMDfromWoodlawn(surfacewaterrunoff)withasulphate concentrationof20000mg/lwasaddedtothe10.0litresofleachatewith540mg/lconcentration togiveatotalleachateconcentrationof5008mg/l(seeappendixDforcalculations).

Methane and carbon dioxide concentrations continued their respective rise and fall as time progresses after the addition of the point sulphate load. Hydrogen sulphide concentrations remainedatlevelsof0.5(±10%)ppm.

Continuous Sulphate Load From day 138 a continuous load of sulphate consisting of 4.0 litres per week, of AMD from Woodlawn(surfacewaterrunoff)withasulphateconcentrationof34000mg/lwasaddedtothe bioreactor. Hydrogen sulphide concentrations rose to a maximum of 1.6 (± 10%) ppm, after which a consistent 0.5 (± 10%) ppm was maintained throughout the experiment. Whilst the Dräger analysisshowedaconsistent0.5(±10%)ppmreading,onday173GCTCDanalysiswas8.3 ppm.AspreviouslymentionedinthegeneralcommentsforthissectiontheGCTCDanalysiswas notperformedforsomemonthsaftersamplesweretaken,duetoequipmentunavailability.GC TCDdatafromthisperiodwasunreliableandonlyDrägerdatawasusedforanalysis.Hydrogen sulphideconcentrationswereextremelylowinthisbioreactorbecausesulphideconcentrationsin theleachateonlyreachedamaximumof1.4mg/l,evenwhilstsulphateconcentrationsroseto levels of 3700 mg/l. Sulphide that had been reduced precipitated immediately, due to the abundanceofmetals,beforeenteringthegaseousphase. Data discrepancies The same discrepancy in balance gasses between field and analytical data is apparent in bioreactor3,howeverinthiscaseapeak4.8%balanceonday67withinthefielddataiswithin thesametimeperiodofapeak15.8%balanceonday68intheanalyticaldata. Hydrogen sulphide data shows discrepancies duringthe GCTCD reading on days 151 & 173, data taken during these time periods proved to be unreliable, as samples were analysed approximately 2 months after sample collection due to equipment failure and maintenance. Resultsthatwereobtainedfromthesesampleswerecorrectedforairleaksinsamplesbags,due tothisandthepossibilityforthegassestoreactwitheachothertheseresultsarenotreliable.

D.A.Lazarevic Page47of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Figure 10.6: Bioreactor 3 – LFG Composition Analysis (GC – TCD)

BIOREACTOR 3 - LFG COMPOSION ANALYSIS (GC-TCD)

Point Continuous Sulphate Load Sulphate Load 100 20 19 90 18 17 80 16 15 70 14 13 60 12 Methane 11 CarbonDioxide 50 10 Oxygen Nitrogen 9 Hydrogen 40 8 HydrogenSulphide 7 30 6 Hydrogen Sulphide (PPM)

CH4, CH4, CO2, O2,H2, N2 (% Volume) 5 20 4 3 10 2 1 0 0

0 19 33 47 68 83 96 5 116 12 151 173 Time (Days) Figure 10.7: Bioreactor 3 – LFG Composition Analysis (IR & Dräger)

BIOREACTOR 3 - LFG COMPOSITION ANALYSIS (IR & DRÄGER)

Point Continuous Sulphate Load Sulphate Load 100 25

90

80 20

70

60 15 Methane(CH4) CarbonDioxide(CO2) 50 Oxygen(O2) Balance(Nitogen/Hydroen/other) H2S (ppm) 40 10 HydrogenSulphide(H2S)

30 CH4,CO2, O2, Bal. (% Volume)

20 5

10

0 0

0 10 17 24 31 41 52 69 82 4 2 10 125 138 146 157 17 Time (Days)

D.A.Lazarevic Page48of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Bioreactor 4 (Ferric Oxide) Pre-sulphate addition Oxygen concentrations show a very similar rate of change and concentration as the above bioreactors,intheanalyticaldatabalancegaslevelsreachedapeaklowof5.9%,thenfromday 47showedanincreaseto42.9%onday83. Bioreactor 4 shows evidence that methanogenesis experienced trouble establishing itself, methanelevelsremainedataround20%fromday33untilday98,afterwhichgreatermethane production is seen to commence. Within a 33 day period after day 98 an 11.6% increase in methane was apparentfromfield data,from day 125 methane concentrations stabilised tojust under40%.Bioreactor4wasmostlikelystuckintheacetogenicstage,withmethaneproduction resulting from the reduction of hydrogen and carbon dioxide produced during hydrolysis and fermentation, thus remaining at levels around 20%. This theory is supported by analytical leachatedatashowingleachatepHremainingbetween5–5.5pHunitswhilstotherbioreactors showedatleastsomeincreaseinpH.LowpHvaluesarearesultofthebuildupoforganicacids from acetogenesis, as these acids increase it is harder for methanogenesis to become establishedbecausethepHislowerthantheoptimalrangeformethanogenicbacteriagrowth. EventhoughtheMagnetitewastheonlydifferentfactorinthisbioreactorwhencomparetoother bioreactors, Magnetite behaves relatively similar to Haematite and is not believed to be responsiblefortheslowerestablishmentofmethanogenesisinbioreactor4. Bothsetsofdataconfirmaspikeingasbalanceconcentrationaroundday67andmaintaining thisleveltoday104.Thereasonforthissharpriseinbalancegassesisunknown,ifanairleakin thebioreactordidoccurnitrogenconcentrations(measuresingasbalance)wouldincrease,as has happened, yet oxygen levels would be expected to increase as well. Given the ration of nitrogen to oxygen in air is 3.74, the level of oxygen would be expected to be in the range of 11.5%,themaximumvalueofoxygenmeasuredfromanalyticaldatawas0.42%.Onlyfielddata showedanincreaseinoxygenlevelsduringthistimetoamaximumlevelof2.1%.Theelevated gas balance levels may be due to an undetected gas being produced within the extended acetogenicphase. Point Sulphate Load Atday105aloadof2.920litresofAMDfromWoodlawn(surfacewaterrunoff)withasulphate concentrationof20000mg/lwasaddedtothe10.0litresofleachatewith630mg/lconcentration togiveatotalleachateconcentrationof5008mg/l(seeappendixDforcalculations).

Afterthepointloadofsulphatecarbondioxideconcentrationsremainedsteady,whilstanequally proportionalriseinmethaneanddropinbalancegaseswasexperience.Methaneconcentrations rosetoapproximately37%andbalancegassesreducedtoaconstant3.5%.Thisriseandfallin LFG concentrations is somewhat unknown, however it seems the addition of AMD stimulated methanogenesis.TheadditionofAMDmayhavedilutedanytoxicinhibitorswithintheleachate, reducingtheirconcentration.

Continuous Sulphate Load From day 138 a continuous load of sulphate consisting of 4.0 litres per week, of AMD from Woodlawn(surfacewaterrunoff)withasulphateconcentrationof34000mg/lwasaddedtothe bioreactor. Methane and carbon dioxide concentrations remained at a constant at 37 % and 58 % respectivelyduringthecontinuoussulphateload. Hydrogensulphideconcentrationsexperiencedamaximumof2.2(±10%)withameanof0.5(± 10%) ppm. Hydrogen sulphide concentrations were extremely low in this bioreactor because sulphideconcentrationsintheleachateonlyreachedamaximumof2.0mg/l,evenwhilstsulphate concentrations rose to levels of 4700 mg/l. Sulphide that had been reduced precipitated immediately,duetotheabundanceofmetals,beforeenteringthegaseousphase.

D.A.Lazarevic Page49of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Figure 10.8: Bioreactor 4 – LFG Composition Analysis (GC – TCD)

BIOREACTOR 4 - LFG COMPOSION ANALYSIS (GC-TCD)

Point Continuous Sulphate Load Sulphate Load 100 20 19 90 18 17 80 16 15 70 14 13 60 12 Methane 11 CarbonDioxide 50 10 Oxygen Nitrogen 9 Hydrogen 40 8 HydrogenSulphide 7 30 6 Hydrogen Sulphide (PPM)

CH4, CH4, CO2, O2,H2, N2 (% Volume) 5 20 4 3 10 2 1 0 0

0 19 33 47 68 83 96 5 116 12 151 173 Time (Days) Figure 10.9: Bioreactor 4 – LFG Composition Analysis (IR & Dräger)

BIOREACTOR 4 - LFG COMPOSITION ANALYSIS (IR & DRÄGER)

Point Continuous Sulphate Load Sulphate Load 100 25

90

80 20

70

60 15 Methane(CH4) CarbonDioxide(CO2) 50 Oxygen(O2) Balance(Nitogen/Hydroen/other) H2S (ppm) 40 10 HydrogenSulphide(H2S)

30 CH4,CO2, O2, Bal. (% Volume)

20 5

10

0 0

0 10 17 24 31 41 52 69 82 4 2 10 125 138 146 157 17 Time (Days)

D.A.Lazarevic Page50of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Bioreactor 5 (Ferric Hydroxide) Pre-sulphate addition Bioreactor 5 was commenced 32 days after Bioreactors 14 due to problems in obtaining the alternativewastecovermaterial. Oxygen levels dropped to below 1% within 14 days of commencement, in keeping the above bioreactors,gasbalanceconcentrationsshowasteadydecrease,althoughslowerthantheabove bioreactors.This slow drop in balance gases (assumed nitrogen) is in keeping with the typical LFGconcentrations,asinfig10.1,whencomparedtoitsslowerdevelopmentofmethanogenesis thaninbioreactors1and2. Methanogenesis progression can be compared to that of bioreactor 3, illustrating typical developmentofbiodegradationphases. Point Sulphate Load Atday72aloadof3.290litresofAMDfromWoodlawn(surfacewaterrunoff)withasulphate concentrationof20000mg/lwasaddedtothe10.0litresofleachatewith74mg/lconcentrationto giveatotalleachateconcentrationof5007mg/l(seeappendixDforcalculations). Afterthepointloadofsulphateanequallyproportionalriseinmethaneanddropincarbondioxide wasexperience.Methaneconcentrationsrosetoapproximately48%andcarbondioxidereduced toaconstant51%. Continuous Sulphate Load From day 105 a continuous load of sulphate consisting of 4.0 litres per week, of AMD from Woodlawn(surfacewaterrunoff)withasulphateconcentrationof34000mg/lwasaddedtothe bioreactor. Methane and carbon dioxide concentrations were stable throughout this time period, at approximately48%and51%respectively. Hydrogensulphideconcentrationsshowedamaximumof2.2(±10%)ppmonasingleoccasion, however the majority of samples showed levels of 0.5 (± 10%) ppm. Hydrogen sulphide concentrations were extremely low in this bioreactor because sulphide concentrations in the leachateonlyreachedamaximumof0.10mg/l,evenwhilstsulphateconcentrationsrosetolevels of6800mg/l.Sulphidethathadbeenreducedprecipitatedimmediately,duetotheabundanceof metals,beforeenteringthegaseousphase.

D.A.Lazarevic Page51of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Figure 10.10: Bioreactor 5 – LFG Composition Analysis (GC – TCD)

BIOREACTOR 5 - LFG COMPOSION ANALYSIS (GC-TCD)

Point Continuous Sulphate Load Sulphate Load 100 20 19 90 18 17 80 16 15 70 14 13 60 12 Methane 11 CarbonDioxide Oxygen 50 10 Nitrogen 9 Hydrogen 40 8 HydrogenSulphide 7 30 6 Hydrogen Sulphide (PPM)

CH4, CH4, CO2, O2,H2, N2 (% Volume) 5 20 4 3 10 2 1 0 0

0 14 35 50 63 83 92 8 11 140 Time (Days) Figure10.11:Bioreactor5–LFG Composition Analysis (IR & Dräger)

BIOREACTOR 5 - LFG COMPOSITION ANALYSIS (IR & DRÄGER)

Point Continuous Sulphate Load Sulphate Load

Methane(CH4) CarbonDioxide(CO2) Oxygen(O2) Balance(Nitogen/Hydroen/other) H2S (ppm) HydrogenSulphide(H2S) CH4,CO2, O2, Bal. (% Volume)

0 19 36 49 71 92 4 105 113 12 137 Time (Days)

D.A.Lazarevic Page52of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Bioreactor 6 (Multi Service Baghouse Dust) Pre-sulphate addition Bioreactor 6 was commenced 32 days after Bioreactors 14 due to problems in obtaining the alternativewastecovermaterial. The development of waste biodegradation in bioreactor 6 shows almost identical progression throughoutbiodegradationphasesandLFGconcentrationsasbioreactor5.Hencethecomments frombioreactor5alsoapplytobioreactor6. Point Sulphate Load Atday72aloadof2.910litresofAMDfromWoodlawn(surfacewaterrunoff)withasulphate concentrationof20000mg/lwasaddedtothe10.0litresofleachatewith640mg/lconcentration togiveatotalleachateconcentrationof5004mg/l(seeappendixDforcalculations). Methaneandcarbondioxidereachedconcentrationsof50%byvolumeonday98.Amethane carbondioxiderationoflessthan1wasmaintainedfromday98untilexperimentcompletion.A 15 (± 10%) ppm hydrogen sulphide concentration was measured before the addition of the continuoussulphideload. Continuous Sulphate Load From day 105 a continuous load of sulphate consisting of 4.0 litres per week, of AMD from Woodlawn(surfacewaterrunoff)withasulphateconcentrationof34000mg/lwasaddedtothe bioreactor. Hydrogen sulphide concentrations showed a maximum of 21.7 (± 10%) ppm was measured immediatelyafterthestartofthecontinuoussulphateaddition.Howeverafterthis21.7(±10%) ppm, hydrogen sulphide levels remained at levels between 0.5 (± 10%)and 2.2(± 10%) ppm. Hydrogensulphideconcentrationswerelowinthisbioreactorbecausesulphideconcentrationsin theleachateonlyreachedamaximumof0.95mg/l,evenwhilstsulphateconcentrationsroseto levels of 5900 mg/l. Sulphide that had been reduced precipitated immediately, due to the abundanceofmetals,beforeenteringthegaseousphase.

D.A.Lazarevic Page53of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Figure 10.12: Bioreactor 6 – LFG Composition Analysis (GC – TCD)

BIOREACTOR 6 - LFG COMPOSION ANALYSIS (GC-TCD)

Point Continuous Sulphate Load Sulphate Load 100 20 19 90 18 17 80 16 15 70 14 13 60 12 Methane 11 CarbonDioxide Oxygen 50 10 Nitrogen 9 Hydrogen 40 8 HydrogenSulphide 7 30 6 Hydrogen Sulphide (PPM)

CH4, CH4, CO2, O2,H2, N2 (% Volume) 5 20 4 3 10 2 1 0 0

0 14 35 50 63 83 92 8 11 140 Time (Days) Figure 10.13: Bioreactor 6 – LFG Composition Analysis (IR & Dräger)

BIOREACTOR 6 - LFG COMPOSITION ANALYSIS (IR & DRÄGER)

Point Continuous Sulphate Load Sulphate Load 100 50

90 45

80 40

70 35

60 30 Methane(CH4) CarbonDioxide(CO2) 50 25 Oxygen(O2) Balance(Nitogen/Hydroen/other) H2S (ppm) 40 20 HydrogenSulphide(H2S)

30 15 CH4,CO2, O2, Bal. (% Volume)

20 10

10 5

0 0

0 19 36 49 71 92 4 105 113 12 137 Time (Days)

D.A.Lazarevic Page54of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

10.2 SULPHATE – SULPHIDE – HYDROGEN SULPHIDE CORRELATION Thereductionofsulphateandsubsequentproductionofhydrogensulphidegasismostprolific whensulphateisinabundance.SulphateatvariousconcentrationsispresentinallMSW,thetest bioreactors will experience a background concentration of sulphate before initial sulphate addition. Figure 10.14: Typical Leachate Composition Leachate 2− SO4 − Cl HCO3 Zn,Fe Phase I II III IV V Source:Christensen&Kjeldsen,1989. This figure shows initial sulphate concentrations rise during fermentation and hydrolysis, most likelyduetoapHbeingloweredbytheinitialproductionoforganicacids,asoutlinedinsection 5.1. ThebelowtablegivesananalyticalsummaryoftheAMDthatwasaddedtothebioreactorsfor boththepointandcontinuoussulphateloads. Table 10.1: Acid Mine Drainage Composition Parameter Units PointLoad ContinuousLoad pH pHUnits 2.9 2.6 Sulphide mg/l 0.06 Sulphate mg/l 20000 34000 Copper ug/l 48000 48000 Iron mg/l 640 1100 Lead ug/l 1500 250 Zinc mg/l 1100 1300 Source:Own

D.A.Lazarevic Page55of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Bioreactor 1 (Control) Hydrogensulphideproductionisdependentuponsulphateforreduction,sulphateconcentrations ofbioreactor1showedlowlevelsofbetween5and340mg/l.Sulphateconcentrationrecorded from day 18, showed two peaks in sulphate of 150 mg/l and 340 mg/l on days 109 and 145 respectively,thesevaluesareverylowandaremostlikelytobearesultofnaturallyoccurring interactionswithinthebioreactor. Hydrogen sulphide levels peaked on day 19 at 20 ppm then remained constant at <0.5 ppm. Initialsulphatereductionwithinthewastemassmayexplainthispeakinhydrogensulphide,and assulphateconcentrationswerenotrecordeduntilday18,sulphatemayhavebeenhigherduring thisperiod. Sulphideconcentrationsoflessthan4.4mg/lweremeasuredduringthisexperimentwithamean value of 1.5 mg/l. This low sulphide value can be explained by two hypothesis, either there is insufficient sulphate that is available for reduction to sulphide or there are sufficient metals presenttoprecipitateanysulphidethathasbeenreduced.Whenlookingattheavailabledata,the levelofsulphateisverylow,preventinganyproductionofsulphide. Total metal concentrations show a steady decrease in concentration, through with precipitation with either sulphides or hydroxides. Total iron showed the greatest decrease in concentration from580mg/lto32mg/l,totalcopperdecreasedfrom670ug/lto160ug/l,totalleaddecreased from520ug/lto69ug/landtotalzincshowedaconstantconcentrationthroughouttheexperiment from3.2mg/lto3.5mg/l. Thereductioninconcentrationsoftheseheavymetalsistypicalandisinkeepingdatapresented forthedropinconcentrationofheavymetalsinChristensen&Kjeldsen(1989).

D.A.Lazarevic Page56of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Figure 10.15: Bioreactor 1 – Sulphate and Sulphide vs Time

BIOREACTOR 1 - SULPHATE & SULPHIDE vs TIME

5000 20

4500 18

4000 16

3500 14

3000 12

Sulphate 2500 10 Sulphide

Sulphate(mg/l) 2000 8 Sulphide(mg/l)

1500 6

1000 4

500 2

0 0

8 6 8 6 9 8 9 1 32 4 6 82 9 0 17 24 3 45 5 67 73 104 1 1 1 131 1 1 152 1 1 1 Time (Days) Figure 10.16: Bioreactor 1 – Total Fe, Zn, Cu and Pb vs Time

BIOREACTOR 1 - TOTAL Fe, Zn, Cu & Pb vs TIME

1000 4000 3800 900 3600 3400 800 3200 3000 700 2800 2600 600 2400 TotalIron 2200 TotalZinc 500 2000 TotalLead 1800 TotalCopper 400 1600 IronZinc & (mg/l)

1400 Lead& Copper (ug/l) 300 1200 1000 200 800 600 100 400 200 0 0

8 2 6 8 6 9 7 8 1 3 4 6 82 9 0 1 31 3 45 52 59 73 104 1 1 124 1 1 1 1 1 167 1 Time (Days)

D.A.Lazarevic Page57of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Bioreactor 2 (No ADC) Pre-sulphate addition Sulphateconcentrationdecreasedfromitsinitiallowlevelof360mg/londay18to140mg/lon day 104 prior to AMD addition. Sulphide concentrations remain relatively constant during this periodandrangefromvaluesof1.8mg/lto0.7mg/l. DuringtheperiodbeforeAMDadditionallmetalsexperiencedadecreaseinconcentration,total iron showed the greatest drop from 720 mg/l on day 32 to 460 mg/l on day 104, total zinc decreasedfrom5.2mg/londay18to0.75mg/londay104,totalcopperdecreasedfrom140ug/l onday18to59ug/londay104andtotalleaddecreasedfrom180ug/londay18to120ug/lon day104. Point Sulphate Load Atday105aloadof3.190litresofAMDfromWoodlawn(surfacewaterrunoff)withasulphate concentration of 20000 mg/l was added to the existing 10.0 litres of leachate with a 220 mg/l concentration to give a total leachate concentration of 5004 mg/l (see appendix D for calculations).AMDcompositionisgivenintable10.1. TheAMDadditionsawsulphatelevelsreachamaximumconcentrationof910mg/laweekafter theadditionof5000mg/lleachate.Thiscanbeexplainedbythecombinationoftheimmediate reductionofsulphatetosulphideandalsotheabsorptionofsulphatebyporousmaterialswithin thewastesuchaspaper,textilesorgreenwaste,thusremovingthesulphatefromtheleachate. Duringthe5weekperiodthatthisleachatewasrecirculated,sulphatedecreasedfrom910mg/l onday104to20mg/londay138.Thereductioninsulphatecorrespondedtorisesinsulphide from0.7mg/londay104to18mg/londay124,attheendofthe5weekperiodsulphidehad decreasedto3.4mg/londay138. Totalmetalconcentrationsduringthisperiodalsoshowedadramaticdecreaseinconcentration, correlating to sulphide available for the precipitation of metal sulphides, a result of sulphate reduction. Totalironconcentrationsdroppeddramaticallyfrom460mg/londay104to84mg/londay117. Fromday117totalironwasfurtherreducedto50mg/londay138. Totalzincconcentrationsinitiallyincreasedfrom0.75mg/londay104to46mg/londay109,due totheAMDaddition(1100mg/l). Totalcopperconcentrationsinitiallyincreasedfrom59ug/londay104to600ug/londay109, duetotheAMDaddition(48000ug/l).Howeverafterday109totalcopperconcentrationdropped to130ug/lbyday138. Totalleadconcentrationsinitiallyincreasedfrom54ug/londay104to86ug/londay109,dueto theAMDaddition(1500ug/l).Howeverafterday109totalleadconcentrationdroppedto66ug/l byday138. Mostimportantlywastheprecipitationoftotalironduringthisperiodoftime,attheendofthe5 weeksofleachaterecirculationthemajorityofmetalswereconsumedbysulphideprecipitate.As canbeseeninthecontinuoussulphateadditionstage,sulphidesincreaseddramaticallyasalack ofmetalswereavailabletoenablesolidsulphurprecipitation. Continuous Sulphate Load From day 138 a continuous load of sulphate consisting of 4.0 litres per week, of AMD from Woodlawn(surfacewaterrunoff)withasulphateconcentrationof34000mg/lwasaddedtothe bioreactor.AMDcompositionisgivenintable10.1. ContinuousAMDadditionsawsulphatelevelsincreasefrom20mg/londay138toamaximum concentrationof3200mg/londay145.Afterday145sulphateconcentrationssteadilydecreased to 52 mg/l on day 173. This prolific reduction of this sulphate by SRB is shown by the sharp increaseinsulphidelevelsduringthistimefrom3.4mg/londay138to76mg/londay173.The increaselevelofsulphideintheleachatecorrespondedbyanincreaseofhydrogensulphidein

D.A.Lazarevic Page58of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices theLFGasshowninsection10.1.Duringthisperiodoftimethedistinctiveodourofsulphidewas presentduringleachaterecirculation. Totalmetalconcentrationsduringthisperiod,generallyremainedatasimilarconcentrationtothe startofthisperiod,withtheexceptionoftotalcopperconcentration.Thissupportstheideathat therewasalackofmetalsavailabletoprecipitatethesulphidethatwasbeingproducedbythe SRB. Hence Levels of sulphide and the leachate and hydrogen sulphide in the LFG rose dramatically. Totalironconcentrationsreducedfrom50mg/londay138to14mg/londay173. Totalzincconcentrationsincreasedaslightlyfrom3.3mg/londay104to23mg/londay109, duetotheAMDaddition(1100mg/l). Totalcopperconcentrationsexperiencedalargeincreasefrom130ug/londay138to3300ug/l onday145,duetotheAMDaddition(48000ug/l).Totalcopperwasthenprogressivelyreduced to1100ug/latday173,withtheexceptionoftheconcentrationdroppingto170ug/londay152 andthenrisingupto1500ug/londay159. Totalleadconcentrationsdecreasedfrom66ug/londay138to29ug/londay173,duetothe AMDaddition(1500ug/l). Evenwiththeincreaseinsomemetalconcentrations,thedemandfrommetalsforutilisationin theprecipitationofmetalsulphidesfarsurpassedthesupplyofmetals,henceincreasedsulphide concentrations.

D.A.Lazarevic Page59of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Figure 10.17: Bioreactor 2 – Sulphate and Sulphide vs Time

BIOREACTOR 2 - SULPHATE & SULPHIDE vs TIME Point Continuous Sulphate Load Sulphate Load 8000 80

7000 70

6000 60

5000 50

Sulphate 4000 40 Sulphide Sulphate(mg/l) Sulphide(mg/l) 3000 30

2000 20

1000 10

0 0

8 6 8 6 9 8 9 1 32 4 6 82 9 0 17 24 3 45 5 67 73 104 1 1 1 131 1 1 152 1 1 1 Time (Days) Figure 10.18: Bioreactor 2 – Total Fe, Zn, Cu and Pb vs Time

BIOREACTOR 2 - TOTAL Fe, Zn, Cu & Pb vs TIME Point Continuous Sulphate Load Sulphate Load 1000 4000 3800 900 3600 3400 800 3200 3000 700 2800 2600 600 2400 TotalIron 2200 TotalZinc 500 2000 TotalLead 1800 TotalCopper 400 1600 IronZinc & (mg/l)

1400 Lead& Copper (ug/l) 300 1200 1000 200 800 600 100 400 200 0 0

8 2 6 8 6 9 7 8 1 3 4 6 82 9 0 1 31 3 45 52 59 73 104 1 1 124 1 1 1 1 1 167 1 Time (Days)

D.A.Lazarevic Page60of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Bioreactor 3 (Ferrous Oxide) Pre-sulphate addition Sulphateconcentrationincreasedfromaninitiallevelof270mg/londay18to710mg/londay 104 prior to AMD addition. Even though an increase in sulphate is shown, the overall level of sulphateisrelativelylow.Sulphideconcentrationsshowedanoveralldropduringthisperiodfrom 2.3mg/londay18to0.2mg/londay104. During the period before AMD addition zinc, copper and lead experienced a decrease in concentration.Zincdecreasedfrom6mg/londay18to2.7mg/londay104,copperdecreased from200ug/londay18to13ug/londay104andleaddecreasedfrom210ug/londay18to40 ug/londay104.Totalironof720mg/londay18increasedto910mg/londay104,thisincrease wasduetotheironpresentinthelayersofhematitewithinthebioreactor. Point Sulphate Load Atday105aloadof2.980litresofAMDfromWoodlawn(surfacewaterrunoff)withasulphate concentrationof20000mg/lwasaddedtothe10.0litresofleachatewith540mg/lconcentration to give a total leachate concentration of 5008 mg/l (see appendix D for calculations). AMD compositionisgivenintable10.1. AftertheadditionoftheAMDsulphatelevelsreachamaximumconcentrationof1600mg/lon day117,two weeksaftertheadditionof5000mg/lleachate.Anexplanationforthislevel was discussed for bioreactor 2 and can be presented for bioreactor 3. During the 5 week leachate recirculationperiod,sulphatedecreasedfrom1600mg/londay117to1000mg/londay124,but thenroseagainto1600mg/lbyday138.Eventhoughsomereductionofsulphateoccurred,only averysmallincreaseinsulphidewasevident.Sulphiderosefrom0.2mg/londay104to1.4mg/l onday124,thendroppedbacktoaconcentrationof0.2mg/lbyday138. Total metal concentrations during this period showed a slight increase in concentration, zinc, copperandleadallencounteredsmallincreasesoverthisperiodduetoAMDaddition,however the overall concentration of these metals was very low. Iron was the only metal present in substantial concentrations to show a decrease in concentration, however levels of iron soon recoveredduetheabundanceofthematerialwithinthebioreactor. Totalironconcentrationsreducedduringthefirstweekfrom910mg/londay104to790mg/lon day109.Fromday117totalironconcentrationsrosebacktothatofpreviousAMDadditionof 1000mg/l. Totalzincconcentrationsinitiallyincreasedfrom2.7mg/londay104to18mg/londay117,due totheAMDaddition(1100mg/l),thendroppedto12mg/londay138. Totalcopperconcentrationsshowedasteadyincreasedfrom13ug/londay104to41ug/londay 138,duetotheAMDaddition(48000ug/l). Totalleadconcentrationsalsoshowedasteadyincreasefrom40ug/londay104to68ug/lon day138,duetotheAMDaddition(1500ug/l). Even though total metals showed an increase in concentration, the rate of increase was negligible. It can be seen clearly in figure 10.20 that within the first week of AMD addition total iron decreasedbyupto13%,andthroughoutthisperiodsulphidelevelsremainedlowerthan1.4 mg/l. It can be seen here that the abundance of metal ions were able to precipitate with any sulphidebeingformed. Continuous Sulphate Load From day 138 a continuous load of sulphate consisting of 4.0 litres per week, of AMD from Woodlawn(surfacewaterrunoff)withasulphateconcentrationof34000mg/lwasaddedtothe bioreactor.AMDcompositionisgivenintable10.1.

D.A.Lazarevic Page61of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

ContinuousAMDadditionsawsulphatelevelsincreasefrom1600mg/londay138toamaximum concentrationof4500mg/londay167.Sulphidelevelsduringthistimerosefrom0.2mg/londay 138to1.8mg/londay159thendecreasedto0.6mg/lbyday173. Total metal concentrations, with the exception of iron, showed an increase in concentration, however a declining tend during this period was seen due to the sharp increase in metal concentrations due to the AMD. This supports the theory that these metals were precipitating sulphideformedduringthereductionofsulphate. Totalironconcentrationsdecreasedfrom1000mg/londay138to890mg/londay173,adecline of11%. Totalzincconcentrationsexperiencedasharpincreaseduringthefirstweekfrom12mg/londay 104to430mg/londay109,duetotheAMDaddition(1100mg/l),anddecreasedto120mg/lby day173. Totalcopperconcentrationsshowedasimilarpatterastotalzince,increasingfrom41ug/londay 138to920ug/londay145,duetotheAMDaddition(48000ug/l).Totalcopperthendecreased slowlyto640ug/londay167beforerisinginthelastweekto880ug/londay173. Totalleadconcentrationsshowedaslightdeclinefrom68ug/londay138to57ug/londay173, Bioreactor3illustratedthatwiththesourceofanironrichmaterial,theabundanceofmetalswere able to precipitate with sulphide immediately after being produced, thus reducingthe hydrogen sulphideintheLFG.

D.A.Lazarevic Page62of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Figure 10.19: Bioreactor 3 – Sulphate and Sulphide vs Time

BIOREACTOR 3 - SULPHATE & SULPHIDE vs TIME Point Continuous Sulphate Load Sulphate Load 8000 20

18 7000

16 6000 14

5000 12

Sulphate 4000 10 Sulphide

Sulphate(mg/l) 8 Sulphide(mg/l) 3000

6 2000 4

1000 2

0 0

8 6 8 6 9 8 9 1 32 4 6 82 9 0 17 24 3 45 5 67 73 104 1 1 1 131 1 1 152 1 1 1 Time (Days) Figure 10.20: Bioreactor 3 – Total Fe, Zn, Cu and Pb vs Time

BIOREACTOR 3 - TOTAL Fe, Zn, Cu & Pb vs TIME

Point Continuous 1000 Sulphate Load Sulphate Load 4000 3800 900 3600 3400 800 3200 3000 700 2800 2600 600 2400 TotalIron 2200 TotalZinc 500 2000 TotalLead 1800 TotalCopper 400 1600 IronZinc & (mg/l)

1400 Lead& Copper (ug/l) 300 1200 1000 200 800 600 100 400 200 0 0

8 2 6 8 6 9 7 8 1 3 4 6 82 9 0 1 31 3 45 52 59 73 104 1 1 124 1 1 1 1 1 167 1 Time (Days)

D.A.Lazarevic Page63of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Bioreactor 4 (Ferric Oxide) Pre-sulphate addition Sulphateconcentrationremainedrelativelystaticstartingat650mg/londay18andremainingat 630mg/londay104priortoAMDaddition.Sulphideconcentrationsshowedadeclineduringthis periodfrom1.1mg/londay18to0.02mg/londay104. During the period before AMD addition zinc, copper and lead experienced a reduction in concentration.Zincdecreasedfrom13mg/londay18to4.7mg/londay104,copperdecreased from120ug/londay18to21ug/londay104andleaddecreasedfrom170ug/londay18to45 ug/l on day 104. Total iron increased from 570 mg/l on day 18 to 690 mg/l on day 104, this increasewasduetotheironpresentinthelayersofmagnetitewithinthebioreactor. Point Sulphate Load Atday105aloadof2.920litresofAMDfromWoodlawn(surfacewaterrunoff)withasulphate concentrationof20000mg/lwasaddedtothe10.0litresofleachatewith630mg/lconcentration to give a total leachate concentration of 5008 mg/l (see appendix D for calculations). AMD compositionisgivenintable10.1. AftertheadditionofAMDsulphatelevelsreachamaximumconcentrationof1800mg/londay 117twoweeksaftertheAMDaddition.Anexplanationforthislevelwasdiscussedfortheabove bioreatcorsandisthesameforthisbioreactor.Duringthe5weekleachaterecirculationperiod, sulphateconcentrationsroseandfelltoafinalconcentrationof1500mg/lofday138.Sulphide roseintheinitialweekfrom0.02mg/londay104to2.3mg/londay109,sulphidethendropped backtoaconcentrationof0.02mg/lbyday138. Totalmetalconcentrationsremainedrelativelystaticduringthisperiodwiththeexceptionofiron thatrose15%,thepointloadofAMDappearedtohavenolittleonmetalconcentrations. Totalironconcentrationsincreasedduringthefirsttwoweeksfrom690mg/londay104to800 mg/londays117and124.Ironthendecreasedto730mg/londay131beforerisingagainto810 mg.londay138. Totalzincconcentrationsexperiencedasmallincreasefrom4.7mg/londay104to26mg/lon day138,duetotheAMDaddition(1100mg/l). Totalcopperconcentrationsremainedsteadyat21ug/londay104and24ug/londay138. Totalleadconcentrationsalsoremainedsteadyat45ug/londay104and36ug/londay138 Continuous Sulphate Load From day 138 a continuous load of sulphate consisting of 4.0 litres per week, of AMD from Woodlawn(surfacewaterrunoff)withasulphateconcentrationof34000mg/lwasaddedtothe bioreactor.AMDcompositionisgivenintable10.1. DuringcontinuousAMDadditionsulphateconcentrationincreasedfrom1500mg/londay138to a maximum concentration of 6400mg/l on day173. Sulphide levels duringthistimerosefrom 0.02mg/londay138to2.0mg/londay145thendecreasedto0.4mg/lbyday173. Alltotalmetalconcentrationsshowedanincreasingtrendduringthisperiod,duetothehighmetal concentrationswithintheAMD. Totalironconcentrationsincreasedfrom810mg/londay138to890mg/londay152,adecrease inironconcentrationto810mg/loccurredbetweendays152and167,thereafteritroseto970 mg/lbyday173. Totalzincconcentrationsshowedasteadyincreasefrom26mg/londay104to340mg/lbyday 173,duetotheAMDaddition(1100mg/l). Totalcopperconcentrationsexperiencedasharpincreaseduringthefirstweekfrom24ug/lon day138to830ug/londay145,duetotheAMDaddition(48000ug/l).Totalcopperthenfollowed asawtoothpatternofdecreasingandincreasingconcentration,afinalconcentrationof810ug/l wasmeasuredonday173.

D.A.Lazarevic Page64of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Totalleadconcentrationsshowedaslightincreasefrom36ug/londay138to150ug/londay 173, Bioreactor3illustratedthatwithsourceofanironrichmaterialtheabundanceofmetalswasable to precipitate with sulphide immediately after being produced, thus reducing the hydrogen sulphideintheLFG.EventhoughironroseinconcentrationduringthecontinuousAMDaddition, itdidexperienceadeclineinconcentration,showingthatmetalprecipitationwastakingplace.

D.A.Lazarevic Page65of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Figure 10.21: Bioreactor 4 – Sulphate and Sulphide vs Time

BIOREACTOR 4 - SULPHATE & SULPHIDE vs TIME Point Continuous Sulphate Load Sulphate Load 8000 20

18 7000

16 6000 14

5000 12

Sulphate 4000 10 Sulphide

Sulphate(mg/l) 8 Sulphide(mg/l) 3000

6 2000 4

1000 2

0 0

8 6 8 6 9 8 9 1 32 4 6 82 9 0 17 24 3 45 5 67 73 104 1 1 1 131 1 1 152 1 1 1 Time (Days) Figure 10.22: Bioreactor 4 – Total Fe, Zn, Cu and Pb vs Time

BIOREACTOR 4 - TOTAL Fe, Zn, Cu & Pb vs TIME

Point Continuous 1000 Sulphate Load Sulphate Load 4000 3800 900 3600 3400 800 3200 3000 700 2800 2600 600 2400 TotalIron 2200 TotalZinc 500 2000 TotalLead 1800 TotalCopper 400 1600 IronZinc & (mg/l)

1400 Lead& Copper (ug/l) 300 1200 1000 200 800 600 100 400 200 0 0

8 2 6 8 6 9 7 8 1 3 4 6 82 9 0 1 31 3 45 52 59 73 104 1 1 124 1 1 1 1 1 167 1 Time (Days)

D.A.Lazarevic Page66of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Bioreactor 5 (Ferric Hydroxide) Pre-sulphate addition Sulphateconcentrationexperiencedaslightdeclineduringthisperiodfrom410mg/londay13to 140mg/l on day 71 prior to AMD addition. Sulphide concentrations showed a similar decline duringthisperiodfrom1.3mg/londay13to0.02mg/londay71. DuringtheperiodbeforeAMDadditionzinc,copperandleadconcentrationswerethelowestofall bioreactors,howevertheyallexperiencedareductioninconcentration.Zincdecreasedfrom8.9 mg/londay13to0.57mg/londay71copperdecreasedfrom500ug/londay13to39ug/lon day71andleaddecreasedfrom280ug/londay13to33ug/londay71.Totalironof110mg/lon day13increasedto550mg/londay71,thisincreasewasduetotheironpresentinthelayersof ferrichydroxidewithinthebioreactor. Point Sulphate Load Atday72aloadof3.290litresofAMDfromWoodlawn(surfacewaterrunoff)withasulphate concentrationof20000mg/lwasaddedtothe10.0litresofleachatewith74mg/lconcentrationto give a total leachate concentration of 5007 mg/l (see appendix D for calculations). AMD compositionisgivenintable10.1. WithinoneweekofAMDadditionsulphatelevelsreachaconcentrationof1800mg/londay77, after day 77 sulphate experienced an overall decrease to 1500 mg/l by day 105. Sulphide concentrationsrosesteadilyfromday71today910.02mg/lto1.4mg/lrespectively.Duringthe last2weekssulphidedroppedbackto0.02mg/l. AMD addition appeared to have little affect on lead and copper concentrations, however zinc concentrationsshowedastrongincrease.Ironconcentrationsshowedasteady26%increasein concentrationduringthisperiod. Totalironconcentrationsincreasedfrom550mg/londay71to800mg/londay91,thendeclined to740mg/lbyday105. Totalzincconcentrationsexperiencedasharpincreaseinthefirstweekfrom0.57mg/londay71 to220mg/londay71,duetotheAMDaddition(1100mg/l).Zincwasthensteadilydecreasedto 58mg/lbyday105. Totalcopperconcentrationsremainedrelativelysteadyfrom39ug/londay71to110ug/londay 105. Totalleadconcentrationsalsoremainedsteadyfrom33ug/londay71to53ug/londay105. Continuous Sulphate Load From day 105 a continuous load of sulphate consisting of 4.0 litres per week, of AMD from Woodlawn(surfacewaterrunoff)withasulphateconcentrationof34000mg/lwasaddedtothe bioreactor.AMDcompositionisgivenintable10.1. DuringcontinuousAMDadditionsulphateconcentrationincreasedfrom1500mg/londay105to 6800 mg/l on day 119.Sulphate decreasedthefollowing week to 6400 mg/l on day 126, after which it rose to 8000 mg/l by day 140. Sulphide levels remained below 0.15 mg/l, with the exceptionofday126wheresulphideroseto0.7mg/l.Thisminorriseinsulphidecorrespondedto withthedeclineinsulphateconcentration. TheinfluenceoftheAMDwasthegreatestinbioreactor5withzincandcopperconcentrations increasingdramaticallyaftertheadditionoftheAMD. TotalironconcentrationsremainedsteadyduringthecontinuousAMDaddition,onlydecreasing 10mg/lfrom740mg/londay105to730mg/londay140. Totalzincconcentrationsrosesharplyduringthe2weeksafterAMDaddition,risingfrom58mg/l on day 105 to 610 mg/l by day 119, due to AMD addition (1100 mg/l). Zinc concentration remainedsteadyfromday119today134beforeincreasinginthelastweekfrom600mg/londay 134to710mg/londay140.

D.A.Lazarevic Page67of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Totalcopperconcentrationsexperiencedthesamepatternofchangeaszinc.Twoweeksafter AMDaddition,copperrosefrom10ug/londay105to17000ug/londay119.Totalcopperthen decreasedto14000ug/lforthefollowingtwoweeks,thereafteritincreasedto26000mg/lbyday 140. Totalleadconcentrationsshowedanincreasefrom53ug/londay105to540ug/londay140. Itwaswellillustratedfromthisexamplethatduringthereductionofsulphatetosulphide,metals withinthebioreactorwereconsumed,henceonlyaverysmallincreaseinsulphideconcentration. Bioreactor5illustratedthatwithsourceofanironrichmaterialtheabundanceofmetalswasable to precipitate with sulphide immediately after being produced, thus reducing the hydrogen sulphideintheLFG.

D.A.Lazarevic Page68of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Figure 10.23: Bioreactor 5 – Sulphate and Sulphide vs Time

BIOREACTOR 5 - SULPHATE & SULPHIDE vs TIME Point Continuous Sulphate Load Sulphate Load 8000 20

18 7000

16 6000 14

5000 12

Sulphate 4000 10 Sulphide

Sulphate(mg/l) 8 Sulphide(mg/l) 3000

6 2000 4

1000 2

0 0

3 5 2 1 7 4 1 8 5 9 1 3 49 6 7 7 8 9 9 0 1 34 40 1 112 1 126 1 1 Time (Days) Figure 10.24: Bioreactor 5 – Total Fe, Zn, Cu and Pb vs Time

BIOREACTOR 5 - TOTAL Fe, Zn, Cu & Pb vs TIME

Point Continuous 1000 Sulphate Load Sulphate Load 28000

26000 900 24000

800 22000

700 20000 18000 600 16000 TotalIron TotalZinc 500 14000 TotalLead 12000 TotalCopper 400 IronZinc & (mg/l)

10000 Lead& Copper (ug/l)

300 8000

200 6000 4000 100 2000

0 0

3 5 2 1 7 4 9 6 1 3 49 6 7 7 8 91 98 05 12 1 2 34 40 1 1 1 1 1 1 Time (Days)

D.A.Lazarevic Page69of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Bioreactor 6 (Multi Service Baghouse Dust) Pre-sulphate addition Sulphateconcentrationincreasedfromaninitiallevelof530mg/londay13to640mg/londay71 priortoAMDaddition.Sulphideconcentrationsshowedasmallriseandfallyetremainedlowata concentrationofbelow1.0mg/l,withalowestvalueof0.02mg/londay71. DuringtheperiodbeforeAMDadditionzinc,copperandleadconcentrationsremainedrelatively static,ironincreased590%duetotheironcovermaterial.Totalironincreasedfrom61mg/lon day13to360mg/londay71,thisincreasewasduetotheironpresentinthelayersofbaghouse dustwithinthebioreactor. Zincincreasedfrom34mg/londay13to45mg/londay71,copperdecreasedfrom450ug/lon day13to110ug/londay71andleadincreasedfrom34ug/londay13to45ug/londay71. Point Sulphate Load Atday72aloadof2.910litresofAMDfromWoodlawn(surfacewaterrunoff)withasulphate concentrationof20000mg/lwasaddedtothe10.0litresofleachatewith640mg/lconcentration to give a total leachate concentration of 5004 mg/l (see appendix D for calculations). AMD compositionisgivenintable10.1. Within2weeksofAMDadditionsulphatelevelsreachaconcentrationof2100mg/lbyday84, afterday84sulphateexperiencedadecreaseinconcentrationto1500mg/lbyday105.Sulphide concentrationsremainedlowat0.1mg/ltoday84andthenroseto1.7mg/lbyday71,sulphide thendecreasedto0.6mg/lbyday105.Theriseofsulphideisinverselyproportionaltothedropin sulphateconcentration. AMD addition appeared to have little affect on lead and copper concentrations, however zinc concentrationsshowedastrongincreaseduetotheAMD.Ironconcentrationsshowedasteady 32% increase in concentration duringthis period. Bioreactor 6 showed very similar changes in totalmetalconcentrationstobioreactor5. Totalironconcentrationsincreasedfrom360mg/londay71to530mg/londay98,thendeclined to490mg/lbyday105. Totalzincconcentrationsexperiencedasharpincreaseinthefirstweekfrom45mg/londay71 to 230 mg/l on day 71, due to the AMD addition (1100 mg/l). Zinc concentration then steadily declinedto110mg/lbyday105. Totalcopperconcentrationsremainedrelativelysteadyfrom45ug/londay71to110ug/londay 105. Totalleadconcentrationsalsoremainedsteadyfrom55ug/londay71to65ug/londay105. Continuous Sulphate Load From day 105 a continuous load of sulphate consisting of 4.0 litres per week, of AMD from Woodlawn(surfacewaterrunoff)withasulphateconcentrationof34000mg/lwasaddedtothe bioreactor.AMDcompositionisgivenintable10.1. DuringcontinuousAMDadditionsulphateconcentrationincreasedfrom1500mg/londay105to 5900mg/lbyday126.Sulphatewasreducedthefollowingweekto4900mg/londay134,after which it rose to 5800 mg/l by day 140. Sulphide levels remained low during this entire period, peakingat0.95mg/londay126,endingat0.2mg/londay140. TheinfluenceoftheAMDwasquitepronouncedbioreactor6withzincandcopperconcentrations increasing dramatically after the addition of the AMD. Total iron concentrations remained relativelysteadyduringthecontinuousAMDaddition,decreasing20mg/lfrom490mg/londay 105to470mg/londay140. Total zinc concentrations rose sharply during the 2 weeks after AMD addition, rising from 110 mg/l on day 105 to 550 mg/l by day 119, due to AMD addition (1100 mg/l). After this initial increase,zincconcentrationssteadiedincreasedfrom550mg/l119todayto610mg/londay 140.

D.A.Lazarevic Page70of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Totalcopperconcentrationsexperiencedthesamepatternofchangeaszinc.Twoweeksafter AMDadditioncopperrosefrom130ug/londay105to13000ug/londay119.Totalcopperthen droppedto11000ug/lthefollowingweek;thereafteritincreasedto17000mg/lbyday140. Totalleadconcentrationsshowedanincreasefrom65ug/londay105to140ug/londay140. Itwaswellillustratedfromthisexamplethatduringthereductionofsulphatetosulphide,metals withinthebioreactorwereconsumed,henceonlyaverysmallincreaseinsulphideconcentration. Bioreactor6illustratedthatwithsourceofanironrichmaterialtheabundanceofmetalswasable to precipitate with sulphide immediately after being produced, thus reducing the hydrogen sulphideintheLFG.

D.A.Lazarevic Page71of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Figure 10.25: Bioreactor 6 - Sulphate and Sulphide vs Time

BIOREACTOR 6 - SULPHATE & SULPHIDE vs TIME

Point Continuous 8000 Sulphate Load Sulphate Load 20

18 7000

16 6000 14

5000 12

Sulphate 4000 10 Sulphide

Sulphate(mg/l) 8 Sulphide(mg/l) 3000

6 2000 4

1000 2

0 0

3 5 2 1 7 4 1 8 5 9 1 3 49 6 7 7 8 9 9 0 1 34 40 1 112 1 126 1 1 Time (Days) Figure 10.26: Bioreactor 6 – Total Fe, Zn, Cu and Pb vs Time

BIOREACTOR 6 - TOTAL Fe, Zn, Cu & Pb vs TIME Point Continuous Sulphate Load Sulphate Load 1000 18000

900 16000

800 14000

700 12000

600 10000 TotalIron TotalZinc 500 TotaLead 8000 TotalCopper 400 IronZinc & (mg/l) Lead& Copper (ug/l) 6000 300

4000 200

100 2000

0 0

3 5 2 1 7 4 9 6 1 3 49 6 7 7 8 91 98 05 12 1 2 34 40 1 1 1 1 1 1 Time (Days)

D.A.Lazarevic Page72of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

10.3 BIOREACTOR PERFORMANCE TheresultsofthebioreactorLFGandleachatechemistryconfirmtheassumptionsmadeinthe previous sections, that bioreactors containing iron rich cover materials would experience lower hydrogensulphideconcentrationsinLFG,thanthebioreactorcontainingnoironrichcover. Bioreactor 2 containing no alterative daily cover material experienced a negligible rise in hydrogen sulphide gas after the initial point load, even though leachate indicators showed the reductionofsulphatewastakingplace.Themetalsnaturallyoccurringwithinthewaste,primarily iron,wereabletoprecipitatewiththesulphideproduced,hencetrappingthesulphurinthewaste as a solid metal sulphide precipitate. When the continuous acid mine drainage load was introduced,leachatechemistryshowedaprolificreductionofsulphatetosulphide,howeverlittle metalionswereavailabletoprecipitatewiththesulphideproduced,astheywereconsumedinthe previous stage. The net result of this sulphate reduction was hydrogen sulphide gas concentrationsofmorethan1700ppmor0.17%volume(hydrogensulphideisfataltohumansat >1000ppm). All bioreactors containing iron rich alternative daily cover materials experienced very similar results, with hydrogen sulphide gas concentrations remaining below 0.5 ppm in almost all measurement. In most cases there was a small peak of hydrogen sulphide after the initial continuous acid mine drainage addition, after which hydrogen sulphide gas stabilised to below 1ppminallcases.Leachatechemistrydatashowsthatwhilesulphatereductionwasevidentin thesebioreactorstheavailabilityofironwasabletoprecipitateanysulphideimmediatelyuponits formation. Datasuggestthatwhilstsulphatereductionwasevidentinthesebioreactorswasnotasprofuse asbioreactor2.Whenreviewingthedatathegreatestdifferencebetweenthesebioreactorswas bioreactorpH.Bioreactors36wereofpHrange5–6,yetbioreactor2experiencedasharprise inpHafterthepointAMDadditionandstabilisedatapproximately7.5(seeappendixB).Yetgiven theoptimalpHrangeofSRBofpH5.8–pH7withanoptimumgrowthrateofpH6.7(Reis,1992) itwouldappearthatallbioreactorsareoutoftheoptimalgrowthconditionsforSRB. BioreactorperformancecanbeaffectedbytheadditionofAMDinseveralways,listedbelow: pH TheinfluenceofAMDisanimportantfactorinloweringbioreactorpHoutoftheoptimumrange form menthanogenesis. AMD with low pH (approx. pH 2.5) it is conducive to maintaining bioreactor pH below optimum levels, by preventing the growth of methanogenic bacteria. With methanogenesis struggling to become established the organic acids formed during the acetogenicphasebuildupwithinthebioreactor,thiscancausethebioreactortobestalledinthe acetogenicphase.WhenthisoccurspHmustbeartificiallyraisedintothemethangoenicrange. Competition Aspreviouslydiscussedinsection7.2theSRB,responsibleforreducingsulphatetosulphide,are in competition with methanogenic bacteria for organic substrate, this competition can lead to reducedmethaneyieldswhereSRBcoloniesarelargeandhighamountsofhydrogensulphide are experienced. In addition to SRB competition, the anaerobicmethane oxidation by sulphate reductionanaerobicallyoxidisethemethaneonceithasformed.

D.A.Lazarevic Page73of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Toxicity TheinfluenceofAMDcanleadtotoxicconcentrationsofmetalswithinthebioreactors,harming methanogenic cellular activity and directly effecting bioreactor performance. The effective concentration of metals can often be controlled by pH, as they may exist in unionised forms, ionisedforms,orstableprecipitatesTable10.2giveathetoxicconcentrationsforcopper,nickel andzinc. Table 10.2: Toxic concentrations for various metals during Constituent ToxicConcentration(mg/L) Reference Cu 150250 Rudgel,1941 Cu 500 Rudgel,1946 Cu 1000 BarnesandBraidech,1942 Ni 200 BarnesandBraidech,1942 Ni 1000 WischmeyerandChapman,1942 Zn 1000 RudolphsandZeller,1932 Zn 350 McDermottetal.,1963 DuringtheadditionofAMDzincconcentrationsofbioreactors3,5and6wereamaximum430 mg/l,710mg/land610mg/lrespectively,showingthatzincwasabovethetoxiclevelof350mg/l. Both methanogenic and SRB would have been harmed by these levels of zinc, which may provide an explanation for sulphate and sulphide figuresfor these bioreactors not showing the samereductionofsulphateasinbioreactor2thathadamaximumzincconcentrationof46mg/l. Table 10.3 gives the highest concentration of selected metals that will allow “satisfactory” anaerobicdigestion.Eventhoughthemajorityofmetalconcentrationswithinthebioreactorsare below toxic concentrations, they above the satisfactory levels, thus limiting bioreactor performance.Leachateshowedlevelsofcopperabovesatisfactorylimitsinbioreactors5and6 andabovesatisfactorylimitsforzincinbioreactors3,5and6. Table 10.3: Limiting concentrations for various metals during anaerobic digestion Constituent Limiting Concentration (Dissolved or Reference(s) Available Form) mg/L Cu(total) 510 Barthetal.,1965 Ni(total) >1040 Barthetal.,1965 Zn(total) 10 Barthetal.,1965 100 Harriesetal.,1990 Productsotherthanmetalswerefoundintoxicconcentrationswithinthebioreactors,asulphide concentrationof67mg/linbioreactor2iswithinthetoxicrangeof80mg/l(Yoda,1987)or60 mg/l(KhanandTrottier,1978). The combination of AMD, with high metal content and sulphate being reduced to sulphide providesaharmfulenvironmentforthedevelopmentandactivityofmethanogens.

D.A.Lazarevic Page74of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

11 CONCLUSION AND RECOMMENDATIONS

11.1 CONCLUSION Theprimaryaimofthisresearchwastoestablishiftheadditionofcertainironrichalterativedaily waste covers would limit the concentration of hydrogen sulphide produced in the bioreactors, providinganinterimsolutionforthemanagementofhydrogensulphide. Bioreactors2–4testedvariousalternativecovermaterials,twoproductswerereadilyavailable commercialironoreproducts,theothertwoweresourcedfromindustrialwastestreamscloseto thevicinityoftheWoodlawnbioreactor,productsvariedinironcontentfrom95%61%. Allproductsfunctionedextremelywell,experiencingamaximumhydrogensulphideconcentration of 20ppm and an average concentration of 1ppm. Leachate data confirmed the occurrence of sulphate reduction and consumption of total metal concentration; hence the presence of metal sulphide precipitation can be inferred. As previously stated the half life of waste within the bioreactors ranges from 35 years, hence waste that is subject to the influence of acid mine drainage for a period of time such as this requires the availability of metals to last the same period.Wastewithinthesebioreactorswassubjectto1/6–1/10thetimescaleofdegradationthat would normally occur. As time unfolds this iron would be consumed by metal sulphide precipitation, hence the limiting factor in this equation must be iron not sulphide, to maintain hydrogensulphideatminimallevels.TheapplicationrateofAlternativeDailyCoverusedinthe testbioreactorswastheequivalentof35kg/m2,or1tonper28.5m2.Asshownintheabovedata, thisapplicationratewouldbemorethansufficienttodealwiththereducedsulphide.Itwouldbe recommendedforVeoliatoconductamassbalancestudyoftheamountofsulphateenteringthe void, from groundwater and surface water runoff, to establish the minimum amount of ADC neededtoprecipitatethereducedsulphide. Bioreactors3–4allshowedthatthealternativewastecovermaterialssucceededinpreventing theformation of hydrogen sulphide gas.Whilstthere was some variation in hydrogen sulphide concentrations, this was negligible, even with varying particle size and iron content. It was expectedtoseeamorepronouncedvariationbetweenthesedifferentproducts. A secondary aim of this research was to test the ability for the metals contained within the municipalsolidwasteandacidminedrainagetolimittheamountofhydrogensulphideproduced withinatestbioreactor. Bioreactor 2 contained no alternative daily cover material and experienced the greatest concentration of hydrogen sulphide in LFG, concentrations of greater than 1700ppm. Both leachateandLFGdataconfirmedthatovertimemetalsexistingwithinthewasteandAMDwere consumed to a point where concentrations were too low to precipitate the amount of sulphide produced.ThussulphideconcentrationsinbothleachateandLFGwillriseaslongasthereisa sourceofsulphatetobereduced. Datafrombioreactor2showedthattherewerenotenoughmetalscontainedwithinthewasteand AMDtopreventtheformationofhydrogensulphidewithintheLFG.Itshouldbenotedthatlevels ofhydrogensulphidewithinbioreactor2werealmosttwicethelethalconcentrationforhumans. However onsite conditions are conducive to lower hydrogen sulphide concentrations, negative pressurewithinthebioreactorvoidreducedtheamountofLFGexposuretooperators,andunlike thebioreactorsthewholesiteisnotsubjecttotheselevelsofsulphatereduction,areastoward the centre of the waste mass are buffered by the peripheral zones of waste, hence what was experiencedwithinthebioreactorsisaworstcasescenario.

D.A.Lazarevic Page75of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

11.2 RECOMMENDATIONS Theadditionofironrichalternativedailycovermaterialstoretainsulphurwithinthewastemassis aneasyandfastsolutiontoimplement.Theprecipitationofmetalsulphidewouldnotbeexpected to cause any greater problems, such as clogging of any drainage layers or gas blankets and leachaterecirculationequipmentwithprecipitate,thaniscurrentlytakingplace.Themajorityof leachate pump failure has been due to the build up of carbonates on equipment, not metal sulphides. Thedailyspreadingofanyofthesealternativewastematerials,andpostwettingofthismaterial throughthesurfacespreadingofleachate,willnotonlyimprovesurfacewastemoisturecontent butalsoformacrustonthewaste,preventingwindblownfromexitingthevoid. Itshouldbereiteratedthattheuseofthismethodtoreducehydrogensulphideisonlyonepartof atotalstrategy.Physicalbarrierssuchasremovalofhighwasterockwithhighsulphatepotential from void walls, plugging weepholes/draining holes within the void walls (from previous mining operations)andconstructionofsurfacewaterdrainageroutestocollectionponds,willallactin preventing sulphate from entering the waste mass. The most effective way of preventing the formationofhydrogensulphideistoremovethesourceofsulphate,howeveritisinevitablethat sulphate will find its way into the bioreactor leachate. Through the development of a leachate treatmentsystem,theremovalofsulphatefrombioreactorleachate,mostpreferablythroughthe precipitationofcalciumsulphate(gypsum),willallowforaflexiblewaytoremovesulphatefrom bioreactorleachate,andenableamoreactiveapproachtoleachaterecirculation. AlthoughthethreatofhydrogensulphidewillalwaysbepresentatWoodlawn,voidgeometrywill workinfavourtoreducehydrogensulphideproduction.Duetotheconicalshapeofthevoid,the most favourable conditions for the production of hydrogen sulphide are currently being experienced,asmallamountofwastesubjecttolargevolumesofAMD,andasaturationofthe basalwastelayer.Inthefuturetheincreasedsizeofthewastemasswillhaveagreaterabilityto buffertheinflowofAMDandhydrogensulphideproducedwillbelimitedtothesmallareasthat aresubjecttothisAMDinfluence. OnelastrecommendationforVeoliaisanimprovementofoperationalleachatemonitoring.One can only evaluate bioreactor performance by evaluation of both LFG and leachate data. Data collection needs to be specified to gain the most valid information for the bioreactor and also reduce testing of unwanted parameters. The most useful parameters for monitoring bioreactor 2 2 performancearepH,SO4 ,S ,VFA,COD,BOD,NH3,TDS,Eh,heavymetals(i.e.Fe,Zn,Cu, Pb).With this information many factors can be determined such as; areas of AMD incursions; dissociation state of hydrogen sulphide; organic matter conversion efficiency; and potential for exhaustionoforganicmatter.

D.A.Lazarevic Page76of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

12 REFERENCES

References Cited AlbertaHumanResource&Employment.2005,Hydrogen Sulphide and the Worksite,Worksafe Alberta. Barnes,G.E.,andBraidech,M.W.,1942,TreatingPickelingLiquorsforRemovalofToxicMetals, EngineeringNewsRecord129:496. Barth,E.F.,Moore,W.A.,andMcDermott,G.N.,1965,InteractionofHeavyMetalsinBiological TreatmentProcesses,U.S.Dept.ofHealth,Education,andWelfareReport,May,1965, Washington,D.C. Batstone, D. 2007. Personal Communications – Advanced Waste Water Management Centre, TheUniversityofQueensland.

Christensen,THandKjeldsen,P,1989.Basicbiochemicalprocessesinlandfills,Chapter2.1of sanitary landfilling: process, technology and environmental impact, Academic Press, London, ISBN0121742555. Christensen, T.H., Kjeldsen. P., Lindhardt. B. 1996, ‘Gas Generating Processes in Landfills’ in Landfilling of Waste Biogas,edited.Christensen,T.H.,Cossu,R.,Stegmann,R.,E&FNSpon, London,p2750.

Chynoweth, D., Pullammanappallil, P. 1996, Anaerobic Digestion of Municipal Solid Wastes in MicrobiologyofSolidWastes(Ed,Barlaz,A.C.P.a.M.A)CRCPress.

DeBaere,L.A.,Devocht,M.,VanAssche,P.,Verstrae,W.1984.‘InfluenceofhighNaCland NH4Clsaltlevelsonmethanogenicassociations’, Water Research,Vol.18,no5,pp543548.

Elferink,S.J.W.H.a,Visser,A.,b,HulshoffPol,L.W.,Stares,A.J.M.1994,‘Sulfatereductionin methanogenic bioreactors’, Federation of European Microbiological Societies Microbiology Reviews,Vol.15,pp119136. EnvironmentalProtectionAuthority,NSW.1996,Environmental Guidelines: Solid Waste Landfills, EnvironmentalProtectionAuthority,NSW,Sydney. Environmental Protection Authority, NSW. 2004, Woodlawn Bioreactor: Environment Protection Licence No. 11436,EnvironmentalProtectionAuthority,NSW,Sydney. Farquhar, G.J., Rovers, F.A. 1973, ‘Gas Production During Refuse Decomposition’, Water, Air and Soil Pollution,vol.2,pp.483–495. Fairweather, R, J., Baralaz. M.A. 1998, ‘Hydrogen sulfide production during decomposition of landfillinputs’,Journal of Environmental Engineering,vol.124,no.4,pp363–381. Gurijala,K.R,Suflita,J.M.1993,‘EnvironmentalfactorsInfluencingMethanogenesisfromRefuse inLandfillSamples’,Environmental Science and Technology,vol.27,no.6,pp1176–1181. Harries, C, R., Scrivens, A., Rees, J.F., and Sleat, R., 1990, Initiation of Methanogenesis in Municipal Solid Waste. 1. The Effect of Heavy Metals on the Initiation of Methanogenesis in MSWLeachate,EnvironmentalTechnology11:1169.

D.A.Lazarevic Page77of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Harries, J. 1997, ‘Acid mine drainage in Australia: Its extent and potential future liability’, Supervising Scientist Report 125,SupervisingScientist,Canberra,pp94. Joseph,J.B.2003,WasteManagementPoliciesandtheImpactofPastDecisions–anAustralian Case Study, Ninth International Waste Management and Landfill Symposium, S. Margherita di Pula, Calgliari, Italy, by CISA, Environmental Sanitary and Engineering Centre, Italy. 610 October2003. Kim, KH., Choi, YJ., Jeon, EC., Sunwoo, Y. 2004, ‘Characterisation of malodorous sufur compoundsinlandfillgas’,Atmospheric Environment,Vol.39,pp11031112. Kugleman, J.J., Chin, K.K, 1971. ‘Toxicity, Synergism and Antagonism in Anaerobic Waste Treatment Processes’, in Anaerobic Biological Treatment Processes, Advances in Chemistry Series,ed.Gould,R.F,vol.105,AmericanChemicalSociety,Washington,D.C. Lee, S., Xu, Q., Booth, M., Townsend, T., Chadik, P., Bitton, G. 2006, ‘Reduced sulfur compoundsingasfromconstructionanddemolitiondebrislandfills’,Waste Management,Vol.26, pp526533.

Lovely, D.R., Klug, M.J., 1986, ‘Model for the Distribution of Sulphate Reduction and MethanogenesisinFreshwaterSediments,Geochemical et Cosmochimica Acta,vol.50,pp11 18. McDermott,G.N.,Barth,E.F.,Salotto,V.,andEttinger,M.B.,1963,ZincinRelationtoActivated Sludge and Anaerobic Digestion Processes, p. 471 in Proc. 17th Purdue Industrial Waste Conference,publishedbyPurdueUniversity,WestLafayette,Indiana.

Mudder, T. 2004, ‘Coming down hard on ARD’, Mining Environmental Management, vol. may 2004,pp2.

Raskin,L.,Rittmann,B.E.,Stahl,D.A.1996,‘CompetitionandCoexistenceofSulfateReducing andMethanogenicPopulationsinAnaerobicBiofilms’,Applied and Environmental Microbiology, Oct.1996,p.3847–3857 Reis,M.A.M.,Almeida,J.S.,Lemos,P.C.,Carrondo,M.J.T.1992,‘EffectsofHydrogenSulphide onGrowthofSulphateReducingBacteria’,Biotechnology and Bioengineering,vol.40,pp593– 600. Reinhart,D,R.,Townsend,T.G.1998,Landfill Bioreactor Design & Operation,CRCPressLCC, Florida.

Rudgel,H.T.,1941,BottleExperimentsasaGuideinOperationofDigestersReceivingCopper SludgeMixtures,SewageWorksJournal13:1248. Rudgel, H.T., 1946, Effects of Copper Bearing Wastes on Sludge Digestion, Sewage Works Journal18:1130.

Rudolphs,W.,andZeller,P.J.A.,1932,EffectofSulfateSaltsonHydrogenSulfideProductionin SludgeDigestion,SewageWorksJournal4:77.

Shon,ZH.,Kim,HH.,Jeon,EC.,Kim,MY.,Kim,YH.,Song,SK.2005,‘Photochemistryof reduced sulfur compounds in a landfill environment’, Atmospheric Environment, Vol. 39, pp 488034814.

Sponza,D.T.,Agdag,O,N.,2005.‘Effectsofshreddingofwastesonthetreatmentofmunicipal solid wastes (MSWs) in simulated anaerobic recycled reactors’, Enzyme and Microbial

D.A.Lazarevic Page78of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

Technology,Vol36,no1,pp2533.

Parker,G.,Robertson,A.1999,Acid Drainage: A critical review of acid generation and Sulfide Oxidation: Process, Treatment and Control, Australia Minerals and Energy Environment Foundation,OccasionalPaperno.11,Melbourne,pp227

Solid Waste Management Association of North America, 2004. Definitions of Terms uded in SWANATechnicalPoliciesandSolidWastemanagement,T0SWANATechnicalPolicy.

SydneyWater,NoDate.WaterfiltrationatSydneyWater,SydneyWater,Sydney.

United Kingdom Environment Agency. 2004, Guidance on the Management of Landfill Gas, EnvironmentalAgency,Bristol,pp51–68. UniversityofRhodeIsland,nodate.SolubilityProductConstantsnear25oC[Online].Available: http://bilbo.chm.uri.edu/CHM112/tables/KspTable.htm,Accessed:January2007. VeoliaEnvironmentalServices,2006.Commercial in Confidence. WasteManagementAuthorityofNewSouthWales,1991.AnnualReport1990/91.WMA, Sydney,Australia. Williams,T.2005, and Disposal,2ndedn,Wiley,WestSussex,pp197–210.

Willumsen,H.,1989.LandfillGas,Resources, Concervation and Recycling,vol4.pp121133

Winchester, S. 2005, Acid Mine Drainage Reduction by Industrial Waste coDisposal, PhD Thesis,MacquarieUniversity. Wischmeyer,W.J.,andChapman,J.T.,1947,AStudyoftheEffectofNickelonSludgeDigestion, SewageWorksJournal19:790. Yoda,M.,Kitagawa,M.,Miyaji,Y.,1987,‘LongTermCompetitionBetweenSulphateReducing andMethaneProducingBacteriaforAcetateinAnaerobicBiofilm;,Water Resources,vol.21,pp 15471556.

Other References Alvarez,M.T.,CrespoC.,Mattiasson,B.2006,‘PrecipitationofZn(II),Cu(II)andPb(II)atbench scale using biogenic hydrogen sul•de from the utilization of volatile fatty acids’, Chemoshpere, doi:10.1016/j.chemosphere.2006.07.065 Bates,M.2000,TheEffectsofHeavyMetalSpeciationonMethanogenesisinLandfillResearch andDevelopmentTechnicalReportP255,EnvironmentAgency,Bristol. Bhagat,M.,Burgess,J.E.,Antunes,A.P.M.,2004,Whiteley,C.G.,DuncanJ.R.‘Precipitationof mixedmetalresiduesfromwastewaterutilisingbiogenicsulphide’,Minerals Engineering,Vol.17, 925–932. Greben H.A, Matshusa M.P , Maree J.P. 2005, ‘The biological Sulphate removal technology’, Ninth International Mine Water Association Congress, Oviedo, Asturias, Spain. 57 September 2005. Greben, H.A., Maree1, J.P., Eloff1, E., Murray, K. 2005, ‘Improved sulphate removal rates at increasedsulphideconcentrationinthesulphidogenicbioreactor’,Water SA,Vol.31,351–358.

D.A.Lazarevic Page79of87 RoyalInstituteofTechnology Stockholm,2007 VeoliaEnvironmentalServices

ISSN03784738 Haaning Nielsen, A., Lens, P., Vollertsen, J., HvitvedJacobsen, T. 2005, ‘Sulfide–iron interactionsindomesticwastewaterfromagravitysewer’,Water Research,Vol.39,2747–2755. doi:10.1016/j.watres.2005.04.048 Harmandas, N.G., Koutsoukos, P.G. 1996, ‘The formation of iron(II) sulfides in aqueous solutions’,Journal of Crystal Growth,Vol.167,719724.PllS00220248(96)002576 Kennedy, L.G., Everett, J.W. 2005, ‘Microbial degradation of simulated landfill leachate: solid iron/sulfurinteractions’,Advances in Environmental Research,Vol.5,103–116. Levlin, E. 1993, Material deterioration at different process conditions in waste deposits – prestudy, ‘Water Resources Engineering’, Rapport till Avfallsforskningsrådet AFR, Område 4 Miljöanpassaddeponeringsteknik,Diarienr.314,dossienr.230. Ma,S.,Noble,A.,Butcher,D.,Trouwborst,R.E.,Luther,G.W.III.2006,‘RemovalofH2Sviaan iron catalytic cycle and iron sulfideprecipitation in the water column of dead end tributaries’, Estuarine, Coastal and Shelf Science,Vol.70,461–472.doi:10.1016/j.ecss.2006.06.033 Machemer, S.D., Reynolds, J.S., Laudon, L.S., Wildeman, T.R. 1993, ‘Balance of S in a constructedwetlandbuilttotreatacidminedrainage,IdahoSprings,Colorado,U.S.A.’,Applied Geochemistry,Vol.8,587603. Nichols,P.H.2003,AnOverviewofIssuesRelatingtotheDisposalifUrbanWasteinAustralia 1788–2000,Ninth International Waste Management and Landfill Symposium, S.Margheritadi Pula, Calgliari, Italy, by CISA, Environmental Sanitary and Engineering Centre, Italy. 610 October2003. Olivier,F., Gourc, JP., MoreauLe Golvan, Y., Low, D., Smith, L. 2002, ‘Simulation of waste settlementindeeplandfill:WoodlanBioreactorCaseStudy’,2nd Asian Pacific Landfill Symposium –APLASSeoul,Korea,2528September2002. Rickard, D. 2005, ‘Kinetics of FeS precipitation: Part 1. Competing reaction mechanisms’, Geochimica et Cosmochimica Acta,Vol.59,No.21.4367–4379. SinanBilgili,M.,Demir,A.,Ozkaya,B.2006,‘Influenceofleachaterecirculationonaerobicand anaerobic decomposition of solid wastes’, Journal of Hazardous Materials (doi:10.1016/j.jhazmat.2006.09.012) SunaErses,A.,Onay,T.T.2003,‘Insituheavymetalattenuationinlandfillsundermethanogenic conditions’,Journal of Hazardous Materials,B99,159–175 doi:10.1016/S03043894(02)003540 Themelis,N.J.,Ulloa,P.A.2006,‘MethaneGenerationinLandfills’,Renewable Energy’, Wilumsen,H.1990,‘LandfillGas’,Resources, Conservation and Recycling,Vol4,p121–133.

D.A.Lazarevic Page80of87 APPENDIX A - ALTERNATIVE DAILY COVER MATERIAL ANALYSIS

O HAEMATITE O MAGNATITE O FERRIC HYDROXIDE o MULTISERV BAGHOUSE DUST

TECHNICAL INFORMATION SHEET

PRIMOX G (Interim)

Description: An iron ore powder suitable for use in glass manufacture. Produced at Welshpool WA

Specification: Sizing 10% maximum + 106 microns (Note: This product is manufactured to the requirements of the process specification above. Typical properties are a consequence of the process, nature of raw material, and are measured at a lower frequency than the specified properties. These results are an average of historical data.)

Typical Chemical & Physical Typical Particle Size Distribution Properties: by Sedimentation:

Total Iron as Fe2O3 95.0% % Finer Silica SiO2 2.4% 100

Alumina Al2O3 2.7% 90 Magnesia MgO 0.1% 80 Manganese Oxide MnO 0.2% 70 Titania TiO2 0.1% Lime CaO 0.2% 60 Loss on Ignition (1000°C) 2.4% 50

Specific Gravity 4.78 40 30 20

10

0 2 4 6 10 20 38 53 75 150 Microns

TEST METHODS: Particle Size UAL 2.17 Sedigraph 5100 Sizing UAL 2.5(B) Chemical Analysis UAL 8.5 XRF Specific Gravity UAL 2.13 Multipycnometer Loss on Ignition UAL 2.3 Date: SEPTEMBER 2003 Issue No: Interim TIS No: 20.3.4 Authorised By:

All information is given in good faith but no guarantee of accuracy is Unimin Australia Limited A.B.N 20 000 971 844 made nor can we anticipate every possible application of our product nor variations in manufacturing equipment and methods. Our Principle & Registered Office: Level 16, 111 Pacific Highway, North Sydney, NSW 2060 Australia Ph: +61 2 9458 2929 Fax +61 2 9458 2900 products are therefore sold without warranty express or implied, and AUSTRALIA Sydney : +61 2 9637 7066 Brisbane : +61 7 3275 2499 NEW ZEALAND Auckland :+64 9 914 7010 on the condition that the purchaser relies on his own ability to determine the suitability of each product for a particular purpose. Adelaide : +61 8 8240 8200 Melbourne : +61 3 9586 5400 Statements concerning the possible use of our products are not intended as recommendations for use. No liability is accepted for Newcastle : +61 2 4967 1222 Perth : +61 8 9362 1411 infringement of any patents.

Technical Information Sheet UNIMIN AUSTRALIA LIMITED

HEAD OFFICE Branches: Level 6, 80 George Street NEWCASTLE (02) 4967 1222 Parramatta NSW Australia 2150 MACKAY (07) 4955 1501 Telephone: +612 9354 2929 TALLAWANG (02) 6375 9666 Facsimile: +612 9891 2074

All information is given in good faith but no guarantee of accuracy is made nor can we anticipate every possible application of our product nor variations in manufacturing equipment and methods. Our products are therefore sold without warranty express or implied, and on the condition MAGNETITE that the purchaser relies on his own ability to determine the suitability of each product for a particular purpose. Statements concerning the possible use of our products are not intended as recommendations for use. No liability is accepted for infringement of any patents.

DESCRIPTION TYPICAL APPLICATION

1 Dense medium mineral separation A high purity magnetic iron oxide 2. Filler 3. Ballast for counterweights Chemical Formula Fe3O4 4. Ferro-cement 5. Oxidising

TYPICAL CHEMICAL ANALYSIS TYPICAL PHYSICAL PROPERTIES

Si02 1.4% Specific gravity 4.9 minimum Al 203 0.8% 5.0 typical Magnetic content: Total Fe 69.5% (Davis Tube, 700 gauss) 98% typical Fe304 95.0% 96% minimum Free Fe203 1.0% Packing density: Compacted (kg/m3) 2800 S 0.2% Loose (kg/m3) 1600 P 0.02% Cu 0.005% TYPICAL SIZING ANALYSIS 0 H20 (110 C) 10.0% maximum (Passing 53 microns) 7.0% typical Coarse 50-60% Medium 65-75% TYPICAL MAGNETIC PROPERTIES Fine 85-90% Superfine 90-95% Saturation Moment Ultrafine 95-99% Not less than 80 e.m.u./g, (83.5 typical) Maxifine 98-100%

Susceptibility @ 800 Oersteds not less than PACKAGING 0.050 e.m.u./oe/g, (0.053 typical) 1. 25kg & 33kg Plastic Bags Coercive Force 2. 0.5, 1 & 1.5 tonne Bulker Bags Less than 40 Oersteds, (33.0 typical) 3. Bulk Truck

The above figures are as determined by Acirl Ltd on the 45 x 38 micron fraction ILLAWARA WATER TREATMENT PLANT- HYDROXIDE SLUDGE COMPOSITION

Client sample ID (Primary): IWS1 IWS2 IWS3 IWS4 IWS5 IWS6 Sample date: 17/05/2005 17/05/2005 17/05/2005 17/05/2005 17/05/2005 17/05/2005 Analyte grouping Sample Method CAS Number Units LOR Moisture (@ 103°C) EA055 (Initial Sample) % 1 47.7 47.8 47.6 47.2 40.3 40 Moisture (@ 103°C) EA055 (Rebatched) % 1 47.9 48.9 42.4 54.9 40.5 40.2 Average 47.8 48.35 45 51.05 40.4 40.1 Analysis Below on Dry Weight Basis Sulphur ED042T:LECO % 0.01 0.35 0.37 0.34 0.35 0.34 0.33 Sodium ED093T 7440-23-5 mg/kg 10 900 390 320 260 280 270 Potassium ED093T 7/09/7440 mg/kg 10 4690 2770 2220 1970 2030 1830 Calcium ED093T 7440-70-2 mg/kg 10 85200 88300 71000 56100 87100 79500 Magnesium (Initial) ED093T 7439-95-4 mg/kg 10 3100 3110 2970 2510 3210 3170 Magnesium (Rebatched) ED093T 7439-95-4 mg/kg 50 3230 3020 2420 2650 3700 3470 Average 3165 3065 2695 2580 3455 3320 Aluminium EG005T:ICP-AES 7429-90-5 mg/kg 50 3870 3390 2820 3550 3970 3760 Arsenic EG005T:ICP-AES 7440-38-2 mg/kg 5 <5 <5 <5 <5 <5 <5 Barium EG005T:ICP-AES 7440-39-3 mg/kg 10 270 280 300 260 400 370 Beryllium EG005T:ICP-AES 7440-41-7 mg/kg 1 <1 <1 <1 <1 <1 <1 Cadmium EG005T:ICP-AES 7440-43-9 mg/kg 1 5 5 4 4 6 6 Chromium EG005T:ICP-AES 7440-47-3 mg/kg 2 29 28 26 24 29 26 Cobalt EG005T:ICP-AES 7440-48-4 mg/kg 2 9 9 8 8 12 10 Copper EG005T:ICP-AES 7440-50-8 mg/kg 5 42 37 33 32 40 36 Iron EG005T:ICP-AES 7439-89-6 mg/kg 50 110000 101000 83800 92900 133000 121000 Lead EG005T:ICP-AES 7439-92-1 mg/kg 5 11 11 10 5 10 11 Manganese EG005T:ICP-AES 7439-96-5 mg/kg 5 3310 3310 4450 3440 4840 4560 Nickel EG005T:ICP-AES 7440-02-0 mg/kg 2 38 37 36 33 41 38 Vanadium EG005T:ICP-AES 7440-62-2 mg/kg 5 25 24 21 23 25 22 Zinc EG005T:ICP-AES 7440-66-6 mg/kg 5 131 132 111 104 151 133 Mercury EG035T:FIMS 7439-97-6 mg/kg 0.1 3.4 2.7 2.2 2.7 2.8 2.5 Total Phosphorus EK067 mg/kg 2 1000 1130 1000 1170 1140 1400 MEICP85: Borate Silica 7631-86-9 % 0.01 9.33 8.9 7.23 7.88 7.05 6.9 Fusion

Hydroxide Content of Iron Hydroxide (Fe(OH)3) 10.04 9.22 7.65 8.48 12.15 12.15 Total Dry Material Analysed % (Dry weight incl Silica) 30.95 29.66 24.46 24.48 31.04 28.86 Sample Loss at 500 deg 42.30 42.80 34.00 44.90 51.80 40.20 Sample Loss at 1000 deg 57.40 57.20 50.70 57.80 66.70 58.00

Weight % of sample accounted for by analysis 88.35 86.86 75.16 82.28 97.74 86.86

Source: Verolia Water, 2006 ILLAWARRA RESOURCE RECOVERY – IRON BEARING SLUDGES

MultiServ CPCM Rollshop Material Baghouse dust swalf WGEP1 Sample Date 17/01/05 17/01/05 17/01/05 Chem Analysis 01/01/97 01/01/97 XRF (BSL Lab) Unit Fe % 61.70 40.80 43.6 SiO2 % 1.62 1.28 5.4 Al2O3 % 0.65 0.87 1.9 CaO % 0.86 8.85 11.2 P % 0.07 0.50 0.05 Mn % 0.51 0.13 0.30 MGO % 0.37 0.41 1.10 ZN % 2.39 0.15 0.013 K2O % 0.06 0.01 1.80 CL % 0.04 0.06 0.81 TiO2 % 0.19 0.01 0.11 V % 0.03 0.01 0.01 S % 0.11 0.35 0.23

Moisture Content (dried @ 103°C) % 20.1 8.6

Waste Classification Solid Industrial Solid

Total Concentration Unit Arsenic mg/kg 128 62 11 Beryllium mg/kg <1 <1 <1 Cadmium mg/kg 2 7 10 Hexavalent Chromium - Soluble mg/kg <1 <1 <1 Fluoride mg/kg 200 <40 640 Lead mg/kg 228 68 728 Mercury mg/kg <0.1 <0.1 3.2 Molybdenum mg/kg 91 265 17 Nickel mg/kg 194 1200 28 Selenium mg/kg 8 17 18 Silver mg/kg <2 <2 <2 Thorium mg/kg 0.2 <0.1 1.1 Uranium mg/kg 0.1 <0.1 1.8

Leachates Unit Arsenic mg/L <0.1 0.2 <0.1 Beryllium mg/L <0.05 <0.05 <0.05 Cadmium mg/L <0.05 <0.05 <0.05 Hexavalent Chromium mg/L <0.100 <1.00 <0.010 Fluoride mg/L 15.6 2.3 12 Lead mg/L <0.1 <0.1 <0.1 Mercury mg/L <0.0001 0.0001 <0.0001 Molybdenum mg/L <0.1 1.2 <0.1 Nickel mg/L 0.4 6.9 <0.1 Selenium mg/L <0.05 0.15 0.11 Silver mg/L 0.6 <0.1 <0.1

TCLP Leach pH Initial pH pH Unit 7.6 8.9 10.6 Final pH pH Unit 5.3 6.5 7.8 Source: Illawarra Resource Recovery, 2006.

APPENDIX B – LEACHATE ANALYSIS RESULTS

O ANALYTICAL RESULTS O FIELD RESULTS O WATER BALANCE

Once printed this document is an uncontrolled version and should be checked against the electronic version for validity Document:: Thesis Temp2 | Last printed: 6/19/2007 2:46 PM Page 2 of 5 Royal Institute of Technology LEACHATE ANALYSIS - ANALYTICAL Stockholm, 2007

BIOREACTOR 1 Date Parameter Units 18 32 46 68 82 96 109 117 124 131 138 145 152 159 167 173 24-Oct-06 07-Nov-06 21-Nov-06 13-Dec-06 27-Dec-06 10-Jan-08 24-Jan-07 31-Jan-07 07-Feb-07 14-Feb-07 21-Feb-07 28-Feb-07 07-Mar-07 15-Mar-07 22-Mar-07 28-Mar-07 Temp oC pH pH units 5.6 5.7 6.2 7.1 7.4 7.5 7.5 7.6 7.6 7.3 7.4 7.5 7.4 7.5 7.4 7.4 Specific Conductance uS/cm 16000 18000 20000 20000 20000 20000 20000 20000 19000 Vol Fatty Acids mg/L 7700 9400 16000 13000 34000 1300 10 BOD mg/L 12000 19000 18000 11000 6400 2000 1200 870 650 240 COD mg/L 17000 27000 13000 5300 4800 3700 5000 2100 Ammonia mg/L 750 970 1200 1400 1400 1400 1500 1500 1500 1500 TDS mg/L 14000 15000 16000 14000 12000 9800 9300 8500 6800 Sulphate mg/L 6 5 5 5 5 5 150 50 5 16 20 340 17 5 21 5 Sulphide mg/L 1.4 1.7 1.8 4.4 3.4 0.1 3.8 0.9 2.1 1.3 0.5 0.44 0.6 0.3 0.35 0.85 Total Copper ug/L 670 640 510 500 410 320 340 260 290 200 240 210 190 130 180 160 Total Iron mg/L 540 580 430 210 100 53 34 35 40 34 34 31 35 26 29 32 Total Lead ug/L 520 200 160 240 180 170 120 140 170 140 140 130 67 63 68 69 Total Zinc mg/L 3.2 1.8 1.6 1.7 1.4 1.4 1.8 1.9 2.2 1.6 1.4 1.3 1.1 .77 3.3 3.5

BIOREACTOR 2 Date Parameter Units 18 32 46 68 82 96 109 117 124 131 138 145 152 159 167 173 24-Oct-06 07-Nov-06 21-Nov-06 13-Dec-06 27-Dec-06 10-Jan-08 24-Jan-08 31-Jan-08 07-Feb-07 14-Feb-07 21-Feb-07 28-Feb-07 07-Mar-07 15-Mar-07 22-Mar-07 28-Mar-07 Temp oC pH pH units 5.3 5.2 5.3 5.4 5.7 5.8 6.2 6.7 7.4 7.4 7.6 7.6 7.3 7.4 7.3 7.4 Specific Conductance uS/cm 18000 22000 22000 23000 22000 22000 22000 22000 22000 VFA mg/L 10000 12000 23000 23000 26000 15000 2800 BOD mg/L 22000 33000 37000 34000 27000 32000 20000 19000 12000 310 COD mg/L 36000 49000 55000 57000 36000 30000 22000 8200 Ammonia mg/L 930 1300 1400 1600 1700 1700 1700 1700 1700 1600 TDS mg/L 17000 22000 21000 22000 21000 18000 17000 15000 13000 Sulphate mg/L 360 410 440 260 220 140 910 5 200 63 20 3200 2800 2000 430 52 Sulphide mg/L 1.2 0.88 1 0.8 1.8 0.7 14 6.5 18 6.4 3.4 5 60 69 76 76 Total Copper ug/L 140 99 47 42 44 59 600 250 190 140 130 3300 170 2500 1400 1100 Total Iron mg/L 610 720 680 670 560 460 290 84 57 58 50 30 21 21 18 14 Total Lead ug/L 180 130 62 56 48 54 86 58 63 70 66 32 22 36 61 29 Total Zinc mg/L 5.2 1.9 1 0.90 0.6 0.75 46 20 8.2 5.4 3.3 11 31 39 28 23

BIOREACTOR 3 Date Parameter Units 18 32 46 68 82 96 109 117 124 131 138 145 152 159 167 173 24-Oct-06 07-Nov-06 21-Nov-06 13-Dec-06 27-Dec-06 10-Jan-08 24-Jan-08 31-Jan-08 07-Feb-07 14-Feb-07 21-Feb-07 28-Feb-07 07-Mar-07 15-Mar-07 22-Mar-07 28-Mar-07 Temp oC pH pH units 5.5 5.2 5.4 5.4 5.6 5.4 5.5 5.5 5.6 5.6 5.7 5.7 5.8 5.8 5.9 5.9 Specific Conductance uS/cm 22000 27000 31000 33000 32000 32000 32000 32000 32000 VFA mg/L 12000 20000 38000 32000 37000 29000 13000 BOD mg/L 28000 42000 48000 58000 26000 59000 57000 54000 49000 36000 COD mg/L 45000 59000 84000 110000 80000 80000 77000 57000 Ammonia mg/L 1300 1800 2100 2400 2500 2500 2500 2500 2700 2400 TDS mg/L 23000 28000 31000 40000 40000 41000 36000 37000 31000 Sulphate mg/L 270 410 330 520 540 710 950 1600 1000 1500 1600 2900 3700 4300 4500 4400 Sulphide mg/L 2.3 0.78 0.7 0.2 1 0.2 0.7 1 1.4 0.8 0.2 0.4 0.7 1.8 1 0.6 Total Copper ug/L 200 150 85 52 36 13 13 21 33 46 41 920 790 670 640 880 Total Iron mg/L 720 830 750 830 1000 910 790 980 1000 970 1000 960 980 920 900 890 Total Lead ug/L 210 170 100 85 76 40 16 32 37 32 68 62 45 51 77 57 Total Zinc mg/L 6 2.5 2.7 2.2 5.6 2.7 13 18 17 14 12 430 88 110 100 120

Page 1 of 3 Royal Institute of Technology LEACHATE ANALYSIS - ANALYTICAL Stockholm, 2007

BIOREACTOR 4 Date Parameter Units 18 32 46 68 82 96 109 117 124 131 138 145 152 159 167 173 24-Oct-06 07-Nov-06 21-Nov-06 13-Dec-06 27-Dec-06 10-Jan-08 24-Jan-08 31-Jan-08 07-Feb-07 14-Feb-07 21-Feb-07 28-Feb-07 07-Mar-07 15-Mar-07 22-Mar-07 28-Mar-07 Temp oC pH pH units 5.3 5.2 5.2 5.2 5.3 5.2 5.4 5.4 5.5 5.4 5.5 5.4 5.4 5.4 5.4 5.3 Specific Conductance uS/cm 19000 23000 25000 27000 27000 27000 28000 28000 28000 VFA mg/L 11000 16000 32000 28000 36000 14000 6800 BOD mg/L 25000 36000 39000 49000 47000 51000 52000 51000 44000 35000 COD mg/L 39000 52000 75000 85000 70000 67000 66000 55000 Ammonia mg/L 960 1300 1600 1700 1900 1800 1900 1900 2100 1900 TDS mg/L 19000 25000 25000 31000 32000 33000 30000 30000 31000 Sulphate mg/L 650 770 620 870 630 630 1100 1800 1400 1800 1500 3700 4700 5900 5800 6400 Sulphide mg/L 1.1 0.18 0.58 0.66 0.4 0.02 2.3 0.02 0.5 0.1 0.02 2 1.6 0.4 1 0.4 Total Copper ug/L 120 82 47 30 23 21 77 15 26 40 24 830 550 860 570 810 Total Iron mg/L 570 770 790 830 880 690 710 800 800 730 810 860 890 810 810 970 Total Lead ug/L 170 130 65 50 45 45 43 33 33 67 36 90 77 120 150 150 Total Zinc mg/L 13 6.9 4.4 3.5 5.4 4.7 24 27 28 25 26 190 210 290 260 340

BIOREACTOR 5 Date Parameter Units 13 35 49 62 77 84 91 98 105 112 119 126 134 140 21-Nov-06 13-Dec-06 27-Dec-06 10-Jan-08 24-Jan-07 31-Jan-07 07-Feb-07 14-Feb-07 21-Feb-07 28-Feb-07 07-Mar-07 15-Mar-07 22-Mar-07 28-Mar-07 Temp oC pH pH units 5.8 5.4 5.5 5.4 5.3 5.4 5.5 5.5 5.5 5.5 5.2 5.2 5.3 5.1 Specific Conductance uS/cm 13000 16000 16000 17000 16000 17000 17000 VFA mg/L 11000 14000 26000 16000 5700 BOD mg/L 13000 20000 24000 28000 26000 22000 20000 14000 COD mg/L 34000 43000 29000 30000 31000 20000 Ammonia mg/L 350 630 680 670 610 620 680 460 TDS mg/L 12000 17000 19000 19000 18000 18000 23000 Sulphate mg/L 410 230 74 140 1800 1900 2300 1700 1500 5200 6800 6400 7200 8000 Sulphide mg/L 1.3 0.9 0.7 0.02 0.2 0.7 1.4 0.15 0.02 0.02 0.1 0.7 0.04 0.15 Total Copper ug/L 500 120 61 39 640 360 240 140 110 2300 1700 14000 14000 26000 Total Iron mg/L 110 400 650 550 600 690 800 740 740 720 710 710 720 730 Total Lead ug/L 280 130 51 33 190 100 82 73 53 440 450 580 690 540 Total Zinc mg/L 8.9 1.8 0.8 0.57 220 170 110 75 58 430 610 590 600 710

BIOREACTOR 6 Date Parameter Units 13 35 49 62 77 84 91 98 105 112 119 126 134 140 21-Nov-06 13-Dec-06 27-Dec-06 10-Jan-08 24-Jan-07 31-Jan-07 07-Feb-07 14-Feb-07 21-Feb-07 28-Feb-07 07-Mar-07 15-Mar-07 22-Mar-07 28-Mar-07 Temp oC pH pH units 5.5 5.1 5.3 5.3 5.2 5.3 5.4 5.4 5.5 5.6 5.3 5.3 5.2 5.2 Specific Conductance uS/cm 8500 13000 14000 15000 15000 15000 15000 VFA mg/L 6600 18000 19000 14000 6300 BOD mg/L 78000 17000 19000 18000 18000 17000 19000 10000 COD mg/L 27000 34000 26000 1300 25000 21000 Ammonia mg/L 180 390 420 440 410 400 430 310 TDS mg/L 8000 16000 16000 17000 18000 18000 21000 Sulphate mg/L 530 760 640 640 1800 2100 1700 1700 1500 4800 5200 5900 4900 5800 Sulphide mg/L 0.33 0.9 0.95 0.02 0.3 0.1 1.7 0.4 0.6 0.02 0.5 0.95 0.24 0.2 Total Copper ug/L 450 160 110 110 330 220 160 140 130 2100 1300 11000 13000 17000 Total Iron mg/L 61 210 310 360 400 490 510 530 490 430 520 450 470 470 Total Lead ug/L 100 90 64 55 170 120 83 66 65 160 210 130 220 140 Total Zinc mg/L 34 38 47 45 230 230 150 140 110 400 550 520 560 610

Page 2 of 3 Royal Institute of Technology LEACHATE ANALYSIS - ANALYTICAL Stockholm, 2007

ACID MINE DRAINAGE Date Parameter Units 19-Jan-07 Temp oC pH pH units 2.9 Specific Conductance uS/cm 16000 VFA mg/L - BOD mg/L - COD mg/L - Ammonia mg/L - TDS mg/L 32000 Sulphate mg/L 20000 Sulphide mg/L - Total Copper ug/L 48000 Total Iron mg/L 640 Total Lead ug/L 1500 Total Zinc mg/L 1100

Page 3 of 3 pH EVOLUTION

Point Continuous 8 Sulphate Load Sulphate Load

7.5

7

6.5 Bioreactor 1 Bioreactor 2 Bioreactor 3 6 Bioreactor 4

pHUnits Bioreactor 5 5.5 Bioreactor 6

5

4.5

4

8 2 6 8 2 6 1 3 4 6 8 9 04 09 17 24 31 38 45 52 59 67 73 1 1 1 1 1 1 1 1 1 1 1 Time (Days) Royal Institute of Technology LEACHATE ANALYSIS - FIELD Stockholm, 2007

Day No. 1 - 4 Parameter Units 5 6 10 11 12 13 14 17 18 20 21 24 25 26 27 28 31 32 34 40 42 11/10/06 12/10/06 16/10/06 17/10/06 18/10/06 19/10/06 20/10/06 23/10/06 24/10/06 26/10/06 27/10/06 30/10/06 31/10/06 1/11/06 2/11/06 3/11/06 6/11/06 7/11/06 9/11/06 15/11/06 17/11/06 Column 1 Temp oC 19.00 19.00 17.00 17.20 19.69 18.25 18.84 14.44 15.14 16.83 17.77 14.62 16.19 16.98 18.66 18.13 17.81 17.48 16.68 16.19 16.19 Specific Conductance mS/cm 9.0 2.1 11.3 12.1 12.7 13.4 14.2 16.0 15.5 12.8 12.0 9.8 17.1 17.4 17.7 17.2 17.6 17.8 17.5 18.1 18.1 DO mg/L 0.79 0.71 0.56 0.64 0.48 0.40 1.52 1.00 0.59 0.90 1.20 1.45 0.80 0.54 0.38 0.45 0.84 0.83 0.64 0.55 0.55 pH Units 6.00 5.76 5.76 5.70 5.62 5.64 5.66 5.83 5.83 5.92 5.83 5.90 5.96 5.87 5.84 5.72 5.76 5.78 5.82 5.95 5.95 Salinity PPS 5.01 1.06 6.37 6.82 7.24 7.64 8.13 8.61 8.93 7.28 6.80 5.46 10.01 10.14 10.35 10.03 10.28 10.34 10.20 10.58 10.58 ORP mV -5 -10 -6 -2 4 -4 -55 25 65 -84 -117 -49 -45 -94 -137 -97 -189 -83 -94 -121 -121 Column 2 Temp oC 18.00 18.00 17.00 17.00 19.35 18.33 18.90 14.11 14.74 16.72 17.76 14.39 16.03 16.80 18.39 17.96 17.73 17.37 16.33 15.95 13.76 Specific Conductance mS/cm 5.9 6.8 10.8 6.4 14.2 15.2 13.0 17.2 18.0 19.7 19.6 20.2 20.5 13.8 21.1 19.2 20.9 21.2 19.2 20.1 20.5 DO mg/L 0.60 1.04 0.80 0.70 0.52 0.48 2.14 0.74 0.54 0.68 0.70 1.04 0.60 0.66 0.42 0.67 0.56 0.45 0.53 0.42 0.61 pH Units 5.36 5.16 5.26 5.26 5.25 5.28 5.34 5.45 5.42 5.49 5.47 5.54 5.48 5.45 5.43 5.30 5.32 5.32 5.26 5.35 5.39 Salinity PPS 3.19 3.67 6.05 3.17 8.18 8.78 7.42 9.98 10.50 11.28 11.62 11.89 12.04 7.87 12.53 11.30 12.39 12.58 11.28 11.84 12.07 ORP mV 69 51 48 51 33 34 2 79 92 -71 -104 -22 -36 -64 -110 -69 -154 -62 -67 -77 -203 Column 3 Temp oC 17.00 19.39 18.05 18.74 13.68 14.74 16.58 17.46 14.15 15.85 16.77 18.29 17.86 17.66 17.30 16.18 15.84 13.73 Specific Conductance mS/cm 12.2 6.9 5.5 18.0 19.5 21.2 23.3 23.8 13.0 24.6 25.3 25.8 5.1 22.9 26.6 27.2 27.9 28.6 DO mg/L 0.53 0.36 0.35 2.30 0.84 0.30 0.28 0.20 0.38 0.25 0.23 0.17 0.40 0.26 0.20 0.19 0.19 0.30 pH Units 5.52 5.45 5.50 5.60 5.63 5.80 5.63 5.58 5.62 5.57 5.54 5.50 5.37 5.35 5.38 5.36 5.40 5.45 Salinity PPS 6.88 3.77 2.94 10.61 11.43 12.53 13.92 14.27 7.27 14.76 15.24 15.60 2.76 13.68 16.11 16.48 16.93 17.48 ORP mV 38 8 7 -13 50 61 -96 -127 -36 -43 -61 -120 -71 -158 -58 -68 -64 -156 Column 4 Temp oC 17.00 16.50 20.13 17.72 18.44 12.96 14.28 16.26 17.17 13.54 15.50 16.41 18.08 17.62 17.17 17.04 15.85 15.54 13.06 Specific Conductance mS/cm 8.4 10.4 12.6 14.2 13.0 17.5 17.9 1.3 20.1 1.4 21.3 21.8 22.3 21.7 22.4 22.7 22.8 23.2 23.8 DO mg/L 0.74 0.50 0.33 0.38 2.97 0.32 0.30 0.49 0.30 0.70 0.31 0.26 0.19 0.32 0.33 0.30 0.28 0.15 0.26 pH Units 5.16 5.15 5.19 5.27 5.43 5.49 5.67 5.50 5.47 5.50 5.44 5.41 5.38 5.25 5.24 5.26 5.22 5.25 5.27 Salinity PPS 4.64 5.79 7.16 8.17 7.39 10.15 10.36 0.62 11.57 0.66 12.61 12.95 13.30 12.90 13.35 13.54 13.59 13.90 14.24 ORP mV 58 52 39 34 -4 89 103 -63 -100 -3 -14 -22 -99 -40 -122 -38 -47 -42 -144 Day No. 5 & 6 0 1 7 9 Column 5 Temp oC 12.18 Specific Conductance mS/cm 11.2 DO mg/L 0.30 pH Units 5.70 Salinity PPS 6.30 ORP mV -47 Column 6 Temp oC 12.00 Specific Conductance mS/cm 6.0 DO mg/L 0.99 pH Units 5.47 Salinity PPS 3.19 ORP mV -45 Royal Institute of Technology LEACHATE ANALYSIS - FIELD Stockholm, 2007

Day No. 1 - 4 Parameter Units 45 46 47 49 52 54 67 68 69 75 94 96 101 105 108 110 115 117 119 122 20/11/06 21/11/06 22/11/06 24/11/06 27/11/06 29/11/06 12/12/06 13/12/06 14/12/06 20/12/06 8/01/07 10/01/07 15/01/07 19/01/07 22/01/07 24/01/07 29/01/07 31/01/07 2/02/07 5/02/07 Column 1 Temp oC 18.31 20.61 23.07 21.62 19.40 23.44 20.21 20.40 21.24 18.06 21.77 19.64 20.74 23.55 22.06 24.02 20.26 22.05 20.62 22.87 Specific Conductance mS/cm 18.9 19.7 18.8 19.2 19.5 19.8 20.3 19.9 19.3 19.3 19.2 19.1 19.0 18.7 19.4 19.6 18.9 19.0 18.2 18.4 DO mg/L 0.49 0.25 0.30 0.13 0.25 0.25 0.32 0.13 0.27 0.25 0.39 0.42 0.19 0.48 0.40 0.28 0.25 0.20 0.10 0.16 pH Units 6.06 6.17 6.29 6.49 6.79 6.76 7.09 7.03 7.04 7.30 7.42 7.49 7.50 7.45 7.41 7.42 7.48 7.50 7.41 7.40 Salinity PPS 11.11 11.59 11.11 1.28 11.51 11.76 12.09 11.78 11.41 11.37 11.29 11.26 11.21 11.12 11.48 11.64 11.20 11.23 10.76 10.85 ORP mV -114 -177 -296 -214 -146 -69 -198 54 109 118 -181 73 -228 -157 -252 -289 -194 -225 -227 -223 Column 2 Temp oC 18.07 20.57 22.61 21.02 19.24 23.23 19.76 19.89 21.62 18.19 21.58 19.64 20.74 22.76 22.28 24.06 20.41 22.16 20.79 23.07 Specific Conductance mS/cm 21.1 22.0 19.8 20.6 21.1 21.4 22.0 21.5 21.1 21.5 21.2 21.5 21.4 21.7 21.2 21.5 20.8 20.8 20.1 20.4 DO mg/L 0.52 0.30 0.26 0.26 0.27 0.23 0.20 0.20 0.23 0.25 0.45 0.37 0.20 0.40 0.23 0.15 0.13 0.18 0.08 0.09 pH Units 5.34 5.39 5.44 5.52 5.58 5.42 5.55 5.47 5.51 5.77 5.80 5.91 6.00 6.16 6.12 6.18 6.59 6.70 6.94 7.20 Salinity PPS 12.52 13.08 11.75 12.25 12.54 12.86 13.07 13.01 12.64 12.28 12.58 12.81 12.56 12.99 12.65 12.89 12.37 12.39 11.92 2.11 ORP mV -90 -177 -273 -192 -216 -28 -153 101 185 197 -127 101 -330 -180 -182 -229 -353 -329 -275 -236 Column 3 Temp oC 17.87 20.87 22.23 20.80 19.05 22.81 19.91 19.72 21.10 18.01 21.46 19.34 20.76 22.49 21.92 23.68 20.00 21.91 20.57 22.85 Specific Conductance mS/cm 29.2 30.6 30.8 31.2 31.2 31.6 31.7 32.0 32.2 31.8 31.5 31.2 31.4 31.8 31.2 31.3 30.6 30.8 30.4 30..4 DO mg/L 0.24 0.18 0.15 0.13 0.14 0.17 0.16 0.20 0.25 0.22 0.29 0.33 0.20 0.29 0.21 0.10 0.09 0.15 0.07 0.11 pH Units 5.37 5.47 5.51 5.57 5.61 5.44 5.58 5.48 5.46 5.60 5.54 5.53 5.59 5.73 5.73 5.66 5.94 5.86 5.85 5.95 Salinity PPS 17.85 18.80 19.04 19.28 19.23 19.61 19.52 19.88 19.90 19.61 19.57 19.24 19.41 19.66 19.31 19.42 18.85 18.97 18.73 18.50 ORP mV -55 -131 -264 -192 -222 -31 -181 123 182 196 -94 112 -210 -156 -208 -253 -177 -149 -148 -158 Column 4 Temp oC 17.53 20.52 22.21 20.41 18.62 22.62 19.36 19.69 20.73 17.38 21.37 19.34 20.19 22.13 21.45 23.31 19.58 21.57 20.10 22.51 Specific Conductance mS/cm 24.1 25.4 25.6 25.8 26.3 26.5 26.2 26.2 26.1 25.8 26.6 26.3 26.3 26.6 26.2 26.5 21.1 26.0 26.4 25.5 DO mg/L 0.22 0.14 0.14 0.17 0.15 0.15 0.13 0.21 0.24 0.21 0.33 0.46 0.21 0.22 0.17 0.12 0.09 0.14 0.09 0.13 pH Units 5.20 5.29 5.33 5.38 5.40 5.24 5.33 5.27 5.24 5.37 5.26 5.31 5.37 5.51 5.52 5.48 5.74 5.71 5.70 5.75 Salinity PPS 14.47 15.38 15.55 15.64 15.94 16.09 15.89 15.89 15.85 15.58 16.19 15.95 15.97 16.28 15.93 16.17 12.55 15.80 16.03 15.24 ORP mV -51 -139 -285 -193 -221 -36 -127 138 189 196 -62 133 -159 -150 -193 -209 -159 -130 -133 -143 Day No. 5 & 6 12 13 14 16 19 21 34 35 36 42 61 63 68 72 75 77 82 84 86 89 Column 5 Temp oC 17.00 19.87 21.80 19.84 17.92 21.99 18.64 18.95 20.14 16.96 20.96 18.57 19.59 21.26 20.61 22.50 18.80 20.65 19.30 21.75 Specific Conductance mS/cm 11.6 12.7 12.3 12.7 13.2 14.3 15.1 15.7 14.0 15.3 15.7 16.0 15.2 15.5 15.4 15.7 15.7 16.0 15.8 16.0 DO mg/L 0.80 0.40 0.74 0.54 0.57 0.48 0.28 0.47 0.37 0.30 0.68 0.44 0.42 0.75 0.42 0.55 0.16 0.53 0.44 0.55 pH Units 5.66 5.74 5.76 5.74 5.69 5.48 5.50 5.46 5.41 5.58 5.39 5.41 5.45 5.48 5.41 5.35 5.64 5.64 5.65 5.70 Salinity PPS 6.53 7.22 6.98 7.26 7.82 8.24 8.72 9.10 8.03 8.83 9.12 9.38 8.76 8.99 8.92 9.13 9.09 9.30 9.16 9.31 ORP mV -33 -126 -252 -257 -265 -100 -148 147 181 173 -55 126 -190 -177 -119 -117 -82 -54 -74 -67 Column 6 Temp oC 17.47 20.66 22.43 19.98 17.89 22.22 18.12 19.32 20.38 16.86 20.60 18.75 19.67 21.24 20.81 22.68 18.82 21.03 19.36 21.91 Specific Conductance mS/cm 7.3 8.5 8.6 9.5 10.4 11.2 12.5 13.0 11.8 13.0 14.0 14.3 14.2 14.4 14.4 14.8 14.4 14.8 14.3 14.6 DO mg/L 0.20 0.17 0.66 0.29 0.68 0.51 0.46 0.45 0.53 0.67 0.70 0.57 0.48 0.50 0.50 0.48 0.19 0.46 0.44 0.45 pH Units 5.39 5.52 5.57 5.54 5.47 5.24 5.20 5.21 5.21 5.40 5.24 5.29 5.32 5.35 5.29 5.29 5.58 5.63 5.61 5.66 Salinity PPS 4.01 4.72 4.74 5.27 5.83 6.34 7.11 7.40 6.67 7.39 8.05 8.21 8.14 8.32 8.28 8.58 8.30 8.55 8.23 8.43 ORP mV 28 -104 -214 -169 -202 -21 -30 169 190 181 14 126 -71 -53 -105 -118 -73 -44 -73 -61 Royal Institute of Technology LEACHATE ANALYSIS - FIELD Stockholm, 2007

Day No. 1 - 4 Parameter Units 124 126 129 131 133 138 140 143 145 148 150 152 154 157 159 164 7/02/07 9/02/07 12/02/07 14/02/07 16/02/07 21/02/07 23/02/07 26/02/07 28/02/07 3/03/07 5/03/07 7/03/07 9/03/07 12/03/07 14/03/07 19/03/07 Column 1 Temp oC 22.35 21.58 19.74 19.40 20.94 22.38 20.09 20.19 20.12 19.13 19.07 20.32 19.81 18.25 20.10 19.78 Specific Conductance mS/cm 18.4 18.0 18.0 18.0 17.6 19.0 18.2 18.4 18.6 17.7 18.2 18.4 17.7 17.9 17.4 17.6 DO mg/L 0.14 0.11 0.08 0.29 0.26 0.21 0.06 0.28 0.20 0.27 0.23 0.42 0.32 0.19 0.23 0.18 pH Units 7.55 7.44 7.54 7.46 7.42 7.05 7.03 7.02 7.10 7.02 7.06 7.08 7.10 7.10 7.08 7.05 Salinity PPS 10.91 3.27 10.56 10.55 10.32 11.23 10.70 10.82 10.95 10.42 10.68 10.82 10.43 10.42 10.18 10.30 ORP mV -243 -288 -305 -195 -205 -207 102 -206 -173 -179 -214 -156 -200 -192 -196 -224 Column 2 Temp oC 22.56 21.74 19.87 19.67 21.05 22.38 20.80 20.21 20.38 19.58 19.12 20.36 19.81 18.07 20.97 19.97 Specific Conductance mS/cm 20.8 20.0 20.4 20.2 19.5 21.5 21.0 16.9 23.5 23.2 23.0 23.2 23.0 23.0 22.6 23.0 DO mg/L 0.07 0.07 0.07 0.08 0.12 0.14 0.10 0.12 0.13 0.12 0.13 0.17 0.19 0.11 0.07 0.07 pH Units 7.35 7.35 7.67 7.57 7.46 7.13 6.98 7.17 7.16 7.10 7.13 7.02 7.05 6.97 6.96 6.90 Salinity PPS 12.40 11.87 12.03 11.97 11.54 12.85 13.57 9.80 14.12 13.98 13.77 13.93 8.62 13.82 13.55 13.86 ORP mV -267 -278 -292 -223 -214 -226 -182 -190 -153 -390 -415 -397 -392 -395 -393 -387 Column 3 Temp oC 22.43 21.54 19.77 19.39 20.67 22.04 21.14 20.04 20.27 19.33 18.98 20.33 19.55 18.08 20.45 19.65 Specific Conductance mS/cm 30.6 30.0 30.0 29.6 29.7 31.8 32.0 32.1 32.2 32.2 31.8 32.5 32.1 32.5 31.5 31.6 DO mg/L 0.07 0.09 0.07 0.10 0.11 0.13 0.22 0.12 0.21 0.12 0.15 0.15 0.18 0.29 0.20 0.16 pH Units 6.03 6.06 6.05 6.06 6.06 5.61 5.67 5.71 5.75 5.79 5.91 5.83 6.01 5.98 5.98 5.91 Salinity PPS 18.91 18.50 18.50 18.16 18.26 19.72 19.82 19.87 20.01 19.92 19.63 20.15 19.92 20.08 19.47 19.52 ORP mV -184 -187 -207 -141 -140 -123 -66 -143 -106 -179 -174 -127 -154 -105 -133 -116 Column 4 Temp oC 22.02 21.11 19.44 18.99 20.86 21.65 20.26 19.58 19.86 18.68 18.38 19.90 19.09 17.47 20.68 19.37 Specific Conductance mS/cm 10.7 5.0 26.1 25.9 26.2 28.5 28.1 28.0 28.0 27.6 26.9 28.5 27.6 28.3 26.8 28.4 DO mg/L 0.11 0.07 0.07 0.09 0.11 0.16 0.35 0.19 0.23 0.16 0.38 0.19 0.26 0.38 0.33 0.20 pH Units 5.80 5.83 5.81 5.82 5.81 5.35 5.47 5.38 5.44 5.41 5.54 5.49 5.64 5.56 5.54 5.50 Salinity PPS 6.06 2.64 15.82 15.68 18.92 17.47 17.17 17.09 17.60 16.80 16.33 17.43 16.81 17.17 16.38 17.35 ORP mV -160 -164 -182 -127 -130 -96 -49 -130 -83 -143 -139 -99 -108 -66 -60 -83 Day No. 5 & 6 91 93 96 98 100 105 107 110 112 115 117 119 121 124 126 131 Column 5 Temp oC 21.13 20.20 18.74 18.91 19.98 21.54 19.45 18.94 19.30 18.16 17.84 19.20 18.64 16.80 20.21 18.84 Specific Conductance mS/cm 16.2 15.7 15.9 15.8 13.3 17.0 17.5 18.5 18.4 18.0 11.5 18.2 17.6 17.6 12.8 17.8 DO mg/L 0.39 0.24 0.37 0.28 0.36 0.57 0.80 0.51 0.50 0.23 0.50 0.23 0.47 0.46 0.39 0.32 pH Units 5.74 5.77 5.76 5.78 5.76 5.33 5.21 5.35 5.40 5.41 5.40 5.31 5.50 5.32 5.42 5.28 Salinity PPS 9.43 9.11 9.22 9.16 7.59 9.88 10.24 10.80 10.87 10.54 6.50 10.68 10.28 16.27 7.17 10.36 ORP mV -79 -92 -133 -57 -59 -33 163 12 20 -24 64 147 119 165 155 157 Column 6 Temp oC 21.22 20.08 18.66 18.88 19.78 21.54 19.34 19.07 19.49 18.11 17.96 19.31 18.47 16.00 20.01 18.87 Specific Conductance mS/cm 14.8 14.4 14.6 14.7 12.1 15.9 15.7 17.0 17.0 14.7 11.6 16.8 16.0 16.6 11.9 16.5 DO mg/L 0.04 0.30 0.64 0.74 1.20 0.62 0.49 0.61 0.70 0.29 0.46 0.50 0.46 0.45 0.31 0.47 pH Units 5.70 5.74 5.74 5.78 5.77 5.34 5.19 5.55 5.48 5.49 5.48 5.36 5.53 5.46 5.45 5.23 Salinity PPS 8.55 8.33 8.37 8.40 6.93 9.25 9.18 9.96 9.92 8.44 6.52 9.79 9.28 9.64 6.63 9.54 ORP mV -73 -80 -89 -42 -45 -29 211 -3 49 29 82 156 142 158 162 161 Royal Institute of Technology Stockholm, 2007

BIOREACTOR 1 - WATER BALANCE

55.0 53.0 51.0 49.0 47.0 45.0 43.0 41.0 39.0 37.0 35.0 33.0 31.0 29.0 Cumulative Water Balance 27.0 Leachate Recirculation 25.0 23.0 21.0 Volume (Litres) 19.0 17.0 15.0 13.0 11.0 9.0 7.0 5.0 3.0 1.0 -1.0 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 Time (Days)

BIOREACTOR 2 - WATER BALANCE

Point Continuous Sulphate Load Sulphate Load 55.0 53.0 51.0 49.0 47.0 45.0 43.0 41.0 39.0 37.0 35.0 33.0 31.0 29.0 Cumulative Water Balance 27.0 Leachate Recirculation 25.0 23.0 21.0 Volume (Litres) 19.0 17.0 15.0 13.0 11.0 9.0 7.0 5.0 3.0 1.0 -1.0 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 Time (Days) Royal Institute of Technology Stockholm, 2007

BIOREACTOR 3 - WATER BALANCE Point Continuous Sulphate Load Sulphate Load 55.0 53.0 51.0 49.0 47.0 45.0 43.0 41.0 39.0 37.0 35.0 33.0 31.0 29.0 Cumulative Water Balance 27.0 Leachate Recirculation 25.0 23.0 21.0 Volume (Litres) 19.0 17.0 15.0 13.0 11.0 9.0 7.0 5.0 3.0 1.0 -1.0 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 Time (Days)

BIOREACTOR 4 - WATER BALANCE Point Continuous 55.0 Sulphate Load Sulphate Load 53.0 51.0 49.0 47.0 45.0 43.0 41.0 39.0 37.0 35.0 33.0 31.0 29.0 Cumulative Water Balance 27.0 Leachate Recirculation 25.0 23.0 21.0 Volume (Litres) 19.0 17.0 15.0 13.0 11.0 9.0 7.0 5.0 3.0 1.0 -1.0 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 Time Days) Royal Institute of Technology Stockholm, 2007

BIOREACTOR 5 - WATER BALANCE Point Continuous Sulphate Load Sulphate Load 54.0 52.0 50.0 48.0 46.0 44.0 42.0 40.0 38.0 36.0 34.0 32.0 30.0 28.0 Cumulative Water Balance 26.0 Leachate Recirculation 24.0 22.0

Volume (Litres) 20.0 18.0 16.0 14.0 12.0 10.0 8.0 6.0 4.0 2.0 0.0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 Time (Days)

BIOREACTOR 6 - WATER BALANCE Point Continuous Sulphate Load Sulphate Load 54.0 52.0 50.0 48.0 46.0 44.0 42.0 40.0 38.0 36.0 34.0 32.0 30.0 Cumulative Water 28.0 Balance 26.0 Leachate Recirculation 24.0 22.0

Volume (Litres) 20.0 18.0 16.0 14.0 12.0 10.0 8.0 6.0 4.0 2.0 0.0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120 125 130 135 140 Time (Days)

APPENDIX C – LFG ANALYSIS RESULTS

O ANALYTICAL RESULTS O FIELD RESULTS

Once printed this document is an uncontrolled version and should be checked against the electronic version for validity Document:: Thesis Temp2 | Last printed: 6/19/2007 2:46 PM Page 3 of 5 Royal Institute of Technology Stockholm, 2007

Hydrogen Sulphide - Dräger Tube Analysis

Tube Information Date Time Sampling Atm. Pressure Correction Tube Brand Element Range Units No. Pumps Result Adjusted Comments Point (hPa = mBar) Factor on tube Result All samples are collected in 3lt bag 14/02/2007 15:35 C1 929 1013 Dräger H2S 0.5 to 15 ppm 10 2 2.2 Tested from Tedlar bags 21/02/2007 11:30 C1 932 1013 Dräger H2S 0.5 to 15 ppm 10 4 4.3 Tested from Tedlar bags 23/02/2007 14:30 C1 928 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.5 Tested from Tedlar bags 26/02/2007 14:00 C1 929 1013 Dräger H2S 0.5 to 15 ppm 10 4 4.4 Tested from Tedlar bags 28/02/2007 14:00 C1 922 1013 Dräger H2S 0.5 to 15 ppm 10 4 4.4 Tested from Tedlar bags 02/03/2007 9:30 C1 920 1013 Dräger H2S 0.5 to 15 ppm 10 5 5.5 Tested from Tedlar bags 05/03/2007 11:20 C1 923 1013 Dräger H2S 0.5 to 15 ppm 10 4 4.4 Tested from Tedlar bags 07/03/2007 12:00 C1 922 1013 Dräger H2S 0.5 to 15 ppm 10 5 5.5 Tested from Tedlar bags 09/03/2007 12:30 C1 920 1013 Dräger H2S 0.5 to 15 ppm 10 4 4.4 Tested from Tedlar bags 12/03/2007 15:35 C1 924 1013 Dräger H2S 0.5 to 15 ppm 10 4 4.4 Tested from Tedlar bags 14/03/2007 16:00 C1 926 1013 Dräger H2S 0.5 to 15 ppm 10 3 3.3 Tested from Tedlar bags 19/03/2007 14:00 C1 928 1013 Dräger H2S 0.5 to 15 ppm 10 5 5.5 Tested from Tedlar bags 22/03/2007 11:00 C1 932 1013 Dräger H2S 0.5 to 15 ppm 10 4.5 4.9 Tested from Tedlar bags 26/03/2007 16:30 C1 933 1013 Dräger H2S 0.5 to 15 ppm 10 5 5.4 Tested from Tedlar bags

14/02/2007 15:35 C2 929 1013 Dräger H2S 0.5 to 15 ppm 10 3 3.3 Tested from Tedlar bags 21/02/2007 11:30 C2 932 1013 Dräger H2S 0.5 to 15 ppm 10 8.5 9.2 Tested from Tedlar bags 23/02/2007 14:30 C2 928 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.5 Tested from Tedlar bags 26/02/2007 14:00 C2 929 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.5 Tested from Tedlar bags 28/02/2007 14:00 C2 922 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.5 Tested from Tedlar bags 02/03/2007 9:30 C2 920 1013 Dräger H2S 0.5 to 15 ppm 10 9 9.9 Tested from Tedlar bags 05/03/2007 11:20 C2 923 1013 Dräger H2S 5 to 600 ppm 10 38 41.7 Tested from Tedlar bags 07/03/2007 12:00 C2 922 1013 Dräger H2S 5 to 600 ppm 10 19 20.9 Tested from Tedlar bags 09/03/2007 12:30 C2 920 1013 Dräger H2S 5 to 600 ppm 1 120 132.1 Tested from Tedlar bags 12/03/2007 15:35 C2 924 1013 Dräger H2S 5 to 600 ppm 1 230 252.2 Tested from Tedlar bags 14/03/2007 16:00 C2 926 1013 Dräger H2S 5 to 600 ppm 1 520 568.9 Tested from Tedlar bags 19/03/2007 14:00 C2 928 1013 Dräger H2S 5 to 600 ppm 1 510 556.7 Tested from Tedlar bags 22/03/2007 11:00 C2 932 1013 Dräger H2S 5 to 600 ppm 1 500 543.5 Tested from Tedlar bags 26/03/2007 16:30 C2 933 1013 Dräger H2S 100 to 2000 ppm 1 1620 1758.9 Tested from Tedlar bags

14/02/2007 15:35 C3 929 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.5 Tested from Tedlar bags 21/02/2007 11:30 C3 932 1013 Dräger H2S 0.5 to 15 ppm 10 1.5 1.6 Tested from Tedlar bags 23/02/2007 14:30 C3 928 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.5 Tested from Tedlar bags 26/02/2007 14:00 C3 929 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.5 Tested from Tedlar bags 28/02/2007 14:00 C3 922 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.5 Tested from Tedlar bags 02/03/2007 9:30 C3 920 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.6 Tested from Tedlar bags 05/03/2007 11:20 C3 923 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.5 Tested from Tedlar bags 07/03/2007 12:00 C3 922 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.5 Tested from Tedlar bags 09/03/2007 12:30 C3 920 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.6 Tested from Tedlar bags 12/03/2007 15:35 C3 924 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.5 Tested from Tedlar bags 14/03/2007 16:00 C3 926 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.5 Tested from Tedlar bags 19/03/2007 14:00 C3 928 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.5 Tested from Tedlar bags 22/03/2007 11:00 C3 932 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.5 Tested from Tedlar bags 26/03/2007 16:30 C3 933 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.5 Tested from Tedlar bags

Page 1 of 2 Royal Institute of Technology Stockholm, 2007

Hydrogen Sulphide - Dräger Tube Analysis

Tube Information Date Time Sampling Atm. Pressure Correction Tube Brand Element Range Units No. Pumps Result Adjusted Comments Point (hPa = mBar) Factor on tube Result All samples are collected in 3lt bag 14/02/2007 15:35 C4 929 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.5 Tested from Tedlar bags 21/02/2007 11:30 C4 932 1013 Dräger H2S 0.5 to 15 ppm 10 2 2.2 Tested from Tedlar bags 23/02/2007 14:30 C4 928 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.5 Tested from Tedlar bags 26/02/2007 14:00 C4 929 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.5 Tested from Tedlar bags 28/02/2007 14:00 C4 922 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.5 Tested from Tedlar bags 02/03/2007 9:30 C4 920 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.6 Tested from Tedlar bags 05/03/2007 11:20 C4 923 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.5 Tested from Tedlar bags 07/03/2007 12:00 C4 922 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.5 Tested from Tedlar bags 09/03/2007 12:30 C4 920 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.6 Tested from Tedlar bags 12/03/2007 15:35 C4 924 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.5 Tested from Tedlar bags 14/03/2007 16:00 C4 926 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.5 Tested from Tedlar bags 19/03/2007 14:00 C4 928 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.5 Tested from Tedlar bags 22/03/2007 11:00 C4 932 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.5 Tested from Tedlar bags 26/03/2007 16:30 C4 933 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.5 Tested from Tedlar bags

14/02/2007 15:35 C5 929 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.5 Tested from Tedlar bags 21/02/2007 11:30 C5 932 1013 Dräger H2S 0.5 to 15 ppm 10 2 2.2 Tested from Tedlar bags 23/02/2007 14:30 C5 928 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.5 Tested from Tedlar bags 26/02/2007 14:00 C5 929 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.5 Tested from Tedlar bags 28/02/2007 14:00 C5 922 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.5 Tested from Tedlar bags 02/03/2007 9:30 C5 920 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.6 Tested from Tedlar bags 05/03/2007 11:20 C5 923 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.5 Tested from Tedlar bags 07/03/2007 12:00 C5 922 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.5 Tested from Tedlar bags 09/03/2007 12:30 C5 920 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.6 Tested from Tedlar bags 12/03/2007 15:35 C5 924 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.5 Tested from Tedlar bags 14/03/2007 16:00 C5 926 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.5 Tested from Tedlar bags 19/03/2007 14:00 C5 928 1013 Dräger H2S 0.5 to 15 ppm 10 1 1.1 Tested from Tedlar bags 22/03/2007 11:00 C5 932 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.5 Tested from Tedlar bags 26/03/2007 16:30 C5 933 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.5 Tested from Tedlar bags

14/02/2007 15:35 C6 929 1013 Dräger H2S 0.5 to 15 ppm 10 14 15.3 Tested from Tedlar bags 21/02/2007 11:30 C6 932 1013 Dräger H2S 0.5 to 15 ppm 10 20 21.7 Tested from Tedlar bags 23/02/2007 14:30 C6 928 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.5 Tested from Tedlar bags 26/02/2007 14:00 C6 929 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.5 Tested from Tedlar bags 28/02/2007 14:00 C6 922 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.5 Tested from Tedlar bags 02/03/2007 9:30 C6 920 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.6 Tested from Tedlar bags 05/03/2007 11:20 C6 923 1013 Dräger H2S 0.5 to 15 ppm 10 2 2.2 Tested from Tedlar bags 07/03/2007 12:00 C6 922 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.5 Tested from Tedlar bags 09/03/2007 12:30 C6 920 1013 Dräger H2S 0.5 to 15 ppm 10 1 1.1 Tested from Tedlar bags 12/03/2007 15:35 C6 924 1013 Dräger H2S 0.5 to 15 ppm 10 1.5 1.6 Tested from Tedlar bags 14/03/2007 16:00 C6 926 1013 Dräger H2S 0.5 to 15 ppm 10 0.5 0.5 Tested from Tedlar bags 19/03/2007 14:00 C6 928 1013 Dräger H2S 0.5 to 15 ppm 10 1.5 1.6 Tested from Tedlar bags 22/03/2007 11:00 C6 932 1013 Dräger H2S 0.5 to 15 ppm 10 1 1.1 Tested from Tedlar bags 26/03/2007 16:30 C6 933 1013 Dräger H2S 0.5 to 15 ppm 10 1 1.1 Tested from Tedlar bags

Page 2 of 2 Royal Institute of Technology Stockholm , 2007

ANSTO - GAS CHROMOTOGRAPHY WITH THERMAL CONDUCTIVITY DETECTION

RATIO Dry Gas Concentration corrected for air leak in sample bag 25-Oct-06 %CH4/%CO2 % CH4 % CO2 % O2 % N2 ratio N2/O2 % H2 H2S ppm Column 1 0.75 41.1 54.9 0.07 3.94 57.9 0.010 21 Column 2 0.36 25.5 71.9 0.04 2.52 58.9 0.039 9 Column 3 0.15 12.5 84.2 0.04 2.22 51.6 0.968 3 Column 4 0.11 9.4 84.2 0.04 5.88 139.0 0.478 11

airtest 0.00 0.00 0.04 21.9 78.0 3.56 0.0 0.0 standard 1.23 47.9 38.9 1.94 7.76 4.00 3.5 50.0

RATIO Dry Gas Concentration corrected for air leak in sample bag 8-Nov-06 %CH4/%CO2 % CH4 % CO2 % O2 % N2 ratio N2/O2 % H2 H2S ppm Column 1 1.13 52.5 46.5 0.04 0.93 22.4 0.01 0.3 Column 2 0.70 40.5 58.1 0.04 1.31 31.0 0.0 6.9 Column 3 0.34 24.6 73.4 0.04 2.00 50.0 0.0 4.2 Column 4 0.19 15.0 77.9 0.05 6.99 129.5 0.0 5.8 airtest 0.00 0.00 0.04 21.9 78.0 3.56 0.0 0.0 standard 1.23 47.9 38.9 1.94 7.76 4.00 3.5 50.0

RATIO Dry Gas Concentration corrected for air leak in sample bag 22-Nov-06 %CH4/%CO2 % CH4 % CO2 % O2 % N2 ratio N2/O2 % H2 H2S ppm Column 1 1.22 49.0 40.1 0.06 10.89 167.8 0.00 0.3 Column 2 0.95 47.4 49.7 0.05 2.89 58.8 0.0 6.0 Column 3 0.42 27.8 66.6 0.05 5.37 116.8 0.3 4.0 Column 4 0.24 17.0 71.2 0.16 11.57 70.5 0.0 2.7 Column 5 0.09 3.9 42.1 0.21 53.67 256.1 0.1 3.4 Column 6 0.10 4.4 42.5 0.28 52.54 186.8 0.2 3.2 airtest 0.00 0.00 0.04 21.9 78.0 3.6 0.0 0.0 standard 1.23 47.9 38.9 1.94 7.76 4.00 3.5 50.0

RATIO Dry Gas Concentration corrected for air leak in sample bag 13-Dec-06 %CH4/%CO2 % CH4 % CO2 % O2 % N2 ratio N2/O2 % H2 H2S ppm Column 1 1.16 44.7 38.4 0.10 16.73 160.1 0.001 0.3 Column 2 1.11 51.1 46.0 0.05 2.91 56.7 0.005 0.3 Column 3 0.54 29.7 54.5 0.05 15.77 322.6 0.017 1.3 Column 4 0.26 14.2 54.6 0.08 31.03 411.8 0.007 0.8 Column 5 0.36 20.3 55.7 0.04 24.00 583.6 0.008 1.1 Column 6 0.35 19.0 54.5 0.04 26.42 652.7 0.004 0.7 airtest 0.00 0.00 0.04 21.9 78.0 3.6 0.0 0.0 standard 1.23 47.9 38.9 1.94 7.76 4.00 3.5 50.0

RATIO Dry Gas Concentration corrected for air leak in sample bag 10-Jan-07 %CH4/%CO2 % CH4 % CO2 % O2 % N2 ratio N2/O2 % H2 H2S ppm Column 1 1.47 59.0 40.2 0.05 0.71 14.9 0.006 0.3 Column 2 1.23 54.7 44.6 0.05 0.61 13.3 0.015 0.3

Dr. David Stone, ANSTO Page 1 of 2 Royal Institute of Technology Stockholm , 2007

ANSTO - GAS CHROMOTOGRAPHY WITH THERMAL CONDUCTIVITY DETECTION

RATIO Dry Gas Concentration corrected for air leak in sample bag 30-Jan-07 %CH4/%CO2 % CH4 % CO2 % O2 % N2 ratio N2/O2 % H2 H2S ppm Column 1 1.57 60.3 38.4 0.06 1.20 21.1 0.005 0.3 Column 2 1.21 52.5 43.3 0.06 4.14 66.2 0.007 0.3 Column 3 0.81 41.9 51.8 0.05 6.06 122.8 0.194 0.7 Column 4 0.40 18.7 47.0 0.10 34.16 335.4 0.015 0.7 Column 5 0.77 39.4 51.3 0.06 9.25 168.0 0.002 0.7 Column 6 0.82 40.3 49.4 0.05 10.13 214.3 0.036 0.3 airtest 0.00 0.00 0.04 21.9 78.0 3.6 0.0 0.0 standard 1.23 47.9 38.9 1.94 7.76 4.00 3.5 50.0

RATIO Dry Gas Concentration corrected for air leak in sample bag 8-Feb-07 %CH4/%CO2 % CH4 % CO2 % O2 % N2 ratio N2/O2 % H2 H2S ppm Column 1 1.37 51.6 37.6 0.07 10.71 146.5 0.011 < 0.3 Column 2 1.34 56.0 41.8 0.05 2.15 39.8 0.012 < 0.3 Column 3 0.84 42.6 50.9 0.06 6.28 114.1 0.241 < 0.3 Column 4 0.46 25.2 55.1 0.06 19.37 351.9 0.264 < 0.3 Column 5 0.81 39.3 48.5 0.06 12.09 195.4 0.003 < 0.3 Column 6 0.85 40.0 46.9 0.06 13.05 214.3 0.001 < 0.3 airtest 0.00 0.00 0.04 21.9 78.0 3.6 0.0 0.0 standard 1.23 47.9 38.9 1.94 7.76 4.00 3.5 50.0

RATIO Dry Gas Concentration corrected for air leak in sample bag 6-Mar-07 %CH4/%CO2 % CH4 % CO2 % O2 % N2 ratio N2/O2 % H2 H2S ppm Column 1 1.23 54.3 44.2 0.05 1.40 26.8 0.002 < 0.3 Column 2 1.34 56.5 42.1 0.15 1.20 8.2 0.007 < 0.3 Column 3 1.07 50.1 46.7 0.29 2.90 9.8 0.036 < 0.3 Column 4 0.59 33.8 57.7 2.30 6.15 2.7 0.024 < 0.3 Column 5 0.82 42.3 51.9 1.21 4.60 3.8 0.002 < 0.3 Column 6 0.90 44.0 48.9 1.32 5.79 4.4 0.002 < 0.3 airtest 0.00 0.00 0.04 21.9 78.0 3.6 0.0 0.0 standard 1.23 47.9 38.9 1.94 7.76 4.00 3.5 50.0

RATIO Dry Gas Concentration corrected for air leak in sample bag 28-Mar-07 %CH4/%CO2 % CH4 % CO2 % O2 % N2 ratio N2/O2 % H2 H2S ppm Column 1 1.07 50.4 47.3 0.05 2.22 2.4 0.013 < 0.3 Column 2 1.37 57.7 42.1 0.07 0.14 0.7 0.024 59.3 Column 3 1.36 56.9 41.9 0.05 0.96 1.3 0.243 8.6 Column 4 0.95 47.5 49.8 0.95 1.23 2.9 0.535 < 0.3 Column 5 1.02 48.9 48.1 0.85 2.12 0.6 0.010 < 0.3 Column 6 0.79 42.2 53.5 1.12 3.21 1.7 0.006 < 0.3 airtest 0.00 0.00 0.04 21.9 78.0 3.6 0.0 0.0 standard 1.23 54.9 44.6 0.06 0.48 7.42 3.5 50.0

Dr. David Stone, ANSTO Page 2 of 2 Royal Institue of Technology Stockholm, 2007

BIOREACTOR GAS COMPOSITION (GA - GAS MONITOR/INRFA RED)

Barometric Day Draeger ID Date CH4 CO2 O2 H2S CO CO2/CH4 Peak CH4 Peak CO2 Balance Pressure No. H2S (ppm) vol % vol % vol % ppmV ppmV Ratio vol % vol % vol % mb COLUMN01 2006/10/06 0 0 0 21 0 0 0.00 0 0 79 928 COLUMN01 2006/10/09 3 3.1 21.1 12.1 6.81 63.7 928 COLUMN01 2006/10/10 4 8.6 62.5 0.6 7.27 28.3 928 COLUMN01 2006/10/11 5 10.9 66.7 0.1 6.12 22.3 928 COLUMN01 2006/10/13 7 14.2 77.7 0 5 >>> 5.47 14.2 77.8 8.1 928 COLUMN01 2006/10/16 10 18.7 81.3 0 13 >>> 4.35 21.4 83.8 0 933 COLUMN01 2006/10/17 11 19.9 80.1 0 11 >>> 4.03 23.5 83.8 0 928 COLUMN01 2006/10/18 12 21.1 78.8 0.1 14 >>> 3.73 25.9 83.1 0 923 COLUMN01 2006/10/19 13 22.9 77.1 0 >>> >>> 3.37 28.5 82.7 0 928 COLUMN01 2006/10/20 14 25.3 74.7 0 13 >>> 2.95 31 80.4 0 923 COLUMN01 2006/10/23 17 32.9 67.1 0 7 813 2.04 38.8 72.7 0 931 COLUMN01 2006/10/24 18 34.8 65.2 0 2 923 1.87 40.3 70.7 0 926 COLUMN01 2006/10/25 19 35.55 64.45 0 5 722 1.81 41.5 70.3 0 919 COLUMN01 2006/10/26 20 36.55 63.35 0.1 4 569 1.73 42.5 69.4 0 926 COLUMN01 2006/10/27 21 38.35 61.65 0 4 575 1.61 44.2 67.3 0 918 COLUMN01 2006/10/30 24 42.65 57.35 0 2 232 1.34 48.5 63.5 0 927 COLUMN01 2006/10/31 25 43.95 56.05 0 0 257 1.28 50.1 62.4 0 924 COLUMN01 2006/11/01 26 42.25 57.45 0.3 0 834 1.36 49.1 64.2 0 922 COLUMN01 2006/11/02 27 45 55 0 0 466 1.22 51.4 61.5 0 918 COLUMN01 2006/11/03 28 45.55 54.45 0 3 269 1.20 51.6 60.7 0 921 COLUMN01 2006/11/06 31 45.55 54.05 0.4 <<< 884 1.19 49.7 58.2 0 925 COLUMN01 2006/11/07 32 47.75 52.25 0 <<< 187 1.09 51.5 55.9 0 923 COLUMN01 2006/11/09 34 49.15 50.85 0 <<< 143 1.03 53.1 55.1 0 929 COLUMN01 2006/11/10 35 49.6 50.4 0 <<< 110 1.02 53.3 54.3 0 922 COLUMN01 2006/11/15 40 50.8 49.2 0 0 128 0.97 55.4 53.4 0 906 COLUMN01 2006/11/16 41 51.9 48.1 0 <<< 157 0.93 57.9 52.1 0 919 COLUMN01 2006/11/17 42 53.05 46.95 0 <<< 110 0.89 57.5 52 0 930 COLUMN01 2006/11/20 45 52.9 47.1 0 0 161 0.89 56.8 51.1 0 928 COLUMN01 2006/11/23 48 51.85 48.15 0 <<< 342 0.93 55.1 51.2 0 924 COLUMN01 2006/11/24 49 50.35 49.35 0.3 <<< >>> 0.98 66.1 54.4 0 927 COLUMN01 2006/11/27 52 53.75 46.25 0 <<< 202 0.86 56.5 49.1 0 924 COLUMN01 2006/11/29 54 52.4 47.5 0.1 <<< 673 0.91 55.5 50.6 0 917 COLUMN01 2006/12/01 56 54.35 45.25 0.4 <<< 449 0.83 57.3 48.2 0 920 COLUMN01 2006/12/12 67 54.35 45.65 0 <<< 198 0.84 55.5 46.8 0 930 COLUMN01 2006/12/13 68 55.5 44.5 0 <<< 228 0.80 58.5 46.4 0 923 COLUMN01 2006/12/14 69 55.75 44.25 0 <<< 216 0.79 57.9 46.4 0 921 COLUMN01 2006/12/18 73 57.4 42.6 0 0 136 0.74 60.5 45.4 0 927 COLUMN01 2006/12/20 75 57 43 0 0 154 0.75 59.8 45.7 0 929 COLUMN01 2006/12/22 77 56.7 43.3 0 0 165 0.76 59.7 45.7 0 927 COLUMN01 2006/12/27 82 55.95 44.05 0 0 121 0.79 56.7 44.7 0 922 COLUMN01 2007/01/07 93 55.3 44.7 0 <<< 213 0.81 61.30 47.7 0 914 COLUMN01 2007/01/08 94 54.7 45.2 0.1 0 370 0.83 66.10 48.2 0 917 COLUMN01 2007/01/12 98 60.45 39.15 0.4 <<< 27 0.65 63.90 42.4 0 916 COLUMN01 2007/01/15 101 60.9 38.8 0.3 <<< 0 0.64 65.90 43 0 925 COLUMN01 2007/01/18 104 60.45 39.15 0.4 <<< 0 0.65 64.30 42.8 0 928 COLUMN01 2007/01/19 105 60.9 38.7 0.4 <<< 3 0.64 64.10 42.1 0 925 COLUMN01 2007/01/20 106 60.25 39.25 0.5 2 0 0.65 63.10 41.9 0 922 COLUMN01 2007/01/24 110 58.9 36.9 4.2 3 0 0.63 63.10 41.1 0 923 COLUMN01 2007/01/29 115 60.95 37.05 2 4 0 0.61 65.00 40.4 0 920 COLUMN01 2007/02/08 125 64.95 32.65 2.4 <<<< 213 0.50 74.20 41.3 0 919 COLUMN01 2007/02/12 129 62.45 36.95 0.6 3 0 0.59 66.00 40.6 0 928 COLUMN01 2007/02/14 131 2.2 62.45 37.05 0.5 3 0 0.59 66.00 40.8 0 929 COLUMN01 2007/02/16 133 2.5 61.9 37.5 0.6 16 16 0.61 66.90 41.2 0 930 COLUMN01 2007/02/20 137 3.5 60.9 38.7 0.4 0 5 0.64 64.50 42.3 0 930 COLUMN01 2007/02/21 138 4.3 60.65 38.75 0.6 <<<< 39 0.64 70.90 43 0 932 COLUMN01 2007/02/22 139 4.4 61.05 38.35 0.6 6 0 0.63 65.10 42.3 0 928 COLUMN01 2007/02/26 143 4.4 61.35 38.15 0.5 17 7 0.62 47.40 41.6 0 929 COLUMN01 2007/02/27 144 4.4 62.15 37.25 0.6 3 1 0.60 48.00 41.2 0 925 COLUMN01 2007/02/28 145 4.4 60.45 39.05 0.5 4 0 0.65 46.90 40.6 0 922 COLUMN01 2007/03/01 146 4.4 59.35 40.05 0.6 0 5 0.67 59.90 40.7 0 918 COLUMN01 2007/03/02 147 5.5 59.1 40.1 0.8 4 0 0.68 60.60 41.5 0 920 COLUMN01 2007/03/05 150 4.4 54 42.4 0.3 0 0 0.79 54.30 42.8 3.3 923 COLUMN01 2007/03/07 152 5.5 56.3 42.8 0.4 <<<< 0 0.76 56.30 42.8 0.5 922 COLUMN01 2007/03/09 154 4.4 56.5 42.6 0.7 <<<< 0 0.75 66.20 42.7 0.2 920 COLUMN01 2007/03/12 157 4.4 57 41.7 0.5 186 0 0.73 57.10 41.5 0.8 924 COLUMN01 2007/03/14 159 3.3 57.1 41.5 0.3 <<<< 0 0.73 57.30 41.5 1.1 926 COLUMN01 2007/03/19 164 5.5 56.5 42.3 0.7 0 0 0.75 56.60 42.4 0.5 928 COLUMN01 2007/03/22 167 4.9 56.2 43.1 0.5 0 0 0.77 59.60 43.2 0.2 932 COLUMN01 2007/03/26 171 5.4 57.4 42.1 0.5 <<<< 0 0.73 57.80 42.2 0 933

Page 1 of 6 Royal Institue of Technology Stockholm, 2007

BIOREACTOR GAS COMPOSITION (GA - GAS MONITOR/INRFA RED)

Barometric Day Draeger ID Date CH4 CO2 O2 H2S CO CO2/CH4 Peak CH4 Peak CO2 Balance Pressure No. H2S (ppm) vol % vol % vol % ppmV ppmV Ratio vol % vol % vol % mb COLUMN02 2006/10/06 0 0 0 21 0.00 79 928 COLUMN02 2006/10/09 3 4.2 51.2 0.1 12.19 44.5 928 COLUMN02 2006/10/10 4 4.2 58.4 0.6 13.90 36.8 928 COLUMN02 2006/10/11 5 5.5 63.1 0 11.47 31.4 928 COLUMN02 2006/10/13 7 7.8 77.1 0 5 >>> 9.88 7.8 77.2 15.1 928 COLUMN02 2006/10/16 10 10.65 89.35 0 18 >>> 8.39 13.3 93.1 0 934 COLUMN02 2006/10/17 11 10.95 89.05 0 20 >>> 8.13 14.7 92.8 0 928 COLUMN02 2006/10/18 12 11.55 88.45 0 23 >>> 7.66 16.7 93.4 0 923 COLUMN02 2006/10/19 13 12.65 87.35 0 16 >>> 6.91 17.9 93.1 0 928 COLUMN02 2006/10/20 14 13.55 86.45 0 23 >>> 6.38 19.5 93.5 0 923 COLUMN02 2006/10/23 17 19.15 80.85 0 14 619 4.22 25.9 87.5 0 931 COLUMN02 2006/10/24 18 19.55 80.45 0 3 758 4.12 26.6 87.8 0 926 COLUMN02 2006/10/25 19 20.3 79.7 0 11 655 3.93 27.8 87.7 0 919 COLUMN02 2006/10/26 20 21.4 78.6 0 15 578 3.67 28.5 86.2 0 926 COLUMN02 2006/10/27 21 23.05 76.95 0 13 570 3.34 30.3 84.4 0 917 COLUMN02 2006/10/30 24 26.85 73.15 0 9 275 2.72 34.1 80.4 0 927 COLUMN02 2006/10/31 25 28 72 0 6 310 2.57 35.1 79.2 0 924 COLUMN02 2006/11/01 26 26.3 73.5 0.2 3 922 2.79 34.6 81.9 0 922 COLUMN02 2006/11/02 27 30.2 69.8 0 3 394 2.31 37.3 76.9 0 918 COLUMN02 2006/11/03 28 31.15 68.85 0 10 367 2.21 38 75.8 0 921 COLUMN02 2006/11/06 31 31.7 67.9 0.4 <<< >>> 2.14 40.7 75.6 0 925 COLUMN02 2006/11/07 32 35.1 64.9 0 <<< 308 1.85 40.4 70.5 0 923 COLUMN02 2006/11/09 34 37.15 62.85 0 <<< 303 1.69 42.1 67.9 0 928 COLUMN02 2006/11/10 35 37.5 62.5 0 <<< 217 1.67 42.9 68.1 0 922 COLUMN02 2006/11/15 40 41.1 58.9 0 0 234 1.43 46.2 63.6 0 906 COLUMN02 2006/11/16 41 42.55 57.45 0 <<< 249 1.35 47.7 62.6 0 919 COLUMN02 2006/11/17 42 43.3 56.7 0 <<< 207 1.31 48.3 61.8 0 930 COLUMN02 2006/11/20 45 44.35 55.65 0 2 247 1.25 49.7 60.6 0 928 COLUMN02 2006/11/23 48 44.4 55.6 0 <<< 553 1.25 48.3 59.5 0 924 COLUMN02 2006/11/24 49 42.25 57.45 0.3 <<< >>> 1.36 48.1 63.8 0 928 COLUMN02 2006/11/27 52 46.9 53.1 0 <<< 324 1.13 51.1 57.1 0 924 COLUMN02 2006/11/29 54 44.75 54.95 0.3 <<< >>> 1.23 50.2 60.2 0 920 COLUMN02 2006/12/01 56 47.65 51.95 0.4 <<< 666 1.09 51.4 56 0 920 COLUMN02 2006/12/12 67 49.05 50.95 0 <<< 423 1.04 52.7 54.5 0 930 COLUMN02 2006/12/13 68 49.5 50.5 0 <<< 437 1.02 53.1 53.6 0 923 COLUMN02 2006/12/14 69 49.95 50.05 0 <<< 362 1.00 53.4 53.6 0 921 COLUMN02 2006/12/18 73 51 49 0 0 205 0.96 54.5 52.4 0 927 COLUMN02 2006/12/20 75 51.05 48.95 0 1 233 0.96 54.8 52.5 0 928 COLUMN02 2006/12/21 75 51.1 48.9 0 0 205 0.96 54.6 52.6 0 929 COLUMN02 2006/12/22 77 51.05 48.95 0 0 248 0.96 54.7 52.4 0 926 COLUMN02 2006/12/27 82 51.15 48.85 0 0 226 0.96 54.9 52.8 0 922 COLUMN02 2007/01/07 93 50.1 49.9 0 <<< 353 1.00 53.7 53.5 0 914 COLUMN02 2007/01/08 94 49.8 50.2 0 136 574 1.01 53.3 53.5 0 917 COLUMN02 2007/01/12 98 56.05 43.55 0.4 <<< 71 0.78 59.4 46.4 0 916 COLUMN02 2007/01/15 101 55.9 43.8 0.3 <<< 0 0.78 58.8 46.4 0 924 COLUMN02 2007/01/18 104 55.75 43.95 0.3 <<< 0 0.79 58.9 46.9 0 928 COLUMN02 2007/01/19 105 55.55 43.95 0.5 <<< 6 0.79 58.5 46.8 0 925 COLUMN02 2007/01/20 106 55.55 44.25 0.2 0 0 0.80 58.5 46.9 0 922 COLUMN02 2007/01/24 110 54 42.1 3.9 0 5 0.78 57.9 46 0 923 COLUMN02 2007/01/29 115 55.45 43.75 0.8 0 7 0.79 58.6 47 0 921 COLUMN02 2007/02/08 125 59.65 39.05 1.3 <<<< 228 0.65 66 43.9 0 919 COLUMN02 2007/02/12 129 60.2 39.4 0.4 0 1 0.65 63.7 42.9 0 928 COLUMN02 2007/02/14 131 3.3 60.4 39.2 0.4 0 0 0.65 64.2 43.6 0 929 COLUMN02 2007/02/16 133 5 59.45 40.15 0.4 0 12 0.68 63.1 43.5 0 930 COLUMN02 2007/02/20 137 7 57.95 41.55 0.5 <<<< 12 0.72 61.1 45.6 0 930 COLUMN02 2007/02/21 138 9.2 57.5 42.1 0.4 <<<< 83 0.73 62.1 45.5 0 932 COLUMN02 2007/02/22 139 4.5 56.55 43.05 0.4 <<<< 0 0.76 60.1 46.6 0 929 COLUMN02 2007/02/26 143 0.5 55.9 43.8 0.3 <<<< 2 0.78 46 44.2 0 928 COLUMN02 2007/02/27 144 0.5 56.3 43.3 0.4 0 0 0.77 46.6 43.9 0 926 COLUMN02 2007/02/28 145 0.5 55.8 43.8 0.4 0 0 0.78 45.8 43.7 0 923 COLUMN02 2007/03/01 146 4.5 56.15 43.45 0.4 0 0 0.77 57.2 45 0 917 COLUMN02 2007/03/02 147 9.9 55.8 43.7 0.5 4 0 0.78 57 44.9 0 920 COLUMN02 2007/03/05 150 41.7 50.5 48.2 0.4 21 0 0.95 50.5 47.9 0.9 923 COLUMN02 2007/03/07 152 20.9 49.8 49.7 0.4 >>>> 0 1.00 50 49.9 0.1 922 COLUMN02 2007/03/09 154 132.1 49.45 50.05 0.5 >>>> 0 1.01 50.4 50.4 0 920 COLUMN02 2007/03/12 157 252.2 49.8 49.2 0.3 >>>> 0 0.99 49.8 49.4 0.7 923 COLUMN02 2007/03/14 159 568.9 50.4 48.9 0.4 >>>> 0 0.97 50.6 49 0.3 926 COLUMN02 2007/03/19 164 556.6 49.6 49.3 0.4 >>>> 0 0.99 50 49.5 0.7 928 COLUMN02 2007/03/22 167 543.5 49.6 49.9 0.5 0 0 1.01 49.7 50 0 932 COLUMN02 2007/03/26 171 1758.9 50.6 48.7 0.2 >>>> 0 0.96 51.3 49 0.5 933

Page 2 of 6 Royal Institue of Technology Stockholm, 2007

BIOREACTOR GAS COMPOSITION (GA - GAS MONITOR/INRFA RED)

Barometric Day Draeger ID Date CH4 CO2 O2 H2S CO CO2/CH4 Peak CH4 Peak CO2 Balance Pressure No. H2S (ppm) vol % vol % vol % ppmV ppmV Ratio vol % vol % vol % mb COLUMN03 2006/10/06 0 0 0 21 0.00 79 928 COLUMN03 2006/10/09 3 1.125 50.825 1.05 45.18 47 928 COLUMN03 2006/10/10 4 1.4 61.8 0.6 44.14 36.2 928 COLUMN03 2006/10/11 5 2.2 65.3 0 29.68 32.5 928 COLUMN03 2006/10/13 7 3.2 79.1 0 26 >>> 24.72 3.3 79.2 17.7 928 COLUMN03 2006/10/16 10 5.85 94.15 0 43 >>> 16.09 5.7 94.3 0 934 COLUMN03 2006/10/17 11 5.35 94.65 0 49 >>> 17.69 6.6 96.5 0 928 COLUMN03 2006/10/18 12 4.55 95.45 0 54 >>> 20.98 7.7 98.9 0 923 COLUMN03 2006/10/19 13 4.2 95.8 0 95 >>> 22.81 8.3 99.9 0 928 COLUMN03 2006/10/20 14 4.6 95.4 0 90 >>> 20.74 9.1 99.9 0 923 COLUMN03 2006/10/23 17 7.15 92.85 0 54 >>> 12.99 13.7 99.9 0 974 COLUMN03 2006/10/24 18 7.2 92.8 0 60 >>> 12.89 14 99.9 0 925 COLUMN03 2006/10/25 19 7.5 92.5 0 55 >>> 12.33 14.9 99.9 0 919 COLUMN03 2006/10/26 20 8.25 91.75 0 52 >>> 11.12 15 98.5 0 926 COLUMN03 2006/10/27 21 8.85 91.15 0 55 >>> 10.30 15.8 98.5 0 917 COLUMN03 2006/10/30 24 11.4 88.6 0 28 >>> 7.77 18.7 96 0 927 COLUMN03 2006/10/31 25 12.25 87.75 0 28 >>> 7.16 19.8 95.5 0 924 COLUMN03 2006/11/01 26 10 89.7 0.3 49 >>> 8.97 20.2 99.9 0 921 COLUMN03 2006/11/02 27 13.35 86.65 0 35 >>> 6.49 21.1 94.6 0 918 COLUMN03 2006/11/03 28 14.05 85.95 0 39 >>> 6.12 21.7 93.7 0 921 COLUMN03 2006/11/06 31 14.2 85.5 0.3 <<< >>> 6.02 22.5 94.1 0 925 COLUMN03 2006/11/07 32 16.65 83.35 0 <<< >>> 5.01 23.9 90.6 0 922 COLUMN03 2006/11/09 34 18.55 81.45 0 <<< >>> 4.39 24.7 88.5 0 929 COLUMN03 2006/11/10 35 18.55 81.45 0 <<< >>> 4.39 25.2 88 0 922 COLUMN03 2006/11/15 40 21.55 78.45 0 0 >>> 3.64 26.8 83.8 0 906 COLUMN03 2006/11/16 41 23.1 76.9 0 <<< >>> 3.33 28 81.8 0 919 COLUMN03 2006/11/17 42 23.3 76.7 0 <<< >>> 3.29 28.6 82.2 0 930 COLUMN03 2006/11/20 45 24.15 75.85 0 9 >>> 3.14 29.7 82.1 0 928 COLUMN03 2006/11/23 48 23.5 76.5 0 <<< >>> 3.26 28.9 81.8 0 924 COLUMN03 2006/11/24 49 19.45 80.35 0.2 <<< >>> 4.13 28.4 89.8 0 927 COLUMN03 2006/11/27 52 25.2 74.8 0 <<< >>> 2.97 29.9 79.7 0 924 COLUMN03 2006/11/29 54 22.95 76.85 0.2 <<< >>> 3.35 29.9 83.7 0 920 COLUMN03 2006/12/01 56 25.85 73.85 0.3 <<< >>> 2.86 31.4 79.6 0 919 COLUMN03 2006/12/12 67 28.9 65.5 0.8 <<< 470 2.27 29.2 66.6 4.8 930 COLUMN03 2006/12/13 68 29.4 66.3 0.3 <<< 683 2.26 29.9 67.1 4 923 COLUMN03 2006/12/14 69 30 66.6 0 <<< 481 2.22 30.4 67.1 3.4 921 COLUMN03 2006/12/18 73 31.6 66 0 0 523 2.09 31.9 66.5 2.4 927 COLUMN03 2006/12/20 75 32.8 66.1 0 3 >>> 2.02 32.9 66.1 1.1 929 COLUMN03 2006/12/21 75 33.7 66.2 0 4 >>> 1.96 33.7 66.3 0.1 929 COLUMN03 2006/12/22 77 33.75 66.25 0 4 >>> 1.96 33.7 66.3 0 925 COLUMN03 2006/12/27 82 33.2 66.4 0 0 >>> 2.00 33.9 67 0.4 922 COLUMN03 2007/01/07 93 34.05 65.85 0.1 <<< >>> 1.93 36.1 69.2 0 914 COLUMN03 2007/01/08 94 33.85 66.15 0 <<< >>> 1.95 35.7 67.9 0 917 COLUMN03 2007/01/12 98 40.95 58.75 0.3 <<< 296 1.43 43.6 58.5 0 916 COLUMN03 2007/01/15 101 41.9 57.5 0.6 0 62 1.37 43.6 56.1 0 924 COLUMN03 2007/01/18 104 41.95 57.55 0.5 <<< 118 1.37 43.9 57.2 0 928 COLUMN03 2007/01/19 105 42.4 57.3 0.3 <<< 147 1.35 43.5 56.9 0 925 COLUMN03 2007/01/20 106 42.55 57.15 0.3 20 135 1.34 43.4 56.9 0 922 COLUMN03 2007/01/24 110 42.3 56 1.7 16 0 1.32 43.9 56.6 0 923 COLUMN03 2007/01/29 115 43.2 54.9 1.9 1 <<< 1.27 45.4 56.8 0 921 COLUMN03 2007/02/08 125 46.5 52.7 0.8 51 433 1.13 49.2 55.2 0 919 COLUMN03 2007/02/12 129 47.3 52.4 0.3 16 26 1.11 49.2 53.9 0 928 COLUMN03 2007/02/14 131 0.5 47.65 52.15 0.2 17 51 1.09 50 54.3 0 928 COLUMN03 2007/02/16 133 0.5 48 51.6 0.4 51 154 1.08 51.1 54.7 0 930 COLUMN03 2007/02/20 137 0.5 48.8 50.9 0.3 43 119 1.04 51.8 53.5 0 930 COLUMN03 2007/02/21 138 1.6 48.6 50.9 0.5 <<<< 263 1.05 51.5 53.6 0 931 COLUMN03 2007/02/22 139 0.5 49.35 50.25 0.4 <<<< 27 1.02 52.4 53.4 0 928 COLUMN03 2007/02/26 143 0.5 48.5 51.4 0.1 23 121 1.06 40.7 52.1 0 929 COLUMN03 2007/02/27 144 0.5 49 50.6 0.4 12 72 1.03 40.5 50.7 0 925 COLUMN03 2007/02/28 145 0.5 49.2 50.5 0.3 15 50 1.03 40.7 50.5 0 922 COLUMN03 2007/03/01 146 0.5 50.2 49.7 0.1 0 32 0.99 51 50.9 0 917 COLUMN03 2007/03/02 147 0.6 50.4 49.2 0.4 24 0 0.98 50.8 49.9 0 920 COLUMN03 2007/03/05 150 0.5 48.2 49.9 0.3 62 0 1.04 48.3 49.8 1.6 923 COLUMN03 2007/03/07 152 0.5 51.7 48 0.3 <<<< 0 0.93 54.2 50.6 0 922 COLUMN03 2007/03/09 154 0.6 54.85 44.85 0.3 <<<< 0 0.82 60.5 50.4 0 921 COLUMN03 2007/03/12 157 0.5 58.1 41.6 0.3 <<<< 0 0.72 66 49.6 0 924 COLUMN03 2007/03/14 159 0.5 58.9 40.8 0.3 38 0 0.69 67.3 49.1 0 927 COLUMN03 2007/03/19 164 0.5 57.9 41.9 0.2 19 0 0.72 64.5 48.4 0 928 COLUMN03 2007/03/22 167 0.5 55.9 43.7 0.4 0 0 0.78 61.5 49.3 0 932 COLUMN03 2007/03/26 171 0.5 56.5 43 0.5 >>>> 0 0.76 61.8 47.7 0 933

Page 3 of 6 Royal Institue of Technology Stockholm, 2007

BIOREACTOR GAS COMPOSITION (GA - GAS MONITOR/INRFA RED)

Barometric Day Draeger ID Date CH4 CO2 O2 H2S CO CO2/CH4 Peak CH4 Peak CO2 Balance Pressure No. H2S (ppm) vol % vol % vol % ppmV ppmV Ratio vol % vol % vol % mb COLUMN04 2006/10/06 0 0 0 21 0.00 79 928 COLUMN04 2006/10/09 3 0.1 44.6 0.8 446.00 54.5 927 COLUMN04 2006/10/10 4 0.7 56 0.5 80.00 42.8 927 COLUMN04 2006/10/11 5 1.2 59.5 0 49.58 39.3 927 COLUMN04 2006/10/13 7 2 72.4 0 25 >>> 36.20 3.3 78.2 25.6 927 COLUMN04 2006/10/16 10 7.35 92.65 0 47 >>> 12.61 4.5 90.1 0 933 COLUMN04 2006/10/17 11 5.3 91.4 0 53 >>> 17.25 5.3 92.1 3.3 928 COLUMN04 2006/10/18 12 5.45 94.55 0 49 >>> 17.35 6.3 95.6 0 923 COLUMN04 2006/10/19 13 5 95 0 117 >>> 19.00 6.9 97.4 0 929 COLUMN04 2006/10/20 14 4.3 95.7 0 79 >>> 22.26 7.5 98.9 0 923 COLUMN04 2006/10/23 17 5.55 94.45 0 32 >>> 17.02 11 99.9 0 930 COLUMN04 2006/10/24 18 5.6 94.4 0 27 >>> 16.86 11 99.9 0 925 COLUMN04 2006/10/25 19 5.9 94.1 0 38 >>> 15.95 11.7 99.9 0 918 COLUMN04 2006/10/26 20 5.7 94.3 0 37 >>> 16.54 11.4 99.9 0 926 COLUMN04 2006/10/27 21 6.1 93.9 0 40 >>> 15.39 12.2 99.9 0 917 COLUMN04 2006/10/30 24 8.25 91.75 0 15 >>> 11.12 13.6 96.9 0 927 COLUMN04 2006/10/31 25 8.7 91.3 0 17 >>> 10.49 14.3 97.3 0 924 COLUMN04 2006/11/01 26 6.9 93 0.1 33 >>> 13.48 14 99.9 0 922 COLUMN04 2006/11/02 27 8.3 91.7 0 34 >>> 11.05 15.1 99.9 0 919 COLUMN04 2006/11/03 28 9.2 90.8 0 28 >>> 9.87 15.4 97.3 0 921 COLUMN04 2006/11/06 31 7.55 92.15 0.3 <<< >>> 12.21 15.5 99.9 0 925 COLUMN04 2006/11/07 32 10.7 89.3 0 <<< >>> 8.35 16.4 95 0 923 COLUMN04 2006/11/09 34 11.3 88.7 0 <<< >>> 7.85 17.4 94.8 0 929 COLUMN04 2006/11/10 35 11.55 88.45 0 <<< >>> 7.66 17.8 95.7 0 922 COLUMN04 2006/11/15 40 13.15 86.85 0 33 >>> 6.60 19.5 93.1 0 906 COLUMN04 2006/11/16 41 13.8 86.2 0 <<< >>> 6.25 20 92.3 0 919 COLUMN04 2006/11/17 42 14.65 85.35 0 <<< >>> 5.83 20.6 91.5 0 930 COLUMN04 2006/11/20 45 15.65 84.35 0 11 >>> 5.39 21.7 91.1 0 928 COLUMN04 2006/11/23 48 15.25 84.75 0 <<< >>> 5.56 21.1 91.1 0 923 COLUMN04 2006/11/24 49 10.95 88.75 0.3 <<< >>> 8.11 21.4 99.8 0 927 COLUMN04 2006/11/27 52 18.05 81.65 0.3 <<< >>> 4.52 21.3 86.6 0 924 COLUMN04 2006/11/29 54 14.4 85.3 0.3 <<< >>> 5.92 21.1 93.1 0 920 COLUMN04 2006/12/01 56 18.55 80.85 0.6 <<< >>> 4.36 22.1 85 0 919 COLUMN04 2006/12/12 67 15.8 61.7 2 <<< >>> 3.91 15.8 61.9 20.5 930 COLUMN04 2006/12/13 68 16.9 64 1.1 <<< >>> 3.79 17 64.2 18 923 COLUMN04 2006/12/14 69 17 65.1 0.5 <<< >>> 3.83 17 65.3 17.4 921 COLUMN04 2006/12/18 73 18.5 66.7 0 0 >>> 3.61 18.7 67.4 14.8 927 COLUMN04 2006/12/20 75 18.3 67.2 0 0 >>> 3.67 18.4 67.6 14.5 928 COLUMN04 2006/12/21 75 19.2 67.5 0 0 >>> 3.52 19.2 67.9 13.3 928 COLUMN04 2006/12/22 77 19.6 68.5 0 0 >>> 3.49 19.6 68.9 11.9 926 COLUMN04 2006/12/27 82 17.9 62.2 1 0 >>> 3.47 17.9 63.4 18.9 921 COLUMN04 2007/01/07 93 18.3 63 0.3 <<< >>> 3.44 18.3 63.7 18.4 914 COLUMN04 2007/01/08 94 18.3 65.8 0.3 <<< >>> 3.60 18.3 66.1 15.6 917 COLUMN04 2007/01/12 98 23.1 57.1 0.5 <<< 490 2.47 28.9 56.2 19.3 915 COLUMN04 2007/01/15 101 22.1 54.4 1 3 304 2.46 28.8 54.1 22.5 924 COLUMN04 2007/01/18 104 22.7 55.4 0.3 <<< 363 2.44 30.5 55.4 21.6 928 COLUMN04 2007/01/19 105 23.6 56.9 0.2 <<< 396 2.41 30.4 56.4 19.3 925 COLUMN04 2007/01/20 106 23.5 57.4 0.3 29 421 2.44 28.1 57.6 18.8 922 COLUMN04 2007/01/24 110 24.5 58.8 1.5 40 218 2.40 24.9 58.8 15.2 923 COLUMN04 2007/01/29 115 26.7 60.5 2.1 6 125 2.27 26.7 60.5 10.7 920 COLUMN04 2007/02/08 125 31.9 60.2 0.9 144 644 1.89 33.5 60.2 7 918 COLUMN04 2007/02/12 129 32.9 61.2 0.3 26 365 1.86 32.8 62.1 5.6 928 COLUMN04 2007/02/14 131 0.5 34.7 61.6 0.1 28 367 1.78 35.7 60.7 3.6 929 COLUMN04 2007/02/16 133 0.5 35.5 61.2 0.5 82 494 1.72 35.7 61 2.8 930 COLUMN04 2007/02/20 137 0.5 37.2 61.1 0.2 72 418 1.64 36.7 60.9 1.5 930 COLUMN04 2007/02/21 138 2.2 37 62 0.5 <<<< 655 1.68 40.1 61.9 0.5 931 COLUMN04 2007/02/22 139 0.5 37.4 60.4 0.2 0 302 1.61 37.5 60.3 2 928 COLUMN04 2007/02/26 143 0.5 36.75 59.45 0.4 38 282 1.62 29 59.7 3.4 928 COLUMN04 2007/02/27 144 0.5 38.2 58.2 0.2 16 239 1.52 31.3 58.4 3.4 926 COLUMN04 2007/02/28 145 0.5 38 58.3 0.3 19 249 1.53 30.1 58.4 3.4 922 COLUMN04 2007/03/01 146 0.5 37.3 58.1 0.3 0 41 1.56 38.8 58.8 4.3 917 COLUMN04 2007/03/02 147 0.6 37.5 58.7 0.4 30 0 1.57 37.3 58.3 3.4 919 COLUMN04 2007/03/05 150 0.5 35.9 58.1 0.3 86 0 1.62 36.1 58.7 5.7 923 COLUMN04 2007/03/07 152 0.5 37 58.2 0.2 <<<< 0 1.57 54.4 58.2 4.6 922 COLUMN04 2007/03/09 154 0.6 37.1 58.7 0.4 <<<< 0 1.58 40.2 59.2 3.8 920 COLUMN04 2007/03/12 157 0.5 38.2 58.6 0.3 <<<< 0 1.53 42.4 58.2 2.9 923 COLUMN04 2007/03/14 159 0.5 38.8 57.9 0.6 97 0 1.49 38.9 58.3 2.7 927 COLUMN04 2007/03/19 164 0.5 39.5 58 0.4 31 0 1.47 44.8 57.8 2.1 928 COLUMN04 2007/03/22 167 0.5 39.7 59 0.4 0 0 1.49 39.6 58.8 0.9 932 COLUMN04 2007/03/26 171 0.5 41.4 56.9 0.4 >>>> 0 1.37 41.1 57 1.3 933

Page 4 of 6 Royal Institue of Technology Stockholm, 2007

BIOREACTOR GAS COMPOSITION (GA - GAS MONITOR/INRFA RED)

Barometric Day Draeger ID Date CH4 CO2 O2 H2S CO CO2/CH4 Peak CH4 Peak CO2 Balance Pressure No. H2S (ppm) vol % vol % vol % ppmV ppmV Ratio vol % vol % vol % mb COLUMN05 2006/11/08 0 0 0 21 0.00 79 928 COLUMN05 2006/11/17 9 1.7 39.9 0 <<< 844 23.47 1.8 40 58.4 930 COLUMN05 2006/11/20 12 3.3 49 0 0 698 14.85 3.3 50.6 47.7 928 COLUMN05 2006/11/23 15 5.2 56.8 0 <<< 889 10.92 5.2 57.1 38 923 COLUMN05 2006/11/24 16 5.9 63.1 0.3 <<< >>> 10.69 6.1 64.7 30.7 927 COLUMN05 2006/11/27 19 8.6 63 0 <<< 321 7.33 8.8 63.2 28.4 923 COLUMN05 2006/11/29 21 9.6 68 1.2 <<< >>> 7.08 9.7 69 21.2 920 COLUMN05 2006/12/01 23 11.5 65.5 0.8 <<< 608 5.70 11.7 65.6 22.2 919 COLUMN05 2006/12/12 34 18.6 70.3 0 <<< 104 3.78 18.9 70.7 11.1 930 COLUMN05 2006/12/13 35 20.5 69.7 0 <<< 386 3.40 21 70.1 9.8 923 COLUMN05 2006/12/14 36 20.5 69.6 0 <<< 263 3.40 21.3 70.1 9.9 920 COLUMN05 2006/12/18 40 23.6 69.5 0 <<< 219 2.94 23.6 69.4 6.9 927 COLUMN05 2006/12/20 42 24.3 69.4 0 <<< 194 2.86 24.3 69.5 6.3 928 COLUMN05 2006/12/21 43 25.2 67.7 0 <<< 232 2.69 25.5 68.2 7.1 928 COLUMN05 2006/12/22 44 25.3 69.2 0 <<< 273 2.74 25.5 69.8 5.5 926 COLUMN05 2006/12/27 49 27.6 70.2 0 <<< 161 2.54 27.8 70.6 2.2 921 COLUMN05 2007/01/07 60 30.45 69.55 0 <<< 161 2.28 31.1 71.2 0 914 COLUMN05 2007/01/08 61 30.3 69.7 0 <<< >>> 2.30 31.6 71 0 917 COLUMN05 2007/01/12 65 35.8 60.7 0.3 <<< 98 1.70 36.4 60.8 3.2 916 COLUMN05 2007/01/15 68 37.4 59.2 0.3 <<< 15 1.58 38.2 59.9 3.1 924 COLUMN05 2007/01/18 71 38.4 59.3 0.3 <<< 27 1.54 38.7 59.7 2 928 COLUMN05 2007/01/19 72 39 58.6 0.2 <<< 32 1.50 39.4 59 2.2 925 COLUMN05 2007/01/20 73 39 58.7 0.2 <<< 11 1.51 39.1 58.8 2.1 922 COLUMN05 2007/01/24 77 39.75 56.75 3.5 0 19 1.43 40.4 57.4 0 923 COLUMN05 2007/01/29 82 42.15 55.85 2 <<< 2 1.33 43.4 57.1 0 920 COLUMN05 2007/02/08 92 45.25 53.95 0.8 <<<< 308 1.19 47.6 56.1 0 919 COLUMN05 2007/02/12 96 47.15 52.45 0.4 <<<< 0 1.11 48.7 54 0 928 COLUMN05 2007/02/14 98 0.5 47.9 51.8 0.3 <<<< 10 1.08 49.6 53.5 0 929 COLUMN05 2007/02/16 100 0.5 47.85 51.95 0.2 <<<< 44 1.09 49.4 53.6 0 930 COLUMN05 2007/02/20 104 0.5 48.15 51.55 0.3 <<<< 40 1.07 50.8 53.9 0 930 COLUMN05 2007/02/21 105 2.2 48.25 51.35 0.4 <<<< 130 1.06 50.2 53.2 0 932 COLUMN05 2007/02/22 106 0.5 48.7 51.1 0.2 <<<< 18 1.05 51 53.5 0 928 COLUMN05 2007/02/26 110 0.5 46.7 52.9 0.4 <<<< 20 1.13 38.8 52.5 0 929 COLUMN05 2007/02/27 111 0.5 48.4 51.3 0.3 <<<< 3 1.06 39.1 51.3 0 925 COLUMN05 2007/02/28 112 0.5 48.85 50.75 0.1 <<<< 3 1.04 38.6 51 0.3 922 COLUMN05 2007/03/01 113 0.5 48.4 50.9 0.4 0 <<<< 1.05 48.6 51.1 0.3 917 COLUMN05 2007/03/02 114 0.6 48.35 51.15 0.5 0 0 1.06 48.8 51.6 0 919 COLUMN05 2007/03/05 117 0.5 45.8 52.5 0.4 <<<< 0 1.15 45.4 51.9 1.3 923 COLUMN05 2007/03/07 119 0.5 47.3 50.8 0.3 <<<< 0 1.07 47.3 50.7 1.6 922 COLUMN05 2007/03/09 121 0.6 46.8 52 0.3 <<<< 0 1.11 47.3 52.1 0.9 921 COLUMN05 2007/03/12 124 0.5 47.7 49.9 0.3 171 0 1.05 48 50 2.1 923 COLUMN05 2007/03/14 126 0.5 48.8 50.1 0.1 0 0 1.03 48.5 49.9 1 927 COLUMN05 2007/03/19 131 1.1 48.6 50.5 0.3 <<<< 0 1.04 48.6 50.5 0.6 928 COLUMN05 2007/03/22 132 0.5 47.5 50.8 0.4 0 0 1.07 48.1 50.7 1.3 932 COLUMN05 2007/03/26 136 0.5 49.2 49.8 0.4 >>>> 0 1.01 50.6 57.4 0.6 933

Page 5 of 6 Royal Institue of Technology Stockholm, 2007

BIOREACTOR GAS COMPOSITION (GA - GAS MONITOR/INRFA RED)

Barometric Day Draeger ID Date CH4 CO2 O2 H2S CO CO2/CH4 Peak CH4 Peak CO2 Balance Pressure No. H2S (ppm) vol % vol % vol % ppmV ppmV Ratio vol % vol % vol % mb COLUMN06 2006/11/08 0 0 0 21 0.00 79 928 COLUMN06 2006/11/17 9 1.1 31.4 2.2 <<< 403 28.55 1.1 31.4 65.3 930 COLUMN06 2006/11/20 12 3 47 0 <<< >>> 15.67 3 47.3 50 928 COLUMN06 2006/11/23 15 5.9 59.5 0 <<< >>> 10.08 5.9 59.7 34.6 923 COLUMN06 2006/11/24 16 7.1 67 0.2 <<< >>> 9.44 7.2 67.4 25.7 928 COLUMN06 2006/11/27 19 10.1 69.1 0 <<< 331 6.84 10.5 69.7 20.8 924 COLUMN06 2006/11/29 21 11.8 77.7 0.2 <<< >>> 6.58 11.8 77.7 10.3 920 COLUMN06 2006/12/01 23 13.2 73.4 0.4 <<< 705 5.56 13.3 74.2 13 919 COLUMN06 2006/12/12 34 17 66.5 0.4 <<< 58 3.91 17.4 66.9 16.1 930 COLUMN06 2006/12/13 35 18.6 68.8 0 <<< 261 3.70 19 69.3 12.6 923 COLUMN06 2006/12/14 36 19.1 68 0 <<< 267 3.56 19.4 69.4 12.9 920 COLUMN06 2006/12/18 40 21.2 67.3 0 <<< 60 3.17 21.5 68.7 11.5 927 COLUMN06 2006/12/20 42 22.5 68.5 0 <<< 155 3.04 22.7 68.6 9 928 COLUMN06 2006/12/21 43 23.6 67.5 0 <<< 139 2.86 23.8 67.9 8.9 928 COLUMN06 2006/12/22 44 23.6 68.5 0 <<< 175 2.90 23.9 69 7.9 925 COLUMN06 2006/12/27 49 24.4 65.2 0 <<< 83 2.67 24.5 65.4 10.4 921 COLUMN06 2007/01/07 60 27.9 63.7 0 <<< 70 2.28 28.2 64.6 8.4 954 COLUMN06 2007/01/08 61 27.9 65.5 0 <<< >>> 2.35 28.7 65.7 6.6 917 COLUMN06 2007/01/12 65 34.3 57.6 0.3 <<< 108 1.68 34.6 57.6 7.8 915 COLUMN06 2007/01/15 68 34.2 54.4 0.2 <<< 34 1.59 34.6 55.2 11.2 924 COLUMN06 2007/01/18 71 36.6 55.6 0.4 <<< 32 1.52 36.5 55.3 7.4 928 COLUMN06 2007/01/19 72 37.2 54.8 0.3 <<< 37 1.47 37.6 54.9 7.7 925 COLUMN06 2007/01/20 73 37.8 55.8 0.3 <<< 26 1.48 37.7 55.7 6.1 922 COLUMN06 2007/01/24 77 40.4 54.8 1.4 0 0 1.36 40.3 54.8 3.4 922 COLUMN06 2007/01/29 82 42.8 54.4 2 0 2 1.27 42.9 54.5 0.8 920 COLUMN06 2007/02/08 92 47.35 51.35 1.3 <<<< 272 1.08 49.2 53.2 0.0 919 COLUMN06 2007/02/12 96 49.3 50.4 0.3 1 8 1.02 50.5 51.3 0.0 928 COLUMN06 2007/02/14 98 15.3 50.15 49.65 0.2 0 24 0.99 51.4 50.6 0.0 929 COLUMN06 2007/02/16 100 0.5 50.25 49.45 0.3 0 44 0.98 52 51.4 0.0 930 COLUMN06 2007/02/20 104 0.5 50.6 49.2 0.2 0 46 0.97 52.1 50.8 0.0 930 COLUMN06 2007/02/21 105 21.7 50.9 48.8 0.3 <<<< 122 0.96 53.1 51.2 0.0 931 COLUMN06 2007/02/22 106 0.5 51 48.6 0.4 <<<< 20 0.95 53.4 51.2 0.0 928 COLUMN06 2007/02/26 110 0.5 50.6 49.2 0.2 <<<< 22 0.97 40.5 50 0.0 928 COLUMN06 2007/02/27 111 0.5 51 48.6 0.4 <<<< 4 0.95 41.2 49.1 0.0 925 COLUMN06 2007/02/28 112 0.5 50.9 48.9 0.2 <<<< 4 0.96 40.7 49.2 0.0 922 COLUMN06 2007/03/01 113 0.5 50.9 48.7 0.4 0 <<<< 0.96 50.9 48.7 0.0 917 COLUMN06 2007/03/02 114 0.6 51.15 48.55 0.3 0 0 0.95 51.6 49 0.0 919 COLUMN06 2007/03/05 117 2.2 47.6 48.7 0.1 <<<< 0 1.02 48.2 48.9 3.6 923 COLUMN06 2007/03/07 119 0.5 49.2 48.4 0.3 <<<< 0 0.98 49.8 49.2 2.1 922 COLUMN06 2007/03/09 121 1.1 49.1 49.3 0.3 <<<< 0 1.00 49.1 49.3 1.3 920 COLUMN06 2007/03/12 124 1.6 49.7 48 0.4 171 0 0.97 49.8 48.3 1.9 923 COLUMN06 2007/03/14 126 0.5 50 47.7 0.2 0 0 0.95 50.3 47.7 2.1 927 COLUMN06 2007/03/19 131 1.6 50.6 48.8 0.1 <<<< 0 0.96 50.9 48.5 0.5 928 COLUMN06 2007/03/22 132 1.1 50.2 49.4 0.4 0 0 0.98 50.2 49.3 0.0 932 COLUMN06 2007/03/26 136 1.1 51.2 47.8 0.3 >>>> 0 0.93 51.3 47.9 0.7 933

Page 6 of 6

APPENDIX D – SULPHATE LOAD CALCULATIONS

Once printed this document is an uncontrolled version and should be checked against the electronic version for validity Document:: Thesis Temp2 | Last printed: 6/19/2007 2:46 PM Page 4 of 5

5000 MG/L SULPHATE LOAD CALCULATION

When the simulated effect of AMD was added to the bioreactors the average leachate free leachate collected from the leachate sump was 7.6L. Using this as an average value and considering that there is leachate remaining in the column beneath the drainage port - an average value of 10L was used as a value for the available free leachate in each column.

AMD was sampled from a site where surface water runoff enters the void. Below is a summary analysis of this surface water: 2007/01/19 Parameter Units Value Temp oC 21.56 pH pH units 2.9 Specific Conductance uS/cm 16000 TDS mg/L 32000 Sulphate mg/L 20000 Total Copper ug/L 48000 Total Iron mg/L 640 Total Lead ug/L 1500 Total Zinc mg/L 1100

The obtain a leachate with concentration of approximately 5000 mg/L of sulphate - one of the higher ranges of leachate found in leachate of the Woodlawn bioreactor – the following calculations were made to allow for addition of the appropriate amount of AMD.

Sulphate Sulphate Leachate Leachate Sulphate in Volume of (Total) AMD Concentration Sulphate Volume Leachate AMD Sulphate AMD /Leachate AMD Concentration (Assumed) (Total) Concentration added Mix /Leachate Mix (mg/L) (L) (mg) (mg/L) (L) (mg) (mg/L) C2 220 10 2200 20000 3.19 66000 5004 C3 540 10 5400 20000 2.98 65000 5008 C4 630 10 6300 20000 2.92 64700 5008 C5 74 10 740 20000 3.29 66540 5007 C6 640 10 6400 20000 2.91 64600 5004

TRITA-IM 2007:30 ISSN 1402-7615

Industrial Ecology, Royal Institute of Technology www.ima.kth.se