IGC 2006, 14-16 December 2006, Chennai, INDIA GEOINDEX GEOTECHNICAL ASPECTS OF BIOREACTOR LANDFILLS Krishna R. Reddy Department of Civil and Materials Engineering, University of Illinois at Chicago,USA,
[email protected] ABSTRACT: Currently, there are more than three thousand landfills in the United States in which approximately 55% of the municipal solid waste (MSW) generated is being disposed. The majority of these landfills are designed on the premise that liquid generation should be minimized through the design of liner, leachate collection and removal, and final cover systems. Recently, “bioreactor” landfills are being designed on the contrasting premise that leachate recycling, water addition, and other operating strategies should induce an enhanced environment for biochemical degradation of MSW. Bioreactor landfills are receiving a great deal of attention from environmental professionals because they offer a sustainable way to achieve increased waste degradation along with benefits such as reduction in leachate pollution potential and rapid increase in landfill volumetric capacity. They also offer significant reductions in post-closure management as a result of a reduced period for landfill leachate and gas generation and improved potential for more rapid land reuse for a recreational facility or industrial park. The design of bioreactor landfills requires a careful assessment of several engineering issues such as leachate/moisture distribution, waste degradation and gas generation, waste settlement, and stability of waste slopes. This paper first discusses these issues and then describes the selected historic and current bioreactor demonstration projects. Finally, this paper outlines additional research needed to design and operate bioreactor landfills for effective stabilization of MSW. 1.