Identification of a Possible H-Chondrite Asteroid Family

Total Page:16

File Type:pdf, Size:1020Kb

Identification of a Possible H-Chondrite Asteroid Family 76th Annual Meteoritical Society Meeting (2013) 5124.pdf IDENTIFICATION OF A POSSIBLE H-CHONDRITE ASTEROID FAMILY. M. J. Gaffey1,2 and S. K. Fieber-Beyer1,2. 1Space Studies Depart- ment, John D. Odegard School of Aerospace Sciences, University of North Dakota, Grand Forks, ND 58202. 2Visiting astronomer at the IRTF under contract from NASA, operated by the Univ. of Hi., Mauna Kea; [email protected]; [email protected]. Introduction: Based on dynamical and spectral parameters, asteroid (6) Hebe was identified as the probable parent body of the H-chondrites [1]. The Portales Valley meteorite [2-4] and subsequent dynamical analysis [5] strengthened this conclusion. Hebe is located near the intersection of the 3:1 mean motion res- onance (Kirkwood Gap) and the ν6 proper motion resonance, both of which should be major sources of meteorites [6, 7]. Hebe has no observed asteroid family [5]. Investigation of 3:1` Kirkwood Gap Asteroids: For the past several years we have carried out a spectral investigation of as- teroids adjacent to the 3:1 mean motion resonance, with the goal of identifying possible meteorite parent bodies [8-10]. H-chondrite Assemblages: Our initial survey identified an additional H-type assemblage (695) Bella located near (6) Hebe. We suggested that Bella was a “daughter” (i.e., a fragment) or a “sister” of Hebe (i.e., from the same nebular compositional reser- voir) [8]. Our spectral survey of asteroids within the “feeding zone” of the 3:1 Kirkwood Gap has now examined 40 objects. Two additional H-type assemblages have been identified. These are both located in the upper half of the inclination distribution. Asteroid a (AU)11 i (°)11 Diam.(km)11 6 Hebe 2.246 14.7 185 695 Bella 2.540 13.9 48 1166 Sakuntala 2.539 18.9 29 1607 Mavis 2.549 8.6 12 Conclusions: We suggest that these four objects are members of a relatively dispersed (old?) asteroid family derived from a major collisional event on asteroid (6) Hebe. Objects near the resonance are subject to significant changes in orbital eccentricity which in turn allows significant changes in orbital inclination [12] which may explain the lower inclination of (1607) Mavis. The record of impact cratering on the H-chondrite parent body suggests that it may have suffered a catastrophic size reduction at ~3600 Myr ago [12]. Alternately, these four objects may derive from a unique nebular chemical reservoir located near the inter- section of the 3:1 mean motion resonance with the ν6 proper mo- tion resonance. This seems less likely. Acknowledgements: This work was supported by NASA Plane- tary Geology and Geophysics Grants NNX10AG45G and NNX11AN84G. References: [1] Gaffey M. J. and Gilbert S. L. 1998. MAPS 33: 1281-1295. [2] Kring D. A. et al. 1999. MAPS 34:663-669. [3] Rubin A. E. et al. 2001. GCA 65:323–342. [4] Ruzicka A. et al. 2005. MAPS 40:261–295. [5] Bottke W. F. et al. 2010. 42nd DPS Meeting, Abstract 46.06. [6] Farinella P. et al. 1993. Icarus 101:174-187. [7] Farinella P. et al. 1998. Icarus 132:378-387. [8] Fieber-Beyer S. K. et al. 2011. Icarus 213:524-537. [9] Fieber-Beyer S. K. and Gaffey M. J. 2011. Icarus 214:645-651. [10] Fieber-Beyer S. K. 2012. Icarus 221:593-602. [11] JPL Small Body Data Browser [12] Yoshikawa M. 1992. Celest. Mech. & Dynam. Ast. 54:287-290. [13] Wittmann A. et al. 2010. JGR 115:E07009, doi:10.1029/2009JE003433. .
Recommended publications
  • Asteroid Regolith Weathering: a Large-Scale Observational Investigation
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2019 Asteroid Regolith Weathering: A Large-Scale Observational Investigation Eric Michael MacLennan University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation MacLennan, Eric Michael, "Asteroid Regolith Weathering: A Large-Scale Observational Investigation. " PhD diss., University of Tennessee, 2019. https://trace.tennessee.edu/utk_graddiss/5467 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Eric Michael MacLennan entitled "Asteroid Regolith Weathering: A Large-Scale Observational Investigation." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Geology. Joshua P. Emery, Major Professor We have read this dissertation and recommend its acceptance: Jeffrey E. Moersch, Harry Y. McSween Jr., Liem T. Tran Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Asteroid Regolith Weathering: A Large-Scale Observational Investigation A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Eric Michael MacLennan May 2019 © by Eric Michael MacLennan, 2019 All Rights Reserved.
    [Show full text]
  • The Minor Planet Bulletin
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 38, NUMBER 2, A.D. 2011 APRIL-JUNE 71. LIGHTCURVES OF 10452 ZUEV, (14657) 1998 YU27, AND (15700) 1987 QD Gary A. Vander Haagen Stonegate Observatory, 825 Stonegate Road Ann Arbor, MI 48103 [email protected] (Received: 28 October) Lightcurve observations and analysis revealed the following periods and amplitudes for three asteroids: 10452 Zuev, 9.724 ± 0.002 h, 0.38 ± 0.03 mag; (14657) 1998 YU27, 15.43 ± 0.03 h, 0.21 ± 0.05 mag; and (15700) 1987 QD, 9.71 ± 0.02 h, 0.16 ± 0.05 mag. Photometric data of three asteroids were collected using a 0.43- meter PlaneWave f/6.8 corrected Dall-Kirkham astrograph, a SBIG ST-10XME camera, and V-filter at Stonegate Observatory. The camera was binned 2x2 with a resulting image scale of 0.95 arc- seconds per pixel. Image exposures were 120 seconds at –15C. Candidates for analysis were selected using the MPO2011 Asteroid Viewing Guide and all photometric data were obtained and analyzed using MPO Canopus (Bdw Publishing, 2010). Published asteroid lightcurve data were reviewed in the Asteroid Lightcurve Database (LCDB; Warner et al., 2009). The magnitudes in the plots (Y-axis) are not sky (catalog) values but differentials from the average sky magnitude of the set of comparisons. The value in the Y-axis label, “alpha”, is the solar phase angle at the time of the first set of observations. All data were corrected to this phase angle using G = 0.15, unless otherwise stated.
    [Show full text]
  • The Minor Planet Bulletin
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 35, NUMBER 3, A.D. 2008 JULY-SEPTEMBER 95. ASTEROID LIGHTCURVE ANALYSIS AT SCT/ST-9E, or 0.35m SCT/STL-1001E. Depending on the THE PALMER DIVIDE OBSERVATORY: binning used, the scale for the images ranged from 1.2-2.5 DECEMBER 2007 – MARCH 2008 arcseconds/pixel. Exposure times were 90–240 s. Most observations were made with no filter. On occasion, e.g., when a Brian D. Warner nearly full moon was present, an R filter was used to decrease the Palmer Divide Observatory/Space Science Institute sky background noise. Guiding was used in almost all cases. 17995 Bakers Farm Rd., Colorado Springs, CO 80908 [email protected] All images were measured using MPO Canopus, which employs differential aperture photometry to determine the values used for (Received: 6 March) analysis. Period analysis was also done using MPO Canopus, which incorporates the Fourier analysis algorithm developed by Harris (1989). Lightcurves for 17 asteroids were obtained at the Palmer Divide Observatory from December 2007 to early The results are summarized in the table below, as are individual March 2008: 793 Arizona, 1092 Lilium, 2093 plots. The data and curves are presented without comment except Genichesk, 3086 Kalbaugh, 4859 Fraknoi, 5806 when warranted. Column 3 gives the full range of dates of Archieroy, 6296 Cleveland, 6310 Jankonke, 6384 observations; column 4 gives the number of data points used in the Kervin, (7283) 1989 TX15, 7560 Spudis, (7579) 1990 analysis. Column 5 gives the range of phase angles.
    [Show full text]
  • A Study of Asteroid Pole-Latitude Distribution Based on an Extended
    Astronomy & Astrophysics manuscript no. aa˙2009 c ESO 2018 August 22, 2018 A study of asteroid pole-latitude distribution based on an extended set of shape models derived by the lightcurve inversion method 1 1 1 2 3 4 5 6 7 J. Hanuˇs ∗, J. Durechˇ , M. Broˇz , B. D. Warner , F. Pilcher , R. Stephens , J. Oey , L. Bernasconi , S. Casulli , R. Behrend8, D. Polishook9, T. Henych10, M. Lehk´y11, F. Yoshida12, and T. Ito12 1 Astronomical Institute, Faculty of Mathematics and Physics, Charles University in Prague, V Holeˇsoviˇck´ach 2, 18000 Prague, Czech Republic ∗e-mail: [email protected] 2 Palmer Divide Observatory, 17995 Bakers Farm Rd., Colorado Springs, CO 80908, USA 3 4438 Organ Mesa Loop, Las Cruces, NM 88011, USA 4 Goat Mountain Astronomical Research Station, 11355 Mount Johnson Court, Rancho Cucamonga, CA 91737, USA 5 Kingsgrove, NSW, Australia 6 Observatoire des Engarouines, 84570 Mallemort-du-Comtat, France 7 Via M. Rosa, 1, 00012 Colleverde di Guidonia, Rome, Italy 8 Geneva Observatory, CH-1290 Sauverny, Switzerland 9 Benoziyo Center for Astrophysics, The Weizmann Institute of Science, Rehovot 76100, Israel 10 Astronomical Institute, Academy of Sciences of the Czech Republic, Friova 1, CZ-25165 Ondejov, Czech Republic 11 Severni 765, CZ-50003 Hradec Kralove, Czech republic 12 National Astronomical Observatory, Osawa 2-21-1, Mitaka, Tokyo 181-8588, Japan Received 17-02-2011 / Accepted 13-04-2011 ABSTRACT Context. In the past decade, more than one hundred asteroid models were derived using the lightcurve inversion method. Measured by the number of derived models, lightcurve inversion has become the leading method for asteroid shape determination.
    [Show full text]
  • Acua: the AKARI/IRC Mid-Infrared Asteroid Survey
    PASJ: Publ. Astron. Soc. Japan , 1–??, c 2018. Astronomical Society of Japan. AcuA: the AKARI/IRC Mid-infrared Asteroid Survey Fumihiko Usui1, Daisuke Kuroda2, Thomas G. Muller¨ 3, Sunao Hasegawa1, Masateru Ishiguro4, Takafumi Ootsubo5, Daisuke Ishihara6, Hirokazu Kataza1, Satoshi Takita1, Shinki Oyabu6, Munetaka Ueno1, Hideo Matsuhara1, and Takashi Onaka7 1Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 [email protected] 2Okayama Astrophysical Observatory, National Astronomical Observatory, 3037-5 Honjo, Kamogata, Asakuchi, Okayama 719-0232 3Max-Planck-Institut f¨ur Extraterrestrische Physik, Giessenbachstraße, 85748 Garching, Germany 4Department of Physics and Astronomy, Seoul National University, San 56-1, Shillim-dong Gwanak-gu, Seoul 151-742, South Korea 5Astronomical Institute, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578 6Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 7Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Received 2011 February 10; accepted 2011 June 3) Abstract We present the results of an unbiased asteroid survey in the mid-infrared wavelength with the Infrared Camera (IRC) onboard the Japanese infrared satellite AKARI. About 20% of the point source events recorded in the AKARI All-Sky Survey observations are not used for the IRC Point Source Catalog (IRC- PSC) in its production process because of the lack of multiple detection by position. Asteroids, which are moving objects on the celestial sphere, remain in these “residual events”. We identify asteroids out of the residual events by matching them with the positions of known asteroids.
    [Show full text]
  • The Minor Planet Bulletin Is Open to Papers on All Aspects of 6500 Kodaira (F) 9 25.5 14.8 + 5 0 Minor Planet Study
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 32, NUMBER 3, A.D. 2005 JULY-SEPTEMBER 45. 120 LACHESIS – A VERY SLOW ROTATOR were light-time corrected. Aspect data are listed in Table I, which also shows the (small) percentage of the lightcurve observed each Colin Bembrick night, due to the long period. Period analysis was carried out Mt Tarana Observatory using the “AVE” software (Barbera, 2004). Initial results indicated PO Box 1537, Bathurst, NSW, Australia a period close to 1.95 days and many trial phase stacks further [email protected] refined this to 1.910 days. The composite light curve is shown in Figure 1, where the assumption has been made that the two Bill Allen maxima are of approximately equal brightness. The arbitrary zero Vintage Lane Observatory phase maximum is at JD 2453077.240. 83 Vintage Lane, RD3, Blenheim, New Zealand Due to the long period, even nine nights of observations over two (Received: 17 January Revised: 12 May) weeks (less than 8 rotations) have not enabled us to cover the full phase curve. The period of 45.84 hours is the best fit to the current Minor planet 120 Lachesis appears to belong to the data. Further refinement of the period will require (probably) a group of slow rotators, with a synodic period of 45.84 ± combined effort by multiple observers – preferably at several 0.07 hours. The amplitude of the lightcurve at this longitudes. Asteroids of this size commonly have rotation rates of opposition was just over 0.2 magnitudes.
    [Show full text]
  • The V-Band Photometry of Asteroids from ASAS-SN
    Astronomy & Astrophysics manuscript no. 40759˙ArXiV © ESO 2021 July 22, 2021 V-band photometry of asteroids from ASAS-SN Finding asteroids with slow spin ? J. Hanusˇ1, O. Pejcha2, B. J. Shappee3, C. S. Kochanek4;5, K. Z. Stanek4;5, and T. W.-S. Holoien6;?? 1 Institute of Astronomy, Faculty of Mathematics and Physics, Charles University, V Holesoviˇ ckˇ ach´ 2, 18000 Prague, Czech Republic 2 Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, V Holesoviˇ ckˇ ach´ 2, 18000 Prague, Czech Republic 3 Institute for Astronomy, University of Hawai’i, 2680 Woodlawn Drive, Honolulu, HI 96822, USA 4 Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210, USA 5 Center for Cosmology and Astroparticle Physics, The Ohio State University, 191 W. Woodruff Avenue, Columbus, OH 43210, USA 6 The Observatories of the Carnegie Institution for Science, 813 Santa Barbara St., Pasadena, CA 91101, USA Received x-x-2021 / Accepted x-x-2021 ABSTRACT We present V-band photometry of the 20,000 brightest asteroids using data from the All-Sky Automated Survey for Supernovae (ASAS-SN) between 2012 and 2018. We were able to apply the convex inversion method to more than 5,000 asteroids with more than 60 good measurements in order to derive their sidereal rotation periods, spin axis orientations, and shape models. We derive unique spin state and shape solutions for 760 asteroids, including 163 new determinations. This corresponds to a success rate of about 15%, which is significantly higher than the success rate previously achieved using photometry from surveys.
    [Show full text]
  • Asteroids' Physical Models from Combined Dense and Sparse
    Astronomy & Astrophysics manuscript no. hanus_2013_AA c ESO 2013 January 30, 2013 Asteroids' physical models from combined dense and sparse photometry and scaling of the YORP effect by the observed obliquity distribution 1 1 1 2 3 4 5 6 7 J. Hanuš ∗, J. Durechˇ , M. Brož , A. Marciniak , B. D. Warner , F. Pilcher , R. Stephens , R. Behrend , B. Carry , D. Capekˇ 8, P. Antonini9, M. Audejean10, K. Augustesen11, E. Barbotin12, P. Baudouin13, A. Bayol11, L. Bernasconi14, W. Borczyk2, J.-G. Bosch15, E. Brochard16, L. Brunetto17, S. Casulli18, A. Cazenave12, S. Charbonnel12, B. Christophe19, F. Colas20, J. Coloma21, M. Conjat22, W. Cooney23, H. Correira24, V. Cotrez25, A. Coupier11, R. Crippa26, M. Cristofanelli17, Ch. Dalmas11, C. Danavaro11, C. Demeautis27, T. Droege28, R. Durkee29, N. Esseiva30, M. Esteban11, M. Fagas2, G. Farroni31, M. Fauvaud12,32, S. Fauvaud12,32, F. Del Freo11, L. Garcia11, S. Geier33,34, C. Godon11, K. Grangeon11, H. Hamanowa35, H. Hamanowa35, N. Heck20, S. Hellmich36, D. Higgins37, R. Hirsch2, M. Husarik38, T. Itkonen39, O. Jade11, K. Kaminski´ 2, P. Kankiewicz40, A. Klotz41,42,R. A.Koff43, A. Kryszczynska´ 2, T. Kwiatkowski2, A. Laffont11, A. Leroy12, J. Lecacheux44, Y. Leonie11, C. Leyrat44, F. Manzini45, A. Martin11, G. Masi11, D. Matter11, J. Michałowski46, M. J. Michałowski47, T. Michałowski2, J. Michelet48, R. Michelsen11, E. Morelle49, S. Mottola36, R. Naves50, J. Nomen51, J. Oey52, W. Ogłoza53, A. Oksanen49, D. Oszkiewicz34,54, P. Pääkkönen39, M. Paiella11, H. Pallares11, J. Paulo11, M. Pavic11, B. Payet11, M. Polinska´ 2, D. Polishook55, R. Poncy56, Y. Revaz57, C. Rinner31, M. Rocca11, A. Roche11, D. Romeuf11, R. Roy58, H. Saguin11, P.
    [Show full text]
  • Applying Machine Learning to Asteroid Classification Utilizing Spectroscopically Derived Spectrophotometry Kathleen Jacinda Mcintyre
    University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects January 2019 Applying Machine Learning To Asteroid Classification Utilizing Spectroscopically Derived Spectrophotometry Kathleen Jacinda Mcintyre Follow this and additional works at: https://commons.und.edu/theses Recommended Citation Mcintyre, Kathleen Jacinda, "Applying Machine Learning To Asteroid Classification Utilizing Spectroscopically Derived Spectrophotometry" (2019). Theses and Dissertations. 2474. https://commons.und.edu/theses/2474 This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. APPLYING MACHINE LEARNING TO ASTEROID CLASSIFICATION UTILIZING SPECTROSCOPICALLY DERIVED SPECTROPHOTOMETRY by Kathleen Jacinda McIntyre Bachelor oF Science, University oF Florida, 2011 Bachelor oF Arts, University oF Florida, 2011 A Thesis Submitted to the Graduate Faculty of the University oF North Dakota in partial fulfillment oF the reQuirements for the degree oF Master oF Science Grand Forks, North Dakota May 2019 ii PERMISSION Title ApPlying Machine Learning to Asteroid ClassiFication Utilizing SPectroscoPically Derived SPectroPhotometry DePartment Space Studies Degree Master oF Science In Presenting this thesis in Partial fulfillment of the reQuirements for a graduate degree From the University of North Dakota, I agree that the library of this University shall make it Freely available For insPection. I Further agree that permission For extensive copying For scholarly purposes may be granted by the professor Who suPervised my thesis Work, or in his absence, by the ChairPerson of the department of the dean of the School of Graduate Studies.
    [Show full text]
  • Cumulative Index to Volumes 1-45
    The Minor Planet Bulletin Cumulative Index 1 Table of Contents Tedesco, E. F. “Determination of the Index to Volume 1 (1974) Absolute Magnitude and Phase Index to Volume 1 (1974) ..................... 1 Coefficient of Minor Planet 887 Alinda” Index to Volume 2 (1975) ..................... 1 Chapman, C. R. “The Impossibility of 25-27. Index to Volume 3 (1976) ..................... 1 Observing Asteroid Surfaces” 17. Index to Volume 4 (1977) ..................... 2 Tedesco, E. F. “On the Brightnesses of Index to Volume 5 (1978) ..................... 2 Dunham, D. W. (Letter regarding 1 Ceres Asteroids” 3-9. Index to Volume 6 (1979) ..................... 3 occultation) 35. Index to Volume 7 (1980) ..................... 3 Wallentine, D. and Porter, A. Index to Volume 8 (1981) ..................... 3 Hodgson, R. G. “Useful Work on Minor “Opportunities for Visual Photometry of Index to Volume 9 (1982) ..................... 4 Planets” 1-4. Selected Minor Planets, April - June Index to Volume 10 (1983) ................... 4 1975” 31-33. Index to Volume 11 (1984) ................... 4 Hodgson, R. G. “Implications of Recent Index to Volume 12 (1985) ................... 4 Diameter and Mass Determinations of Welch, D., Binzel, R., and Patterson, J. Comprehensive Index to Volumes 1-12 5 Ceres” 24-28. “The Rotation Period of 18 Melpomene” Index to Volume 13 (1986) ................... 5 20-21. Hodgson, R. G. “Minor Planet Work for Index to Volume 14 (1987) ................... 5 Smaller Observatories” 30-35. Index to Volume 15 (1988) ................... 6 Index to Volume 3 (1976) Index to Volume 16 (1989) ................... 6 Hodgson, R. G. “Observations of 887 Index to Volume 17 (1990) ................... 6 Alinda” 36-37. Chapman, C. R. “Close Approach Index to Volume 18 (1991) ..................
    [Show full text]
  • The Minor Planet Bulletin (Warner Et Al
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 35, NUMBER 4, A.D. 2008 OCTOBER-DECEMBER 143. THE LIGHTCURVE OF ASTEROID 5331 ERIMOMISAKI 05 and Jan 09, respectively. The Vincent data were taken under poor conditions, which is reflected by the large error bars. Caleb Boe, Russell I. Durkee However, the data support the proposed period and were crucial in Shed of Science Observatory completing the curve. Analysis was performed using MPO 5213 Washburn Ave S. Minneapolis, MN 55410, USA Canopus. Silvano Casulli Acknowledgments Vallemare Di Borbona Observatory, Vallemare di Borbona, ITALY Thanks to Raoul Behrend for posting Casulli’s results on his website and for coordinating the exchange of data. Dr. Fiona Vincent School of Physics & Astronomy Special thanks to the Tzec Maun Foundation and its founder, University of St. Andrews Michael K. Wilson, for providing free access to telescopes for North Haugh, St. Andrews KY16 9SS, Scotland, UK students and researchers. David Higgins References Hunters Hill Observatory Ngunnawal, Canberra 2913 Behrend, R. (2007). Observatoire de Geneve web site, AUSTRALIA http://obswww.unige.ch/~behrend/page1cou.html (Received: 2008 June 1) Warner, B.D., Harris A.W. , Pravec, P. Kaasalainen, M., and Benner, L.A.M. (2007). Lightcurve Photometry Opportunities October-December 2007 Asteroid 5331 Erimomisaki was observed between 2007 http://minorplanetobserver.com/astlc/default.htm Nov. 30 and 2008 Jan. 9. A synodic period of 24.26 ± 0.02 h with a mean amplitude of 0.27 ± 0.02 mag was derived. Observations of 5331 Erimomisaki were carried out over ten nights between 2007 November and 2008 January.
    [Show full text]
  • The Minor Planet Bulletin, We Feel Safe in Al., 1989)
    THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 43, NUMBER 3, A.D. 2016 JULY-SEPTEMBER 199. PHOTOMETRIC OBSERVATIONS OF ASTEROIDS star, and asteroid were determined by measuring a 5x5 pixel 3829 GUNMA, 6173 JIMWESTPHAL, AND sample centered on the asteroid or star. This corresponds to a 9.75 (41588) 2000 SC46 by 9.75 arcsec box centered upon the object. When possible, the same comparison star and check star were used on consecutive Kenneth Zeigler nights of observation. The coordinates of the asteroid were George West High School obtained from the online Lowell Asteroid Services (2016). To 1013 Houston Street compensate for the effect on the asteroid’s visual magnitude due to George West, TX 78022 USA ever changing distances from the Sun and Earth, Eq. 1 was used to [email protected] vertically align the photometric data points from different nights when constructing the composite lightcurve: Bryce Hanshaw 2 2 2 2 George West High School Δmag = –2.5 log((E2 /E1 ) (r2 /r1 )) (1) George West, TX USA where Δm is the magnitude correction between night 1 and 2, E1 (Received: 2016 April 5 Revised: 2016 April 7) and E2 are the Earth-asteroid distances on nights 1 and 2, and r1 and r2 are the Sun-asteroid distances on nights 1 and 2. CCD photometric observations of three main-belt 3829 Gunma was observed on 2016 March 3-5. Weather asteroids conducted from the George West ISD Mobile conditions on March 3 and 5 were not particularly favorable and so Observatory are described.
    [Show full text]