Mouse Hmces Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Hmces Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Hmces Knockout Project (CRISPR/Cas9) Objective: To create a Hmces knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Hmces gene (NCBI Reference Sequence: NM_173737 ; Ensembl: ENSMUSG00000030060 ) is located on Mouse chromosome 6. 7 exons are identified, with the ATG start codon in exon 2 and the TAG stop codon in exon 7 (Transcript: ENSMUST00000032141). Exon 3~5 will be selected as target site. Cas9 and gRNA will be co-injected into fertilized eggs for KO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Homozygous knockout leads to changes in DNA methylation, resulting in an altered embryonic gene expression profile and embryonic sub-lethality (lower embryonic survival). Exon 3 starts from about 17.37% of the coding region. Exon 3~5 covers 42.4% of the coding region. The size of effective KO region: ~7972 bp. The KO region does not have any other known gene. Page 1 of 9 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 3 4 5 7 Legends Exon of mouse Hmces Knockout region Page 2 of 9 https://www.alphaknockout.com Overview of the Dot Plot (up) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section upstream of Exon 3 is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Overview of the Dot Plot (down) Window size: 15 bp Forward Reverse Complement Sequence 12 Note: The 2000 bp section downstream of Exon 5 is aligned with itself to determine if there are tandem repeats. No significant tandem repeat is found in the dot plot matrix. So this region is suitable for PCR screening or sequencing analysis. Page 3 of 9 https://www.alphaknockout.com Overview of the GC Content Distribution (up) Window size: 300 bp Sequence 12 Summary: Full Length(2000bp) | A(24.25% 485) | C(23.4% 468) | T(33.55% 671) | G(18.8% 376) Note: The 2000 bp section upstream of Exon 3 is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Overview of the GC Content Distribution (down) Window size: 300 bp Sequence 12 Summary: Full Length(2000bp) | A(28.6% 572) | C(17.2% 344) | T(34.4% 688) | G(19.8% 396) Note: The 2000 bp section downstream of Exon 5 is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Page 4 of 9 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 2000 1 2000 2000 100.0% chr6 + 87915840 87917839 2000 browser details YourSeq 106 817 1552 2000 93.5% chr19 + 46232626 46539953 307328 browser details YourSeq 100 480 952 2000 87.9% chr7 - 118255340 118255924 585 browser details YourSeq 100 795 1603 2000 91.6% chr1 + 59485949 59598682 112734 browser details YourSeq 88 501 876 2000 90.8% chr9 - 61790038 61930836 140799 browser details YourSeq 83 795 1556 2000 91.1% chr1 + 13083833 13147975 64143 browser details YourSeq 81 794 929 2000 83.0% chr15 - 12783729 12783872 144 browser details YourSeq 80 794 950 2000 90.9% chr4 - 117168069 117168227 159 browser details YourSeq 79 792 951 2000 87.7% chr18 - 34415701 34415874 174 browser details YourSeq 76 793 929 2000 91.5% chr7 - 131260698 131260843 146 browser details YourSeq 74 794 932 2000 94.3% chr8 - 109815785 109815928 144 browser details YourSeq 74 793 929 2000 88.6% chr17 - 63523350 63523484 135 browser details YourSeq 73 793 927 2000 92.0% chr7 - 28750471 28750610 140 browser details YourSeq 71 822 952 2000 89.9% chr2 - 38493616 38493751 136 browser details YourSeq 70 793 929 2000 92.7% chr5 - 145258472 145258616 145 browser details YourSeq 70 808 934 2000 91.7% chr15 - 8177543 8177677 135 browser details YourSeq 70 792 934 2000 91.7% chr11 - 76408269 76408414 146 browser details YourSeq 67 803 929 2000 91.3% chr1 - 170715717 170715845 129 browser details YourSeq 67 793 929 2000 91.4% chr3 + 67555551 67555698 148 browser details YourSeq 67 794 876 2000 91.4% chr11 + 80028524 80028606 83 Note: The 2000 bp section upstream of Exon 3 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 2000 1 2000 2000 100.0% chr6 + 87925812 87927811 2000 browser details YourSeq 115 1593 1965 2000 75.8% chr3 + 41008513 41008779 267 browser details YourSeq 113 1583 1759 2000 79.9% chr7 - 34633324 34633494 171 browser details YourSeq 111 1566 1756 2000 77.8% chr16 + 90392926 90393110 185 browser details YourSeq 110 1599 1759 2000 84.0% chr9 - 106606541 106606694 154 browser details YourSeq 110 1584 1759 2000 84.1% chr19 + 45344865 45345046 182 browser details YourSeq 106 1414 1759 2000 72.1% chr10 + 56240617 56240810 194 browser details YourSeq 105 1567 1725 2000 82.0% chr11 - 50188248 50188399 152 browser details YourSeq 104 1583 1759 2000 77.7% chr9 - 107643043 107643215 173 browser details YourSeq 104 1612 1759 2000 83.7% chr12 - 108540733 108540879 147 browser details YourSeq 102 1602 1995 2000 90.0% chr2 - 156964990 156965492 503 browser details YourSeq 98 1593 1757 2000 86.0% chr4 - 32849456 32849855 400 browser details YourSeq 98 1595 1759 2000 84.3% chr7 + 16937175 16937339 165 browser details YourSeq 98 1610 1759 2000 86.1% chr12 + 105503194 105503545 352 browser details YourSeq 94 1609 1771 2000 91.4% chrX - 10733597 10733781 185 browser details YourSeq 94 1579 1715 2000 85.5% chr3 + 65118213 65118354 142 browser details YourSeq 94 1598 1759 2000 80.6% chr18 + 10075832 10075995 164 browser details YourSeq 94 1566 1759 2000 79.1% chr15 + 102072853 102073021 169 browser details YourSeq 92 1592 1759 2000 75.8% chr9 - 111603637 111603802 166 browser details YourSeq 92 1534 1759 2000 77.0% chr17 - 79087009 79087185 177 Note: The 2000 bp section downstream of Exon 5 is BLAT searched against the genome. No significant similarity is found. Page 5 of 9 https://www.alphaknockout.com Gene and protein information: Hmces 5-hydroxymethylcytosine (hmC) binding, ES cell specific [ Mus musculus (house mouse) ] Gene ID: 232210, updated on 12-Aug-2019 Gene summary Official Symbol Hmces provided by MGI Official Full Name 5-hydroxymethylcytosine (hmC) binding, ES cell specific provided by MGI Primary source MGI:MGI:1914053 See related Ensembl:ENSMUSG00000030060 Gene type protein coding RefSeq status PROVISIONAL Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as Srap1; C85376; 8430410A17Rik Expression Ubiquitous expression in limb E14.5 (RPKM 8.7), CNS E18 (RPKM 8.2) and 28 other tissues See more Orthologs human all Genomic context Location: 6; 6 D1 See Hmces in Genome Data Viewer Exon count: 7 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 6 NC_000072.6 (87913907..87936619) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 6 NC_000072.5 (87863970..87886608) Chromosome 6 - NC_000072.6 Page 6 of 9 https://www.alphaknockout.com Transcript information: This gene has 7 transcripts Gene: Hmces ENSMUSG00000030060 Description 5-hydroxymethylcytosine (hmC) binding, ES cell specific [Source:MGI Symbol;Acc:MGI:1914053] Gene Synonyms 8430410A17Rik, Srap1 Location Chromosome 6: 87,913,935-87,936,629 forward strand. GRCm38:CM000999.2 About this gene This gene has 7 transcripts (splice variants), 189 orthologues, is a member of 1 Ensembl protein family and is associated with 6 phenotypes. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Hmces- ENSMUST00000113606.1 1572 353aa ENSMUSP00000109236.1 Protein coding CCDS39551 Q8R1M0 TSL:1 202 GENCODE basic APPRIS P1 Hmces- ENSMUST00000032141.13 1464 353aa ENSMUSP00000032141.7 Protein coding CCDS39551 Q8R1M0 TSL:1 201 GENCODE basic APPRIS P1 Hmces- ENSMUST00000204232.1 513 76aa ENSMUSP00000145504.1 Nonsense mediated - A0A0N4SWG0 TSL:5 206 decay Hmces- ENSMUST00000148914.1 882 No - Retained intron - - TSL:1 205 protein Hmces- ENSMUST00000204614.2 902 No - lncRNA - - TSL:3 207 protein Hmces- ENSMUST00000124551.1 672 No - lncRNA - - TSL:3 203 protein Hmces- ENSMUST00000132651.2 567 No - lncRNA - - TSL:2 204 protein Page 7 of 9 https://www.alphaknockout.com 42.70 kb Forward strand 87.91Mb 87.92Mb 87.93Mb 87.94Mb Genes (Comprehensive set... Copg1-202 >protein coding Hmces-201 >protein coding Copg1-206 >retained intron Hmces-207 >lncRNA Copg1-207 >retained intron Hmces-204 >lncRNA Hmces-205 >retained intron Copg1-203 >lncRNA Hmces-206 >nonsense mediated decay Hmces-202 >protein coding Hmces-203 >lncRNA Contigs AC153872.2 > Genes < Gm26636-201lncRNA (Comprehensive set... Regulatory Build 87.91Mb 87.92Mb 87.93Mb 87.94Mb Reverse strand 42.70 kb Regulation Legend CTCF Open Chromatin Promoter Promoter Flank Transcription Factor Binding Site Gene Legend Protein Coding Ensembl protein coding merged Ensembl/Havana Non-Protein Coding RNA gene processed transcript Page 8 of 9 https://www.alphaknockout.com Transcript: ENSMUST00000032141 22.70 kb Forward strand Hmces-201 >protein coding ENSMUSP00000032... MobiDB lite Low complexity (Seg) Superfamily SOS response associated peptidase-like Pfam SOS response associated peptidase (SRAP) PANTHER SOS response associated peptidase (SRAP) Gene3D SOS response associated peptidase-like All sequence SNPs/i... Sequence variants (dbSNP and all other sources) Variant Legend missense variant synonymous variant Scale bar 0 40 80 120 160 200 240 280 353 We wish to acknowledge the following valuable scientific information resources: Ensembl, MGI, NCBI, UCSC.
Recommended publications
  • IDENTIFICATION of CELL SURFACE MARKERS WHICH CORRELATE with SALL4 in a B-CELL ACUTE LYMPHOBLASTIC LEUKEMIA with T(8;14)
    IDENTIFICATION of CELL SURFACE MARKERS WHICH CORRELATE WITH SALL4 in a B-CELL ACUTE LYMPHOBLASTIC LEUKEMIA WITH T(8;14) DISCOVERED THROUGH BIOINFORMATIC ANALYSIS of MICROARRAY GENE EXPRESSION DATA The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:38962442 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA ,'(17,),&$7,21 2) &(// 685)$&( 0$5.(56 :+,&+ &255(/$7( :,7+ 6$// ,1 $ %&(// $&87( /<03+2%/$67,& /(8.(0,$ :,7+ W ',6&29(5(' 7+528*+ %,2,1)250$7,& $1$/<6,6 2) 0,&52$55$< *(1( (;35(66,21 '$7$ 52%(57 3$8/ :(,1%(5* $ 7KHVLV 6XEPLWWHG WR WKH )DFXOW\ RI 7KH +DUYDUG 0HGLFDO 6FKRRO LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 0DVWHU RI 0HGLFDO 6FLHQFHV LQ ,PPXQRORJ\ +DUYDUG 8QLYHUVLW\ %RVWRQ 0DVVDFKXVHWWV -XQH Thesis Advisor: Dr. Li Chai Author: Robert Paul Weinberg Department of Pathology Candidate MMSc in Immunology Brigham and Womens’ Hospital Harvard Medical School 77 Francis Street 25 Shattuck Street Boston, MA 02215 Boston, MA 02215 IDENTIFICATION OF CELL SURFACE MARKERS WHICH CORRELATE WITH SALL4 IN A B-CELL ACUTE LYMPHOBLASTIC LEUKEMIA WITH TRANSLOCATION t(8;14) DISCOVERED THROUGH BIOINFORMATICS ANALYSIS OF MICROARRAY GENE EXPRESSION DATA Abstract Acute Lymphoblastic Leukemia (ALL) is the most common leukemia in children, causing signficant morbidity and mortality annually in the U.S.
    [Show full text]
  • Identification of RNA Binding Proteins Associated with Dengue Virus RNA in Infected Cells Reveals Temporally Distinct Host Factor Requirements
    RESEARCH ARTICLE Identification of RNA Binding Proteins Associated with Dengue Virus RNA in Infected Cells Reveals Temporally Distinct Host Factor Requirements Olga V. Viktorovskaya1, Todd M. Greco2, Ileana M. Cristea2, Sunnie R. Thompson1* 1 Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America, 2 Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America a11111 * [email protected] Abstract OPEN ACCESS Background Citation: Viktorovskaya OV, Greco TM, Cristea IM, There are currently no vaccines or antivirals available for dengue virus infection, which can Thompson SR (2016) Identification of RNA Binding cause dengue hemorrhagic fever and death. A better understanding of the host pathogen Proteins Associated with Dengue Virus RNA in interaction is required to develop effective therapies to treat DENV. In particular, very little is Infected Cells Reveals Temporally Distinct Host Factor Requirements. PLoS Negl Trop Dis 10(8): known about how cellular RNA binding proteins interact with viral RNAs. RNAs within cells e0004921. doi:10.1371/journal.pntd.0004921 are not naked; rather they are coated with proteins that affect localization, stability, transla- Editor: Aravinda M de Silva, University of North tion and (for viruses) replication. Carolina at Chapel Hill, UNITED STATES Received: March 30, 2016 Methodology/Principal Findings Accepted: July 22, 2016 Seventy-nine novel RNA binding proteins for dengue virus (DENV) were identified by cross- linking proteins to dengue viral RNA during a live infection in human cells. These cellular pro- Published: August 24, 2016 teins were specific and distinct from those previously identified for poliovirus, suggesting a Copyright: © 2016 Viktorovskaya et al.
    [Show full text]
  • Noelia Díaz Blanco
    Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr.
    [Show full text]
  • The Genetic Regulation of Size Variation in the Transcriptome of The
    Höglund et al. BMC Genomics (2020) 21:518 https://doi.org/10.1186/s12864-020-06908-0 RESEARCH ARTICLE Open Access The genetic regulation of size variation in the transcriptome of the cerebrum in the chicken and its role in domestication and brain size evolution Andrey Höglund1, Katharina Strempfl1,2,3, Jesper Fogelholm1, Dominic Wright1† and Rie Henriksen1*† Abstract Background: Large difference in cerebrum size exist between avian species and populations of the same species and is believed to reflect differences in processing power, i.e. in the speed and efficiency of processing information in this brain region. During domestication chickens developed a larger cerebrum compared to their wild progenitor, the Red jungle fowl. The underlying mechanisms that control cerebrum size and the extent to which genetic regulation is similar across brain regions is not well understood. In this study, we combine measurement of cerebrum size with genome-wide genetical genomics analysis to identify the genetic architecture of the cerebrum, as well as compare the regulation of gene expression in this brain region with gene expression in other regions of the brain (the hypothalamus) and somatic tissue (liver). Results: We identify one candidate gene that putatively regulates cerebrum size (MTF2) as well as a large number of eQTL that regulate the transcriptome in cerebrum tissue, with the majority of these eQTL being trans-acting. The overall regulation of gene expression variation in the cerebrum was markedly different to the hypothalamus, with relatively few eQTL in common. In comparison, the cerebrum tissue shared more eQTL with a distant tissue (liver) than with a neighboring tissue (hypothalamus).
    [Show full text]
  • Rapid, Direct Detection of Bacterial Topoisomerase 1-DNA Adducts by RADAR/ELISA
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.09.984153; this version posted March 10, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Rapid, direct detection of bacterial Topoisomerase 1-DNA adducts by RADAR/ELISA Devapriya Sinha1,*, Kostantin Kiianitsa1,*, David R. Sherman2, Nancy Maizels1,3 1Department of Immunology, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA 2Department of Microbiology, University of Washington, 815 Republican St., Seattle, WA 98102, USA 3Department of Biochemistry, University of Washington, 1959 NE Pacific St., Seattle, WA 98195, USA *The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors. To whom correspondence should be addressed. Tel., +1 206-685-4449; Fax: +1 206- 221-6781; Email: [email protected] Running title: Direct Assay of Bacterial Top1-DNA Adducts Keywords: DNA-protein crosslinK, gyrase, Mycobacteria, tuberculosis, antibiotic, topoisomerase poison 1 Abstract 2 Topoisomerases are proven drug targets, but antibiotics that poison bacterial 3 Topoisomerase 1 (Top1) have yet to be discovered. We have developed a rapid and 4 direct assay for quantification of Top1-DNA adducts that is suitable for high throughput 5 assays. Adducts are recovered by "RADAR fractionation", a quick, convenient 6 approach in which cells are lysed in chaotropic salts and detergent and nucleic acids 7 and covalently bound adducts then precipitated with alcohol.
    [Show full text]
  • Elucidating Recombination Mediator Function Using Biophysical Tools
    biology Review Elucidating Recombination Mediator Function Using Biophysical Tools Camille Henry 1,* and Sarah S. Henrikus 2,* 1 Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA 2 Macromolecular Machines Laboratory, The Francis Crick Institute, London NW1 1AT, UK * Correspondence: [email protected] (C.H.); [email protected] (S.S.H.); Tel.: +1-608-472-3019 (C.H.) Simple Summary: This review recapitulates the initial knowledge acquired with genetics and bio- chemical experiments on Recombination mediator proteins in different domains of life. We further address how recent in vivo and in vitro biophysical tools were critical to deepen the understanding of RMPs molecular mechanisms in DNA and replication repair, and unveiled unexpected features. For instance, in bacteria, genetic and biochemical studies suggest a close proximity and coordination of action of the RecF, RecR and RecO proteins in order to ensure their RMP function, which is to over- come the single-strand binding protein (SSB) and facilitate the loading of the recombinase RecA onto ssDNA. In contrary to this expectation, using single-molecule fluorescent imaging in living cells, we showed recently that RecO and RecF do not colocalize and moreover harbor different spatiotemporal behavior relative to the replication machinery, suggesting distinct functions. Finally, we address how new biophysics tools could be used to answer outstanding questions about RMP function. Abstract: The recombination mediator proteins (RMPs) are ubiquitous and play a crucial role in genome stability. RMPs facilitate the loading of recombinases like RecA onto single-stranded (ss) DNA coated by single-strand binding proteins like SSB. Despite sharing a common function, RMPs are the products of a convergent evolution and differ in (1) structure, (2) interaction partners and (3) Citation: Henry, C.; Henrikus, S.S.
    [Show full text]
  • Dissection of Affinity Captured LINE-1 Macromolecular Complexes
    RESEARCH ARTICLE Dissection of affinity captured LINE-1 macromolecular complexes Martin S Taylor1†, Ilya Altukhov2†, Kelly R Molloy3†, Paolo Mita4, Hua Jiang5, Emily M Adney4,6, Aleksandra Wudzinska6, Sana Badri7, Dmitry Ischenko2, George Eng1, Kathleen H Burns5,8, David Fenyo¨ 4, Brian T Chait3, Dmitry Alexeev9, Michael P Rout5, Jef D Boeke4, John LaCava4,5* 1Department of Pathology, Massachusetts General Hospital, Boston, United States; 2Moscow Institute of Physics and Technology, Dolgoprudny, Russia; 3Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, United States; 4Department of Biochemistry and Molecular Pharmacology, Institute for Systems Genetics, NYU Langone Health, New York, United States; 5Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, United States; 6McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States; 7Department of Pathology, NYU Langone Health, New York, United States; 8Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, United States; 9Novosibirsk State University, Novosibirsk, Russia Abstract Long Interspersed Nuclear Element-1 (LINE-1, L1) is a mobile genetic element active in human genomes. L1-encoded ORF1 and ORF2 proteins bind L1 RNAs, forming ribonucleoproteins (RNPs). These RNPs interact with diverse host proteins, some repressive and others required for *For correspondence: the L1 lifecycle. Using differential affinity purifications, quantitative
    [Show full text]
  • Brain Expression Quantitative Trait Locus and Network Analysis Reveals
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.01.433439; this version posted March 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Brain expression quantitative trait locus and network 2 analysis reveals downstream effects and putative 3 drivers for brain-related diseases 4 5 Niek de Klein1,4,6,10, Ellen A. Tsai2,10, Martijn Vochteloo1,3,10, Denis Baird2,9,10, Yunfeng Huang2, 6 Chia-Yen Chen2, Sipko van Dam1,5, Patrick Deelen1, Olivier B. Bakker1, Omar El Garwany1,6, 7 Zhengyu Ouyang7, Eric E. Marshall2, Maria I. Zavodszky2, Wouter van Rheenen8, Mark K. 8 Bakker8, Jan Veldink8, Tom R. Gaunt9, Heiko Runz2,12, Lude Franke1,4,12, Harm-Jan Westra1,4,12 9 10 1. Department of Genetics, University Medical Center Groningen, University of Groningen, 11 Hanzeplein 1, Groningen, The Netherlands 12 2. Translational Biology, Research & Development, Biogen Inc., 225 Broadway, 13 Cambridge, MA, USA 14 3. Institute for Life Science & Technology, Hanze University of Applied Sciences, 15 Zernikeplein 11, 9747 AS Groningen, The Netherlands 16 4. Oncode Investigator 17 5. Ancora Health, Herestraat 106, 9711 LM, Groningen, The Netherlands 18 6. Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK 19 7. BioInfoRx, Inc., 510 Charmany Dr, Suite 275A, Madison, WI 53719, USA 20 8. Department of Neurology, UMC Utrecht Brain Center, University Medical Center 21 Utrecht, Utrecht University, Utrecht, The Netherlands. 22 9. MRC Integrative Epidemiology Unit, Bristol Medical School, University of Bristol, 23 Bristol, UK 24 10.
    [Show full text]
  • De Novo Transcriptome Assembly and Functional Annotation in Five Species of Bats Received: 2 October 2018 Diana D
    www.nature.com/scientificreports OPEN De Novo Transcriptome Assembly and Functional Annotation in Five Species of Bats Received: 2 October 2018 Diana D. Moreno-Santillán1, Carlos Machain-Williams2, Georgina Hernández-Montes3 & Accepted: 1 April 2019 Jorge Ortega1 Published: xx xx xxxx High-throughput RNA sequencing is a powerful tool that allows us to perform gene prediction and analyze tissue-specifc overexpression of genes, but also at species level comparisons can be performed, although in a more restricted manner. In the present study complete liver transcriptomes of fve tropical bat species were De novo assembled and annotated. Highly expressed genes in the fve species were involved in glycolysis and lipid metabolism pathways. Cross-species diferential expression analysis was conducted using single copy orthologues shared across the fve species. Between 22 and 29 orthologs were upregulated for each species. We detected upregulated expression in Artibeus jamaicensis genes related to fructose metabolism pathway. Such fndings can be correlated with A. jamaicensis dietary habits, as it was the unique frugivorous species included. This is the frst report of transcriptome assembly by RNA-seq in these species, except for A. jamaicensis and as far as our knowledge is the frst cross-species comparisons of transcriptomes and gene expression in tropical bats. Te order Chiroptera is the second largest order of mammals and is divided into: two suborders: Yinpterochiroptera and Yangochiroptera1. Its diversity includes and estimated ~1,331 species distributed throughout the world, except for the polar regions and isolated islands. Bats present a wide diversity of feeding habits and may be carnivorous, frugivorous, hematophagous, insectivorous or nectarivorous2; as a consequence, chiropters play a crucial roles in the maintenance of the ecosystem balance by providing important ecological services; two-thirds of bats species are insec- tivorous and as such are considered biological pests controls of agricultural importance2.
    [Show full text]
  • The Changing Chromatome As a Driver of Disease: a Panoramic View from Different Methodologies
    The changing chromatome as a driver of disease: A panoramic view from different methodologies Isabel Espejo1, Luciano Di Croce,1,2,3 and Sergi Aranda1 1. Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain 2. Universitat Pompeu Fabra (UPF), Barcelona, Spain 3. ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain *Corresponding authors: Luciano Di Croce ([email protected]) Sergi Aranda ([email protected]) 1 GRAPHICAL ABSTRACT Chromatin-bound proteins regulate gene expression, replicate and repair DNA, and transmit epigenetic information. Several human diseases are highly influenced by alterations in the chromatin- bound proteome. Thus, biochemical approaches for the systematic characterization of the chromatome could contribute to identifying new regulators of cellular functionality, including those that are relevant to human disorders. 2 SUMMARY Chromatin-bound proteins underlie several fundamental cellular functions, such as control of gene expression and the faithful transmission of genetic and epigenetic information. Components of the chromatin proteome (the “chromatome”) are essential in human life, and mutations in chromatin-bound proteins are frequently drivers of human diseases, such as cancer. Proteomic characterization of chromatin and de novo identification of chromatin interactors could thus reveal important and perhaps unexpected players implicated in human physiology and disease. Recently, intensive research efforts have focused on developing strategies to characterize the chromatome composition. In this review, we provide an overview of the dynamic composition of the chromatome, highlight the importance of its alterations as a driving force in human disease (and particularly in cancer), and discuss the different approaches to systematically characterize the chromatin-bound proteome in a global manner.
    [Show full text]
  • 1 Detection of Autoimmune Antibodies in Severe but Not in Moderate Or
    medRxiv preprint doi: https://doi.org/10.1101/2021.03.02.21252438; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license . Detection of autoimmune antibodies in severe but not in moderate or asymptomatic COVID-19 patients Aisha D. Fakhroo1, Gheyath K. Nasarallah2,3*, Taushif Khan4, Farhan S. Cyprian5, Fatima Al Ali4, Manar M.A. Ata4, Sara Taleb6, Ali A. Hssain7, Ali H. Eid8, Laith J. Abu-Raddad9, Abdullatif Al-Khal7, Asmaa A. Al Thani2,3, Nico Marr10, Hadi M. Yassine2,3* 1 Research and Development Department, Barzan Holdings, Doha, Qatar 2 Biomedical Research Center, Qatar University, Doha, Qatar 3 Department of Biomedical Sciences, College of Health Sciences-QU health, Qatar University, Doha, Qatar 4 Research Branch, Sidra Medicine, Doha, Qatar 5Basic Medical Science Department, College of Medicine-QU Health, Qatar University, Doha Qatar 6 Genomics and Precision Medicine, Hamad Bin Khalifa University, Doha, Qatar 7 Hamad Medical Corporation, Doha, Qatar 8 Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar 9 Infectious Disease Epidemiology Group, Weill Cornell Medicine-Qatar, Cornell University, Doha, Qatar 10 College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] * Corresponding authors: [email protected] [email protected] 1 NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
    [Show full text]
  • Table S1. 103 Ferroptosis-Related Genes Retrieved from the Genecards
    Table S1. 103 ferroptosis-related genes retrieved from the GeneCards. Gene Symbol Description Category GPX4 Glutathione Peroxidase 4 Protein Coding AIFM2 Apoptosis Inducing Factor Mitochondria Associated 2 Protein Coding TP53 Tumor Protein P53 Protein Coding ACSL4 Acyl-CoA Synthetase Long Chain Family Member 4 Protein Coding SLC7A11 Solute Carrier Family 7 Member 11 Protein Coding VDAC2 Voltage Dependent Anion Channel 2 Protein Coding VDAC3 Voltage Dependent Anion Channel 3 Protein Coding ATG5 Autophagy Related 5 Protein Coding ATG7 Autophagy Related 7 Protein Coding NCOA4 Nuclear Receptor Coactivator 4 Protein Coding HMOX1 Heme Oxygenase 1 Protein Coding SLC3A2 Solute Carrier Family 3 Member 2 Protein Coding ALOX15 Arachidonate 15-Lipoxygenase Protein Coding BECN1 Beclin 1 Protein Coding PRKAA1 Protein Kinase AMP-Activated Catalytic Subunit Alpha 1 Protein Coding SAT1 Spermidine/Spermine N1-Acetyltransferase 1 Protein Coding NF2 Neurofibromin 2 Protein Coding YAP1 Yes1 Associated Transcriptional Regulator Protein Coding FTH1 Ferritin Heavy Chain 1 Protein Coding TF Transferrin Protein Coding TFRC Transferrin Receptor Protein Coding FTL Ferritin Light Chain Protein Coding CYBB Cytochrome B-245 Beta Chain Protein Coding GSS Glutathione Synthetase Protein Coding CP Ceruloplasmin Protein Coding PRNP Prion Protein Protein Coding SLC11A2 Solute Carrier Family 11 Member 2 Protein Coding SLC40A1 Solute Carrier Family 40 Member 1 Protein Coding STEAP3 STEAP3 Metalloreductase Protein Coding ACSL1 Acyl-CoA Synthetase Long Chain Family Member 1 Protein
    [Show full text]