JSON Application Programming Interface for Discrete Event Simulation Data Exchange

Total Page:16

File Type:pdf, Size:1020Kb

JSON Application Programming Interface for Discrete Event Simulation Data Exchange JSON Application Programming Interface for Discrete Event Simulation data exchange Ioannis Papagiannopoulos Enterprise Research Centre Faculty of Science and Engineering Design and Manufacturing Technology University of Limerick Submitted to the University of Limerick for the degree of Master of Engineering 2015 1. Supervisor: Prof. Cathal Heavey Enterprise Research Centre University of Limerick Ireland ii Abstract This research is conducted as part of a project that has the overall aim to develop an open source discrete event simulation (DES) platform that is expandable, and modular aiming to support the use of DES at multi-levels of manufacturing com- panies. The current work focuses on DES data exchange within this platform. The goal of this thesis is to develop a DES exchange interface between three different modules: (i) ManPy an open source discrete event simulation engine developed in Python on the SimPy library; (ii) A Knowledge Extraction (KE) tool used to populate the ManPy simulation engine from shop-floor data stored within an Enterprise Requirements Planning (ERP) or a Manufacturing Execution System (MES) to allow the potential for real-time simulation. The development of the tool is based on R scripting language, and different Python libraries; (iii) A Graphical User Interface (GUI) developed in JavaScript used to provide an interface in a similar manner to Commercial off-the-shelf (COTS) DES tools. In the literature review the main standards that could be used are reviewed. Based on this review and the requirements above, the data exchange format standard JavaScript Object Notation (JSON) was selected. The proposed solution accom- plishes interoperability between different modules using an open source, expand- able, and easy to adopt and maintain, in an all inclusive JSON file. In this way, the DES API model offers the means for the configuration, synchronization, and maintenance of the different DES platform instances in a decentralized manner. The presented exchange data model offers the means to represent (i) any results returned by the simulation engine, (ii) configuration data for various platform in- stances, and (iii) extra input data collected from various data sources. In addition, the DES API data model offers an embedded JSON schema for the validation of the DES model graphs, and for the configuration of any GUI used for DES model design. A full description of the JSON DES API data model is provided with the different elements of the interface detailed. The DES API data model consists of six parts: (i) an element which is used for the configuration and the synchroniza- tion of the platform; (ii) an embedded JSON schema for the creation of consistent models; (iii) a graph that contains the topology of the model (iv) an element that contains DES related data, such as Bills Of Materials (BOM), or Work In Progress (WIP); (iv) an element that contains the results returned by the simu- lation engine; (v) and an element that contains general information crucial for a simulation run (e.g. maximum simulation run time, simulation time units). The proposed DES API data model is validated against three different real use case scenarios, placing emphasis on the various limitations they posed on the DES data exchange and on the API data model. The solution proposed for one pilot case is detailed in full with different limitations posed by the different specifica- tions and pilot cases specified. Various expansions or enhancements that can be implemented are pointed out in the conclusions. Declaration I herewith declare that I have produced this paper without the pro- hibited assistance of third parties and without making use of aids other than those specified; notions taken over directly or indirectly from other sources have been identified as such. This paper has not previously been presented in identical or similar form to any other Irish or foreign examination board. The thesis work was conducted from 2013 to 2015 under the supervi- sion of Prof. Cathal Heavey at University of Limerick. Ioannis Papagiannopoulos Limerick, 2015 Acknowledgements The current thesis was fully funded from the European Union Sev- enth Framework Programme (FP7-2012-NMP-ICT-FoF) under grant agreement no 314364. First of all, I would like to thank my supervisor Prof. Cathal Heavey. His clear scientific insight and calm approach to research makes for a great supervisor. His guidance and support have been crucial for the successful delivery of this work. I would also like to express my gratitude to all the members of DREAM project for their assistance and fruitful collaboration throughout this work. I also wish to thank all the colleagues from the Enterprise Research Centre, and the Department of Design and Manufacturing Technology, University of Limerick. Special thanks to the really good colleagues and friends, George and Panos. Finally, I would like to thank my parents and siblings for their support. I would like to dedicate this work to my family; Dimitris, Konstantina, Despoina, Nikos, Vasiliki. Contents List of Tables vii List of Figures ix Glossary xiii List of Publications xvii 1 Introduction 1 1.1 Discrete Event Simulation . 1 1.2 Manufacturing Processes Representation . 3 1.3 DES data exchange . 4 1.4 Problem Statement . 6 1.5 Research Objectives . 7 1.6 Thesis Outline . 8 2 Literature Review 11 2.1 Data Exchange Formats . 12 2.1.1 Human readable formats . 13 2.1.1.1 XML . 14 2.1.1.2 JSON . 17 2.1.1.3 YAML . 18 2.1.1.4 Other candidates . 20 2.1.2 Presentation oriented languages . 24 2.2 Data Exchange Standards in Simulation . 25 2.3 Data Exchange Standards in DES . 26 iii CONTENTS 2.3.1 SDX . 27 2.3.2 NIST SDM . 27 2.3.3 OpenSML . 28 2.3.4 SRML . 28 2.3.5 NESIS . 29 2.3.6 STEP-ISO 10303 . 29 2.3.7 AutomationML . 30 2.3.8 ISA-95 . 31 2.3.9 CMSD . 31 2.4 Manufacturing Processes Representation . 32 2.5 Selecting a Data Exchange Format . 34 2.6 Selecting a Simulation Data Exchange Model . 36 2.7 Conclusions . 37 3 Simulation Platform Requirements 39 3.1 Simulation Platform Objectives . 39 3.2 Platform components . 41 3.2.1 Simulation Engine - ManPy . 41 3.2.2 Knowledge extraction module - KE tool . 41 3.2.3 Graphical User Interface . 42 3.3 Architecture and Information Flow . 43 3.3.1 Preprocessing Plugins . 46 3.3.2 Execution Plugins . 46 3.3.3 Post-processing Plugins . 47 3.4 Conclusions . 47 4 DES Application Programming Interface data model 49 4.1 Development considerations . 49 4.2 Data exchange model layout . 51 4.3 DES data exchange model . 53 4.3.1 Directed Graph model representation . 56 4.3.1.1 Node ......................... 57 4.3.1.2 Edge ......................... 60 4.3.2 General ............................ 61 iv CONTENTS 4.3.3 Input .............................. 62 4.3.4 Result ............................. 65 4.4 DES platform configuration and synchronization . 67 4.4.1 Embedded JSON schema . 67 4.4.1.1 Definitions . 72 4.4.2 Configuring the application platform . 74 4.4.2.1 Views . 76 4.4.2.2 Plugins . 80 4.4.3 Collecting and collating data from various data sources . 82 4.4.4 DES result data processing . 85 4.5 Conclusions . 86 5 Validation of JSON API 89 5.1 Problem statement . 89 5.1.1 Description of CASE1 Case Study . 90 5.1.1.1 Production Processes . 91 5.1.1.2 Pilot Case . 92 5.1.2 Description of CASE2 Case Study . 93 5.1.2.1 Production Processes . 93 5.1.2.2 Pilot Case . 95 5.1.3 Description of CASE3 Case Study . 97 5.1.3.1 Production Processes . 97 5.1.3.2 Pilot Case . 98 5.1.3.3 Requirements . 100 5.2 Configuration . 101 5.2.1 Views . 102 5.2.2 Plugins . 105 5.2.3 DES object Classes . 109 5.3 Input . 112 5.4 Parsing . 114 5.5 Results evaluation . 120 5.6 Conclusions . 123 v CONTENTS 6 Conclusions and Future Directions 125 6.1 Summary . 125 6.2 Conclusions . 126 6.3 Contributions and Future Work . 127 6.3.1 Expansion considerations . 128 Appendix A: Lightweight Markup Languages 131 Appendix B: General Properties of pilot case CASE3 134 Appendix C: Plugins 135 Appendix C: Processing Plugins . 135 Appendix C: Pre-processing Plugins . 139 Appendix C: Time-support plugin . 142 Appendix D: JSON DES API instance for pilot case CASE3 145 References 147 vi List of Tables 2.1 Data Exchange Formats' attributes . 14 2.2 XML schemas . 16 2.3 Simulation Data Representation & Exchange Formats . 26 2.4 Graphical Representation Categories (Lacy 2006) . 33 1 Lightweight Markup Languages . 131 vii LIST OF TABLES viii List of Figures 3.1 Simulation Platform Design . 40 3.2 KE tool . 42 3.3 Graphical User interface . 43 3.4 Graphical User interface results . 44 3.5 Information flow . 45 4.1 Information flow . 52 4.2 JSON API structure . 53 4.3 Graph layout . 54 4.4 input layout . 56 4.5 result layout . 56 4.6 Simple nodes graph . 59 4.7 Simple nodes graph with edge . 60 4.8 input layout . 62 4.9 Time distribution . 74 4.10 General data input . 76 4.11 Views panel . 78 4.12 Spreadsheet gadget . 78 4.13 WIP example . ..
Recommended publications
  • Semantic FAIR Data Web Me
    SNOMED CT Research Webinar Today’ Presenter WELCOME! *We will begin shortly* Dr. Ronald Cornet UPCOMING WEBINARS: RESEARCH WEB SERIES CLINICAL WEB SERIES Save the Date! August TBA soon! August 19, 2020 Time: TBA https://www.snomed.org/news-and-events/events/web-series Dr Hyeoun-Ae Park Emeritus Dean & Professor Seoul National University Past President International Medical Informatics Association Research Reference Group Join our SNOMED Research Reference Group! Be notified of upcoming Research Webinars and other SNOMED CT research-related news. Email Suzy ([email protected]) to Join. SNOMED CT Research Webinar: SNOMED CT – OWL in a FAIR web of data Dr. Ronald Cornet SNOMED CT – OWL in a FAIR web of data Ronald Cornet Me SNOMED Use case CT Semantic FAIR data web Me • Associate professor at Amsterdam UMC, Amsterdam Public Health Research Institute, department of Medical Informatics • Research on knowledge representation; ontology auditing; SNOMED CT; reusable healthcare data; FAIR data Conflicts of Interest • 10+ years involvement with SNOMED International (Quality Assurance Committee, Technical Committee, Implementation SIG, Modeling Advisory Group) • Chair of the GO-FAIR Executive board • Funding from European Union (Horizon 2020) Me SNOMED Use case CT Semantic FAIR data web FAIR Guiding Principles https://go-fair.org/ FAIR Principles – concise • Findable • Metadata and data should be easy to find for both humans and computers • Accessible • The user needs to know how data can be accessed, possibly including authentication and authorization
    [Show full text]
  • OASIS Response to NSTC Request for Feedback on Standard Practices
    OASIS RESPONSE TO NSTC REQUEST FOR FEEDBACK ON STANDARDS PRACTICES OASIS (Organization for the Advancement of Structured Information Standards) is pleased to respond to the request from the National Science and Technology Council's Sub-Committee on Standards published at 75 FR 76397 (2010), and extended by 76 FR 3877 (2011), for feedback and observations regarding the effectiveness of Federal agencies' participation in the development and implementation of standards and conformity assessment activities and programs. We have advised our own members about the Federal Register inquiry, in case they wish to respond. Of course, their opinions are their own, and this response does not represent the views of any members, but only the observations of OASIS professional staff. I. RESPONDENT'S BACKGROUND OASIS is one of the largest and oldest global open data standards consortia, founded in 1993 as SGML Open. OASIS has over 5000 active participants representing about 600 member organizations and individual members in over 80 countries. We host widely-used standards in multiple fields including • cybersecurity & access control (such as WS-Security, SAML, XACML, KMIP, DSS & XSPA) [/1], • office documents and smart semantic documents (such as OpenDocument, DITA, DocBook & CMIS) [/2], and • electronic commerce (including SOA and web services, such as BPEL, ebXML, WS-ReliableMessaging & the WS-Transaction standards) [/3] among other areas. Various specific vertical industries also fulfill their open standards requirements by initiating OASIS projects, resulting in mission-specific standards such as • UBL and Business Document Exchange (for e-procurement) [/4], • CAP and EDML (for emergency first-responder notifications) [/5], and • LegalXML (for electronic court filing data)[/6].
    [Show full text]
  • Automated Software System for Checking the Structure and Format of Acm Sig Documents
    AUTOMATED SOFTWARE SYSTEM FOR CHECKING THE STRUCTURE AND FORMAT OF ACM SIG DOCUMENTS A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF APPLIED SCIENCES OF NEAR EAST UNIVERSITY By ARSALAN RAHMAN MIRZA In Partial Fulfillment of the Requirements for The Degree of Master of Science in Software Engineering NICOSIA, 2015 ACKNOWLEDGEMENTS This thesis would not have been possible without the help, support and patience of my principal supervisor, my deepest gratitude goes to Assist. Prof. Dr. Melike Şah Direkoglu, for her constant encouragement and guidance. She has walked me through all the stages of my research and writing thesis. Without her consistent and illuminating instruction, this thesis could not have reached its present from. Above all, my unlimited thanks and heartfelt love would be dedicated to my dearest family for their loyalty and their great confidence in me. I would like to thank my parents for giving me a support, encouragement and constant love have sustained me throughout my life. I would also like to thank the lecturers in software/computer engineering department for giving me the opportunity to be a member in such university and such department. Their help and supervision concerning taking courses were unlimited. Eventually, I would like to thank a man who showed me a document with wrong format, and told me “it will be very good if we have a program for checking the documents”, however I don’t know his name, but he hired me to start my thesis based on this idea. ii To Alan Kurdi To my Nephews Sina & Nima iii ABSTRACT Microsoft office (MS) word is one of the most commonly used software tools for creating documents.
    [Show full text]
  • Basex Server
    BaseX Documentation Version 7.8 BaseX Documentation: Version 7.8 Content is available under Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0). Table of Contents 1. Main Page .............................................................................................................................. 1 Getting Started .................................................................................................................. 1 XQuery Portal .................................................................................................................... 1 Advanced User's Guide ..................................................................................................... 2 I. Getting Started ........................................................................................................................ 3 2. Command-Line Options ................................................................................................... 4 BaseX Standalone ..................................................................................................... 4 BaseX Server ............................................................................................................ 6 BaseX Client ............................................................................................................. 7 BaseX HTTP Server .................................................................................................. 9 BaseX GUI .............................................................................................................
    [Show full text]
  • SHACL Satisfiability and Containment
    SHACL Satisfiability and Containment Paolo Pareti1 , George Konstantinidis1 , Fabio Mogavero2 , and Timothy J. Norman1 1 University of Southampton, Southampton, United Kingdom {pp1v17,g.konstantinidis,t.j.norman}@soton.ac.uk 2 Università degli Studi di Napoli Federico II, Napoli, Italy [email protected] Abstract. The Shapes Constraint Language (SHACL) is a recent W3C recom- mendation language for validating RDF data. Specifically, SHACL documents are collections of constraints that enforce particular shapes on an RDF graph. Previous work on the topic has provided theoretical and practical results for the validation problem, but did not consider the standard decision problems of satisfiability and containment, which are crucial for verifying the feasibility of the constraints and important for design and optimization purposes. In this paper, we undertake a thorough study of different features of non-recursive SHACL by providing a translation to a new first-order language, called SCL, that precisely captures the semantics of SHACL w.r.t. satisfiability and containment. We study the interaction of SHACL features in this logic and provide the detailed map of decidability and complexity results of the aforementioned decision problems for different SHACL sublanguages. Notably, we prove that both problems are undecidable for the full language, but we present decidable combinations of interesting features. 1 Introduction The Shapes Constraint Language (SHACL) has been recently introduced as a W3C recommendation language for the validation of RDF graphs, and it has already been adopted by mainstream tools and triplestores. A SHACL document is a collection of shapes which define particular constraints and specify which nodes in a graph should be validated against these constraints.
    [Show full text]
  • D2.2: Research Data Exchange Solution
    H2020-ICT-2018-2 /ICT-28-2018-CSA SOMA: Social Observatory for Disinformation and Social Media Analysis D2.2: Research data exchange solution Project Reference No SOMA [825469] Deliverable D2.2: Research Data exchange (and transparency) solution with platforms Work package WP2: Methods and Analysis for disinformation modeling Type Report Dissemination Level Public Date 30/08/2019 Status Final Authors Lynge Asbjørn Møller, DATALAB, Aarhus University Anja Bechmann, DATALAB, Aarhus University Contributor(s) See fact-checking interviews and meetings in appendix 7.2 Reviewers Noemi Trino, LUISS Datalab, LUISS University Stefano Guarino, LUISS Datalab, LUISS University Document description This deliverable compiles the findings and recommended solutions and actions needed in order to construct a sustainable data exchange model for stakeholders, focusing on a differentiated perspective, one for journalists and the broader community, and one for university-based academic researchers. SOMA-825469 D2.2: Research data exchange solution Document Revision History Version Date Modifications Introduced Modification Reason Modified by v0.1 28/08/2019 Consolidation of first DATALAB, Aarhus draft University v0.2 29/08/2019 Review LUISS Datalab, LUISS University v0.3 30/08/2019 Proofread DATALAB, Aarhus University v1.0 30/08/2019 Final version DATALAB, Aarhus University 30/08/2019 Page | 1 SOMA-825469 D2.2: Research data exchange solution Executive Summary This report provides an evaluation of current solutions for data transparency and exchange with social media platforms, an account of the historic obstacles and developments within the subject and a prioritized list of future scenarios and solutions for data access with social media platforms. The evaluation of current solutions and the historic accounts are based primarily on a systematic review of academic literature on the subject, expanded by an account on the most recent developments and solutions.
    [Show full text]
  • Definition of Data Exchange Standard for Railway Applications
    PRACE NAUKOWE POLITECHNIKI WARSZAWSKIEJ z. 113 Transport 2016 6/*!1 Uniwersytet Technologiczno-:]! w Radomiu, (,? DEFINITION OF DATA EXCHANGE STANDARD FOR RAILWAY APPLICATIONS The manuscript delivered: March 2016 Abstract: Railway similar to the other branches of economy commonly uses information technologies in its business. This includes, inter alia, issues such as railway traffic management, rolling stock management, stacking timetables, information for passengers, booking and selling tickets. Variety aspects of railway operations as well as a large number of companies operating in the railway market causes that currently we use a lot of independent systems that often should work together. The lack of standards for data structures and protocols causes the need to design and maintain multiple interfaces. This approach is inefficient, time consuming and expensive. Therefore, the initiative to develop an open standard for the exchange of data for railway application was established. This new standard was named railML. The railML is based on Extensible Markup Language (XML) and uses XML Schema to define a new data exchange format and structures for data interoperability of railway applications. In this paper the current state of railML specification and the trend of development were discussed. Keywords: railway traffic control systems, railML, XML 1. INTRODUCTION It is hard to imagine the functioning of the modern world without information technologies. It is a result of numerous advantages of the modern IT solutions. One of the most important arguments for using IT systems is cost optimisation [1, 3, 6]. Variety aspects of railway operations as well as a large number of companies operating in the railway market causes that currently we use a lot of independent systems that often should cooperate.
    [Show full text]
  • Standardisation and Organisation of Clinical Data and Disease Mechanisms for Comparison Over Heterogeneous Systems in the Context of Neurodegenerative Diseases
    PhD-FSTC-2018-51 The Faculty of Sciences, Technology and Communication DISSERTATION Defence held on 03/07/2018 in Luxembourg to obtain the degree of DOCTEUR DE L’UNIVERSITÉ DU LUXEMBOURG EN BIOLOGIE ​ by AISHWARYA ALEX NAMASIVAYAM Born on 12 November 1987 in Bharananganam (India) STANDARDISATION AND ORGANISATION OF CLINICAL DATA AND DISEASE MECHANISMS FOR COMPARISON OVER HETEROGENEOUS SYSTEMS IN THE CONTEXT OF NEURODEGENERATIVE DISEASES Dissertation defence committee Prof. Dr Reinhard Schneider, dissertation supervisor ​ ​ Professor, Université du Luxembourg Dr Inna Kuperstein Researcher and scientific coordinator, Institut Curie, Paris Dr Enrico Glaab, Chairman ​ ​ Senior research scientist, Université du Luxembourg Prof. Dr Karsten Hiller Professor, Technische Universität Braunschweig Dr Marek Ostaszewski, Vice Chairman ​ ​ Research associate, Université du Luxembourg Affidavit I hereby confirm that the PhD thesis entitled "Standardisation and Organisation of Clinical Data and Disease Mechanisms for Comparison Over Heterogeneous Systems in the Context of Neurodegenerative Diseases" has been written independently and without any other sources than cited. Luxembourg, July 26, 2018 Aishwarya Alex Namasivayam i ii Acknowledgements First and foremost, I would like to thank Dr. Reinhard Schneider, my supervisor for giving me the opportunity and support to pursue my PhD in the group. Biocore is a very wonderful working environment. I couldnt ask for a better boss! I would like to thank all my colleagues for their support and making this a memorable journey. Special thanks to Marek, Venkata, Wei and Piotr for their valuable suggestions and feedbacks. My sincere gratitude to Dr. Jochen Schneider and Dr. Karsten Hiller for agreeing to be part of the CET committee and the constructive criticism during the PhD.
    [Show full text]
  • JSON JSON (Javascript Object Notation) Ecmascript Javascript
    ECMAScript JSON ECMAScript is standardized JavaScript. The current version is the 12th edition: Péter Jeszenszky Ecma International, ECMAScript 2021 Language Specification, Standard ECMA-262, 12th ed., June 2021. https://www.ecma- international.org/publications-and-standards/standards/ecma-262/ October 8, 2021 The next version currently under development is ECMAScript 2022: ECMAScript 2022 Language Specification https://tc39.es/ecma262/ Péter Jeszenszky JSON October 8, 2021 1 / 94 Péter Jeszenszky JSON October 8, 2021 3 / 94 JSON (JavaScript Object Notation) JavaScript Lightweight, textual, and platform independent data exchange format. Used for representing structured data. The term JavaScript is used for the implementations of ECMAScript by different vendors. Can be read and written easily by humans. See also: JavaScript technologies overview Can be generated and processed easily by computer programs. https://developer.mozilla.org/en- US/docs/Web/JavaScript/JavaScript_technologies_overview Originates from the ECMAScript programming language. Website: https://www.json.org/ Péter Jeszenszky JSON October 8, 2021 2 / 94 Péter Jeszenszky JSON October 8, 2021 4 / 94 JavaScript Engines (1) Node.js (1) SpiderMonkey (written in: C/C++; license: Mozilla Public License 2.0) https://spidermonkey.dev/ A JavaScript runtime environment built on the V8 JavaScript engine The JavaScript engine of the Mozilla Project. that is designed to build scalable network applications. V8 (written in: C++; license: New BSD License) https://v8.dev/ Website: https://nodejs.org/ https://github.com/nodejs/node https://github.com/v8/v8/ License: MIT License The JavaScript engine of Chromium. Written in: C++, JavaScript JavaScriptCore (written in: C++; license: LGPLv2) https://developer.apple.com/documentation/javascriptcore https: Platform: Linux, macOS, Windows //github.com/WebKit/webkit/tree/master/Source/JavaScriptCore The JavaScript engine developed for the WebKit rendering engine.
    [Show full text]
  • Strategic Directions for Sakai and Data Interoperability Charles Severance ([email protected]), Joseph Hardin ([email protected])
    Strategic Directions for Sakai and Data Interoperability Charles Severance ([email protected]), Joseph Hardin ([email protected]) Sakai is emerging as the leading open source enterprise-class collaboration and learning environment. Sakai's initial purpose was to produce a single application but increasingly, Sakai will need to operate with other applications both within and across enterprises. This document is intended to propose a roadmap as to where Sakai should go in terms of data interoperability both amongst applications running within Sakai and with applications interacting with Sakai. There will be other aspects of future Sakai development that are not covered here. This document takes a long-term view on the evolution of Sakai - it is complementary to the Sakai Requirements process, which captures short to medium term priorities. The tasks discussed in this document should not be seen as the "most important" tasks for Sakai. The document only covers data exchange aspects of Sakai. Nothing in this document is set in stone - since Sakai is a community effort, everyone is a volunteer. However, by publishing this overview we hope to facilitate consensus and alignment of goals within the community over the longer- term future of Sakai. Sakai is currently a Service-Oriented-Architecture. This work maintains and enhances the Service-Oriented aspects of Sakai and adds the ability to use Sakai as an set of objects. This work move be both Service Oriented and Object- Oriented. Making Sakai Web 2.0 While "Web 2.0" is a vastly overused term, in some ways, this effort can be likened to building the Web 2.0 version of Sakai.
    [Show full text]
  • Architecture of a P2P Distributed Adaptive Directory
    Architecture of a P2P Distributed Adaptive Directory Gennaro Cordasco Vittorio Scarano Cristiano Vitolo [email protected] [email protected] [email protected] Dipartimento di Informatica e Applicazioni “R.M.Capocelli” Universit`a di Salerno, 84081 Baronissi (SA) – Italy Categories and Subject Descriptors C.2.4 [Distributed Systems]: Distributed Applications; H.3.4 [Systems and Software]: Distributed Systems; H.5.4 [Hypertext/Hypermedia]: Navigation General Terms Design Keywords Adaptivity, Bookmark sharing, Peer to Peer 1. INTRODUCTION Bookmarks are, nowadays, an important aid to navigation since they represent an easy way to reduce the cognitive load of man- aging and typing URLs. All the browsers have always provided, since the very beginning of the WWW, friendly ways of managing bookmarks. In this paper we deal with the problem of enriching this Figure 1: The diagram of the architecture of our system. supportive framework for bookmarks (as provided by the browsers) The middle layer, named DAD, exploits the bottom level to ob- by adding collaboration and (group) adaptation with a P2P system. tain information about bookmarks and users, providing a collabora- In this paper, we describe a system that offers a distributed, co- tive and adaptive system to manage bookmarks. Shared bookmarks operative and adaptive environment for bookmark sharing. DAD are placed in an ontology that is common to all the peers and the (Distributed Adaptive Directory) offers an adaptive environment adaptivity provided by the system is based on a modified applica- since it provides suggestions about the navigation based on (a) the tion of the Kleinberg algorithm to evaluate hub and authorities on a bookmarks, (b) the feedback implicitly provided by users and (c) web structure.
    [Show full text]
  • Release Notes for the Docbook XSL Stylesheets I
    Release Notes for the DocBook XSL Stylesheets i Release Notes for the DocBook XSL Stylesheets Release Notes for the DocBook XSL Stylesheets ii Contents 1 Release Notes: snapshot 1 2 Release Notes: 1.79.2 1 3 Release Notes: 1.79.1 1 3.1 Gentext . .1 3.2 Common . .2 3.3 FO...........................................................4 3.4 HTML.........................................................9 3.5 Manpages . 13 3.6 Epub.......................................................... 14 3.7 HTMLHelp . 16 3.8 Eclipse . 16 3.9 JavaHelp . 16 3.10 Slides . 17 3.11 Website . 17 3.12 Webhelp . 18 3.13 Params . 18 3.14 Profiling . 20 3.15Lib........................................................... 20 3.16 Tools . 20 3.17 Template . 21 3.18 Extensions . 21 4 Release Notes: 1.79.0 21 4.1 Gentext . 22 4.2 Common . 23 4.3 FO........................................................... 24 4.4 HTML......................................................... 29 4.5 Manpages . 34 4.6 Epub.......................................................... 35 4.7 HTMLHelp . 36 4.8 Eclipse . 36 4.9 JavaHelp . 37 4.10 Slides . 37 4.11 Website . 38 4.12 Webhelp . 38 4.13 Params . 39 Release Notes for the DocBook XSL Stylesheets iii 4.14 Profiling . 40 4.15Lib........................................................... 40 4.16 Tools . 40 4.17 Template . 41 4.18 Extensions . 42 5 Release Notes: 1.78.1 42 5.1 Common . 42 5.2 FO........................................................... 43 5.3 HTML......................................................... 43 5.4 Manpages . 44 5.5 Webhelp . 44 5.6 Params . 44 5.7 Highlighting . 44 6 Release Notes: 1.78.0 44 6.1 Gentext . 45 6.2 Common . 45 6.3 FO........................................................... 46 6.4 HTML......................................................... 47 6.5 Manpages .
    [Show full text]