The Cross-Section of Volatility and Expected Returns
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Managing Volatility Risk
Managing Volatility Risk Innovation of Financial Derivatives, Stochastic Models and Their Analytical Implementation Chenxu Li Submitted in partial fulfillment of the Requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2010 c 2010 Chenxu Li All Rights Reserved ABSTRACT Managing Volatility Risk Innovation of Financial Derivatives, Stochastic Models and Their Analytical Implementation Chenxu Li This dissertation investigates two timely topics in mathematical finance. In partic- ular, we study the valuation, hedging and implementation of actively traded volatil- ity derivatives including the recently introduced timer option and the CBOE (the Chicago Board Options Exchange) option on VIX (the Chicago Board Options Ex- change volatility index). In the first part of this dissertation, we investigate the pric- ing, hedging and implementation of timer options under Heston’s (1993) stochastic volatility model. The valuation problem is formulated as a first-passage-time problem through a no-arbitrage argument. By employing stochastic analysis and various ana- lytical tools, such as partial differential equation, Laplace and Fourier transforms, we derive a Black-Scholes-Merton type formula for pricing timer options. This work mo- tivates some theoretical study of Bessel processes and Feller diffusions as well as their numerical implementation. In the second part, we analyze the valuation of options on VIX under Gatheral’s double mean-reverting stochastic volatility model, which is able to consistently price options on S&P 500 (the Standard and Poor’s 500 index), VIX and realized variance (also well known as historical variance calculated by the variance of the asset’s daily return). -
“Dividend Policy and Share Price Volatility”
“Dividend policy and share price volatility” Sew Eng Hooi AUTHORS Mohamed Albaity Ahmad Ibn Ibrahimy Sew Eng Hooi, Mohamed Albaity and Ahmad Ibn Ibrahimy (2015). Dividend ARTICLE INFO policy and share price volatility. Investment Management and Financial Innovations, 12(1-1), 226-234 RELEASED ON Tuesday, 07 April 2015 JOURNAL "Investment Management and Financial Innovations" FOUNDER LLC “Consulting Publishing Company “Business Perspectives” NUMBER OF REFERENCES NUMBER OF FIGURES NUMBER OF TABLES 0 0 0 © The author(s) 2021. This publication is an open access article. businessperspectives.org Investment Management and Financial Innovations, Volume 12, Issue 1, 2015 Sew Eng Hooi (Malaysia), Mohamed Albaity (Malaysia), Ahmad Ibn Ibrahimy (Malaysia) Dividend policy and share price volatility Abstract The objective of this study is to examine the relationship between dividend policy and share price volatility in the Malaysian market. A sample of 319 companies from Kuala Lumpur stock exchange were studied to find the relationship between stock price volatility and dividend policy instruments. Dividend yield and dividend payout were found to be negatively related to share price volatility and were statistically significant. Firm size and share price were negatively related. Positive and statistically significant relationships between earning volatility and long term debt to price volatility were identified as hypothesized. However, there was no significant relationship found between growth in assets and price volatility in the Malaysian market. Keywords: dividend policy, share price volatility, dividend yield, dividend payout. JEL Classification: G10, G12, G14. Introduction (Wang and Chang, 2011). However, difference in tax structures (Ho, 2003; Ince and Owers, 2012), growth Dividend policy is always one of the main factors and development (Bulan et al., 2007; Elsady et al., that an investor will focus on when determining 2012), governmental policies (Belke and Polleit, 2006) their investment strategy. -
Hedging Volatility Risk
Journal of Banking & Finance 30 (2006) 811–821 www.elsevier.com/locate/jbf Hedging volatility risk Menachem Brenner a,*, Ernest Y. Ou b, Jin E. Zhang c a Stern School of Business, New York University, New York, NY 10012, USA b Archeus Capital Management, New York, NY 10017, USA c School of Business and School of Economics and Finance, The University of Hong Kong, Pokfulam Road, Hong Kong Received 11 April 2005; accepted 5 July 2005 Available online 9 December 2005 Abstract Volatility risk plays an important role in the management of portfolios of derivative assets as well as portfolios of basic assets. This risk is currently managed by volatility ‘‘swaps’’ or futures. How- ever, this risk could be managed more efficiently using options on volatility that were proposed in the past but were never introduced mainly due to the lack of a cost efficient tradable underlying asset. The objective of this paper is to introduce a new volatility instrument, an option on a straddle, which can be used to hedge volatility risk. The design and valuation of such an instrument are the basic ingredients of a successful financial product. In order to value these options, we combine the approaches of compound options and stochastic volatility. Our numerical results show that the straddle option is a powerful instrument to hedge volatility risk. An additional benefit of such an innovation is that it will provide a direct estimate of the market price for volatility risk. Ó 2005 Elsevier B.V. All rights reserved. JEL classification: G12; G13 Keywords: Volatility options; Compound options; Stochastic volatility; Risk management; Volatility index * Corresponding author. -
Putting Volatility to Work
Wh o ’ s afraid of volatility? Not anyone who wants a true edge in his or her trad i n g , th a t ’ s for sure. Get a handle on the essential concepts and learn how to improve your trading with pr actical volatility analysis and trading techniques. 2 www.activetradermag.com • April 2001 • ACTIVE TRADER TRADING Strategies BY RAVI KANT JAIN olatility is both the boon and bane of all traders — The result corresponds closely to the percentage price you can’t live with it and you can’t really trade change of the stock. without it. Most of us have an idea of what volatility is. We usually 2. Calculate the average day-to-day changes over a certain thinkV of “choppy” markets and wide price swings when the period. Add together all the changes for a given period (n) and topic of volatility arises. These basic concepts are accurate, but calculate an average for them (Rm): they also lack nuance. Volatility is simply a measure of the degree of price move- Rt ment in a stock, futures contract or any other market. What’s n necessary for traders is to be able to bridge the gap between the Rm = simple concepts mentioned above and the sometimes confus- n ing mathematics often used to define and describe volatility. 3. Find out how far prices vary from the average calculated But by understanding certain volatility measures, any trad- in Step 2. The historical volatility (HV) is the “average vari- er — options or otherwise — can learn to make practical use of ance” from the mean (the “standard deviation”), and is esti- volatility analysis and volatility-based strategies. -
Expected Stock Returns and Volatility Kenneth R
University of Pennsylvania ScholarlyCommons Finance Papers Wharton Faculty Research 1987 Expected Stock Returns and Volatility Kenneth R. French G. William Schwert Robert F. Stambaugh University of Pennsylvania Follow this and additional works at: http://repository.upenn.edu/fnce_papers Part of the Finance Commons, and the Finance and Financial Management Commons Recommended Citation French, K. R., Schwert, G., & Stambaugh, R. F. (1987). Expected Stock Returns and Volatility. Journal of Financial Economics, 19 (1), 3-29. http://dx.doi.org/10.1016/0304-405X(87)90026-2 At the time of publication, author Robert F. Stambaugh was affiliated with the University of Chicago. Currently, he is a faculty member at the Wharton School at the University of Pennsylvania. This paper is posted at ScholarlyCommons. http://repository.upenn.edu/fnce_papers/363 For more information, please contact [email protected]. Expected Stock Returns and Volatility Abstract This paper examines the relation between stock returns and stock market volatility. We find ve idence that the expected market risk premium (the expected return on a stock portfolio minus the Treasury bill yield) is positively related to the predictable volatility of stock returns. There is also evidence that unexpected stock market returns are negatively related to the unexpected change in the volatility of stock returns. This negative relation provides indirect evidence of a positive relation between expected risk premiums and volatility. Disciplines Finance | Finance and Financial Management Comments At the time of publication, author Robert F. Stambaugh was affiliated with the University of Chicago. Currently, he is a faculty member at the Wharton School at the University of Pennsylvania. -
Estimating Value at Risk
Estimating Value at Risk Eric Marsden <[email protected]> Do you know how risky your bank is? Learning objectives 1 Understand measures of financial risk, including Value at Risk 2 Understand the impact of correlated risks 3 Know how to use copulas to sample from a multivariate probability distribution, including correlation The information presented here is pedagogical in nature and does not constitute investment advice! Methods used here can also be applied to model natural hazards 2 / 41 Warmup. Before reading this material, we suggest you consult the following associated slides: ▷ Modelling correlations using Python ▷ Statistical modelling with Python Available from risk-engineering.org 3 / 41 Risk in finance There are 1011 stars in the galaxy. That used to be a huge number. But it’s only a hundred billion. It’s less than the national deficit! We used to call them astronomical numbers. ‘‘ Now we should call them economical numbers. — Richard Feynman 4 / 41 Terminology in finance Names of some instruments used in finance: ▷ A bond issued by a company or a government is just a loan • bond buyer lends money to bond issuer • issuer will return money plus some interest when the bond matures ▷ A stock gives you (a small fraction of) ownership in a “listed company” • a stock has a price, and can be bought and sold on the stock market ▷ A future is a promise to do a transaction at a later date • refers to some “underlying” product which will be bought or sold at a later time • example: farmer can sell her crop before harvest, -
Risk, Return, and Diversification a Reading Prepared by Pamela Peterson Drake
Risk, return, and diversification A reading prepared by Pamela Peterson Drake O U T L I N E 1. Introduction 2. Diversification and risk 3. Modern portfolio theory 4. Asset pricing models 5. Summary 1. Introduction As managers, we rarely consider investing in only one project at one time. Small businesses and large corporations alike can be viewed as a collection of different investments, made at different points in time. We refer to a collection of investments as a portfolio. While we usually think of a portfolio as a collection of securities (stocks and bonds), we can also think of a business in much the same way -- a portfolios of assets such as buildings, inventories, trademarks, patents, et cetera. As managers, we are concerned about the overall risk of the company's portfolio of assets. Suppose you invested in two assets, Thing One and Thing Two, having the following returns over the next year: Asset Return Thing One 20% Thing Two 8% Suppose we invest equal amounts, say $10,000, in each asset for one year. At the end of the year we will have $10,000 (1 + 0.20) = $12,000 from Thing One and $10,000 (1 + 0.08) = $10,800 from Thing Two, or a total value of $22,800 from our original $20,000 investment. The return on our portfolio is therefore: ⎛⎞$22,800-20,000 Return = ⎜⎟= 14% ⎝⎠$20,000 If instead, we invested $5,000 in Thing One and $15,000 in Thing Two, the value of our investment at the end of the year would be: Value of investment =$5,000 (1 + 0.20) + 15,000 (1 + 0.08) = $6,000 + 16,200 = $22,200 and the return on our portfolio would be: ⎛⎞$22,200-20,000 Return = ⎜⎟= 11% ⎝⎠$20,000 which we can also write as: Risk, return, and diversification, a reading prepared by Pamela Peterson Drake 1 ⎡⎤⎛⎞$5,000 ⎡ ⎛⎞$15,000 ⎤ Return = ⎢⎥⎜⎟(0.2) +=⎢ ⎜⎟(0.08) ⎥ 11% ⎣⎦⎝⎠$20,000 ⎣ ⎝⎠$20,000 ⎦ As you can see more immediately by the second calculation, the return on our portfolio is the weighted average of the returns on the assets in the portfolio, where the weights are the proportion invested in each asset. -
FX Effects: Currency Considerations for Multi-Asset Portfolios
Investment Research FX Effects: Currency Considerations for Multi-Asset Portfolios Juan Mier, CFA, Vice President, Portfolio Analyst The impact of currency hedging for global portfolios has been debated extensively. Interest on this topic would appear to loosely coincide with extended periods of strength in a given currency that can tempt investors to evaluate hedging with hindsight. The data studied show performance enhancement through hedging is not consistent. From the viewpoint of developed markets currencies—equity, fixed income, and simple multi-asset combinations— performance leadership from being hedged or unhedged alternates and can persist for long periods. In this paper we take an approach from a risk viewpoint (i.e., can hedging lead to lower volatility or be some kind of risk control?) as this is central for outcome-oriented asset allocators. 2 “The cognitive bias of hindsight is The Debate on FX Hedging in Global followed by the emotion of regret. Portfolios Is Not New A study from the 1990s2 summarizes theoretical and empirical Some portfolio managers hedge papers up to that point. The solutions reviewed spanned those 50% of the currency exposure of advocating hedging all FX exposures—due to the belief of zero expected returns from currencies—to those advocating no their portfolio to ward off the pain of hedging—due to mean reversion in the medium-to-long term— regret, since a 50% hedge is sure to and lastly those that proposed something in between—a range of values for a “universal” hedge ratio. Later on, in the mid-2000s make them 50% right.” the aptly titled Hedging Currencies with Hindsight and Regret 3 —Hedging Currencies with Hindsight and Regret, took a behavioral approach to describe the difficulty and behav- Statman (2005) ioral biases many investors face when incorporating currency hedges into their asset allocation. -
Modelling Australian Dollar Volatility at Multiple Horizons with High-Frequency Data
risks Article Modelling Australian Dollar Volatility at Multiple Horizons with High-Frequency Data Long Hai Vo 1,2 and Duc Hong Vo 3,* 1 Economics Department, Business School, The University of Western Australia, Crawley, WA 6009, Australia; [email protected] 2 Faculty of Finance, Banking and Business Administration, Quy Nhon University, Binh Dinh 560000, Vietnam 3 Business and Economics Research Group, Ho Chi Minh City Open University, Ho Chi Minh City 7000, Vietnam * Correspondence: [email protected] Received: 1 July 2020; Accepted: 17 August 2020; Published: 26 August 2020 Abstract: Long-range dependency of the volatility of exchange-rate time series plays a crucial role in the evaluation of exchange-rate risks, in particular for the commodity currencies. The Australian dollar is currently holding the fifth rank in the global top 10 most frequently traded currencies. The popularity of the Aussie dollar among currency traders belongs to the so-called three G’s—Geology, Geography and Government policy. The Australian economy is largely driven by commodities. The strength of the Australian dollar is counter-cyclical relative to other currencies and ties proximately to the geographical, commercial linkage with Asia and the commodity cycle. As such, we consider that the Australian dollar presents strong characteristics of the commodity currency. In this study, we provide an examination of the Australian dollar–US dollar rates. For the period from 18:05, 7th August 2019 to 9:25, 16th September 2019 with a total of 8481 observations, a wavelet-based approach that allows for modelling long-memory characteristics of this currency pair at different trading horizons is used in our analysis. -
A Securitization-Based Model of Shadow Banking with Surplus Extraction and Credit Risk Transfer
A Securitization-based Model of Shadow Banking with Surplus Extraction and Credit Risk Transfer Patrizio Morganti∗ August, 2017 Abstract The paper provides a theoretical model that supports the search for yield motive of shadow banking and the traditional risk transfer view of securitization, which is consistent with the factual background that had characterized the U.S. financial system before the recent crisis. The shadow banking system is indeed an important provider of high-yield asset-backed securi- ties via the underlying securitized credit intermediation process. Investors' sentiment on future macroeconomic conditions affects the reservation prices related to the demand for securitized assets: high-willing payer (\optimistic") investors are attracted to these investment opportu- nities and offer to intermediaries a rent extraction incentive. When the outside wealth is high enough that securitization occurs, asset-backed securities are used by intermediaries to extract the highest feasible surplus from optimistic investors and to offload credit risk. Shadow banking is pro-cyclical and securitization allows risks to be spread among market participants coherently with their risk attitude. Keywords: securitization, shadow banking, credit risk transfer, surplus extraction JEL classification: E44, G21, G23 1 Introduction During the last four decades we witnessed to fundamental changes in financial techniques and financial regulation that have gradually transformed the \originate-to-hold" banking model into a \originate-to-distribute" model based on a securitized credit intermediation process relying upon i) securitization techniques, ii) securities financing transactions, and iii) mutual funds industry.1 ∗Tuscia University in Viterbo, Department of Economics and Engineering. E-mail: [email protected]. I am most grateful to Giuseppe Garofalo for his continuous guidance and support. -
There's More to Volatility Than Volume
There's more to volatility than volume L¶aszl¶o Gillemot,1, 2 J. Doyne Farmer,1 and Fabrizio Lillo1, 3 1Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501 2Budapest University of Technology and Economics, H-1111 Budapest, Budafoki ut¶ 8, Hungary 3INFM-CNR Unita di Palermo and Dipartimento di Fisica e Tecnologie Relative, Universita di Palermo, Viale delle Scienze, I-90128 Palermo, Italy. It is widely believed that uctuations in transaction volume, as reected in the number of transactions and to a lesser extent their size, are the main cause of clus- tered volatility. Under this view bursts of rapid or slow price di®usion reect bursts of frequent or less frequent trading, which cause both clustered volatility and heavy tails in price returns. We investigate this hypothesis using tick by tick data from the New York and London Stock Exchanges and show that only a small fraction of volatility uctuations are explained in this manner. Clustered volatility is still very strong even if price changes are recorded on intervals in which the total transaction volume or number of transactions is held constant. In addition the distribution of price returns conditioned on volume or transaction frequency being held constant is similar to that in real time, making it clear that neither of these are the principal cause of heavy tails in price returns. We analyze recent results of Ane and Geman (2000) and Gabaix et al. (2003), and discuss the reasons why their conclusions di®er from ours. Based on a cross-sectional analysis we show that the long-memory of volatility is dominated by factors other than transaction frequency or total trading volume. -
Futures Price Volatility in Commodities Markets: the Role of Short Term Vs Long Term Speculation
Matteo Manera, a Marcella Nicolini, b* and Ilaria Vignati c Futures price volatility in commodities markets: The role of short term vs long term speculation Abstract: This paper evaluates how different types of speculation affect the volatility of commodities’ futures prices. We adopt four indexes of speculation: Working’s T, the market share of non-commercial traders, the percentage of net long speculators over total open interest in future markets, which proxy for long term speculation, and scalping, which proxies for short term speculation. We consider four energy commodities (light sweet crude oil, heating oil, gasoline and natural gas) and six non-energy commodities (cocoa, coffee, corn, oats, soybean oil and soybeans) over the period 1986-2010, analyzed at weekly frequency. Using GARCH models we find that speculation is significantly related to volatility of returns: short term speculation has a positive and significant coefficient in the variance equation, while long term speculation generally has a negative sign. The robustness exercise shows that: i) scalping is positive and significant also at higher and lower data frequencies; ii) results remain unchanged through different model specifications (GARCH-in-mean, EGARCH, and TARCH); iii) results are robust to different specifications of the mean equation. JEL Codes: C32; G13; Q11; Q43. Keywords: Commodities futures markets; Speculation; Scalping; Working’s T; Data frequency; GARCH models _______ a University of Milan-Bicocca, Milan, and Fondazione Eni Enrico Mattei, Milan. E-mail: [email protected] b University of Pavia, Pavia, and Fondazione Eni Enrico Mattei, Milan. E-mail: [email protected] c Fondazione Eni Enrico Mattei, Milan.