Influence of the Yarkovsky Force on Jupiter Trojan Asteroids
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Occultation Newsletter Volume 8, Number 4
Volume 12, Number 1 January 2005 $5.00 North Am./$6.25 Other International Occultation Timing Association, Inc. (IOTA) In this Issue Article Page The Largest Members Of Our Solar System – 2005 . 4 Resources Page What to Send to Whom . 3 Membership and Subscription Information . 3 IOTA Publications. 3 The Offices and Officers of IOTA . .11 IOTA European Section (IOTA/ES) . .11 IOTA on the World Wide Web. Back Cover ON THE COVER: Steve Preston posted a prediction for the occultation of a 10.8-magnitude star in Orion, about 3° from Betelgeuse, by the asteroid (238) Hypatia, which had an expected diameter of 148 km. The predicted path passed over the San Francisco Bay area, and that turned out to be quite accurate, with only a small shift towards the north, enough to leave Richard Nolthenius, observing visually from the coast northwest of Santa Cruz, to have a miss. But farther north, three other observers video recorded the occultation from their homes, and they were fortuitously located to define three well- spaced chords across the asteroid to accurately measure its shape and location relative to the star, as shown in the figure. The dashed lines show the axes of the fitted ellipse, produced by Dave Herald’s WinOccult program. This demonstrates the good results that can be obtained by a few dedicated observers with a relatively faint star; a bright star and/or many observers are not always necessary to obtain solid useful observations. – David Dunham Publication Date for this issue: July 2005 Please note: The date shown on the cover is for subscription purposes only and does not reflect the actual publication date. -
Origin and Evolution of Trojan Asteroids 725
Marzari et al.: Origin and Evolution of Trojan Asteroids 725 Origin and Evolution of Trojan Asteroids F. Marzari University of Padova, Italy H. Scholl Observatoire de Nice, France C. Murray University of London, England C. Lagerkvist Uppsala Astronomical Observatory, Sweden The regions around the L4 and L5 Lagrangian points of Jupiter are populated by two large swarms of asteroids called the Trojans. They may be as numerous as the main-belt asteroids and their dynamics is peculiar, involving a 1:1 resonance with Jupiter. Their origin probably dates back to the formation of Jupiter: the Trojan precursors were planetesimals orbiting close to the growing planet. Different mechanisms, including the mass growth of Jupiter, collisional diffusion, and gas drag friction, contributed to the capture of planetesimals in stable Trojan orbits before the final dispersal. The subsequent evolution of Trojan asteroids is the outcome of the joint action of different physical processes involving dynamical diffusion and excitation and collisional evolution. As a result, the present population is possibly different in both orbital and size distribution from the primordial one. No other significant population of Trojan aster- oids have been found so far around other planets, apart from six Trojans of Mars, whose origin and evolution are probably very different from the Trojans of Jupiter. 1. INTRODUCTION originate from the collisional disruption and subsequent reaccumulation of larger primordial bodies. As of May 2001, about 1000 asteroids had been classi- A basic understanding of why asteroids can cluster in fied as Jupiter Trojans (http://cfa-www.harvard.edu/cfa/ps/ the orbit of Jupiter was developed more than a century lists/JupiterTrojans.html), some of which had only been ob- before the first Trojan asteroid was discovered. -
March 21–25, 2016
FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk, -
Astrocladistics of the Jovian Trojan Swarms
MNRAS 000,1–26 (2020) Preprint 23 March 2021 Compiled using MNRAS LATEX style file v3.0 Astrocladistics of the Jovian Trojan Swarms Timothy R. Holt,1,2¢ Jonathan Horner,1 David Nesvorný,2 Rachel King,1 Marcel Popescu,3 Brad D. Carter,1 and Christopher C. E. Tylor,1 1Centre for Astrophysics, University of Southern Queensland, Toowoomba, QLD, Australia 2Department of Space Studies, Southwest Research Institute, Boulder, CO. USA. 3Astronomical Institute of the Romanian Academy, Bucharest, Romania. Accepted XXX. Received YYY; in original form ZZZ ABSTRACT The Jovian Trojans are two swarms of small objects that share Jupiter’s orbit, clustered around the leading and trailing Lagrange points, L4 and L5. In this work, we investigate the Jovian Trojan population using the technique of astrocladistics, an adaptation of the ‘tree of life’ approach used in biology. We combine colour data from WISE, SDSS, Gaia DR2 and MOVIS surveys with knowledge of the physical and orbital characteristics of the Trojans, to generate a classification tree composed of clans with distinctive characteristics. We identify 48 clans, indicating groups of objects that possibly share a common origin. Amongst these are several that contain members of the known collisional families, though our work identifies subtleties in that classification that bear future investigation. Our clans are often broken into subclans, and most can be grouped into 10 superclans, reflecting the hierarchical nature of the population. Outcomes from this project include the identification of several high priority objects for additional observations and as well as providing context for the objects to be visited by the forthcoming Lucy mission. -
Aas 14-267 Design of End-To-End Trojan Asteroid
AAS 14-267 DESIGN OF END-TO-END TROJAN ASTEROID RENDEZVOUS TOURS INCORPORATING POTENTIAL SCIENTIFIC VALUE Jeffrey Stuart,∗ Kathleen Howell,y and Roby Wilsonz The Sun-Jupiter Trojan asteroids are celestial bodies of great scientific interest as well as potential natural assets offering mineral resources for long-term human exploration of the solar system. Previous investigations have addressed the auto- mated design of tours within the asteroid swarm and the transition of prospective tours to higher-fidelity, end-to-end trajectories. The current development incorpo- rates the route-finding Ant Colony Optimization (ACO) algorithm into the auto- mated tour generation procedure. Furthermore, the potential scientific merit of the target asteroids is incorporated such that encounters with higher value asteroids are preferentially incorporated during sequence creation. INTRODUCTION Near Earth Objects (NEOs) are currently under consideration for manned sample return mis- sions,1 while a recent NASA feasibility assessment concludes that a mission to the Trojan asteroids can be accomplished at a projected cost of less than $900M in fiscal year 2015 dollars.2 Tour concepts within asteroid swarms allow for a broad sampling of interesting target bodies either for scientific investigation or as potential resources to support deep-space human missions. However, the multitude of asteroids within the swarms necessitates the use of automated design algorithms if a large number of potential mission options are to be surveyed. Previously, a process to automatically and rapidly generate sample tours within the Sun-Jupiter L4 Trojan asteroid swarm with a mini- mum of human interaction has been developed.3 This scheme also enables the automated transition of tours of interest into fully optimized, end-to-end trajectories using a variety of electrical power sources.4,5 This investigation extends the automated algorithm to use ant colony optimization, a heuristic search algorithm, while simultaneously incorporating a relative ‘scientific importance’ ranking into tour construction and analysis. -
A Low Density of 0.8 G Cm-3 for the Trojan Binary Asteroid 617 Patroclus
Publisher: NPG; Journal: Nature:Nature; Article Type: Physics letter DOI: 10.1038/nature04350 A low density of 0.8 g cm−3 for the Trojan binary asteroid 617 Patroclus Franck Marchis1, Daniel Hestroffer2, Pascal Descamps2, Jérôme Berthier2, Antonin H. Bouchez3, Randall D. Campbell3, Jason C. Y. Chin3, Marcos A. van Dam3, Scott K. Hartman3, Erik M. Johansson3, Robert E. Lafon3, David Le Mignant3, Imke de Pater1, Paul J. Stomski3, Doug M. Summers3, Frederic Vachier2, Peter L. Wizinovich3 & Michael H. Wong1 1Department of Astronomy, University of California, 601 Campbell Hall, Berkeley, California 94720, USA. 2Institut de Mécanique Céleste et de Calculs des Éphémérides, UMR CNRS 8028, Observatoire de Paris, 77 Avenue Denfert-Rochereau, F-75014 Paris, France. 3W. M. Keck Observatory, 65-1120 Mamalahoa Highway, Kamuela, Hawaii 96743, USA. The Trojan population consists of two swarms of asteroids following the same orbit as Jupiter and located at the L4 and L5 stable Lagrange points of the Jupiter–Sun system (leading and following Jupiter by 60°). The asteroid 617 Patroclus is the only known binary Trojan1. The orbit of this double system was hitherto unknown. Here we report that the components, separated by 680 km, move around the system’s centre of mass, describing a roughly circular orbit. Using this orbital information, combined with thermal measurements to estimate +0.2 −3 the size of the components, we derive a very low density of 0.8 −0.1 g cm . The components of 617 Patroclus are therefore very porous or composed mostly of water ice, suggesting that they could have been formed in the outer part of the Solar System2. -
The Minor Planet Bulletin
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 38, NUMBER 2, A.D. 2011 APRIL-JUNE 71. LIGHTCURVES OF 10452 ZUEV, (14657) 1998 YU27, AND (15700) 1987 QD Gary A. Vander Haagen Stonegate Observatory, 825 Stonegate Road Ann Arbor, MI 48103 [email protected] (Received: 28 October) Lightcurve observations and analysis revealed the following periods and amplitudes for three asteroids: 10452 Zuev, 9.724 ± 0.002 h, 0.38 ± 0.03 mag; (14657) 1998 YU27, 15.43 ± 0.03 h, 0.21 ± 0.05 mag; and (15700) 1987 QD, 9.71 ± 0.02 h, 0.16 ± 0.05 mag. Photometric data of three asteroids were collected using a 0.43- meter PlaneWave f/6.8 corrected Dall-Kirkham astrograph, a SBIG ST-10XME camera, and V-filter at Stonegate Observatory. The camera was binned 2x2 with a resulting image scale of 0.95 arc- seconds per pixel. Image exposures were 120 seconds at –15C. Candidates for analysis were selected using the MPO2011 Asteroid Viewing Guide and all photometric data were obtained and analyzed using MPO Canopus (Bdw Publishing, 2010). Published asteroid lightcurve data were reviewed in the Asteroid Lightcurve Database (LCDB; Warner et al., 2009). The magnitudes in the plots (Y-axis) are not sky (catalog) values but differentials from the average sky magnitude of the set of comparisons. The value in the Y-axis label, “alpha”, is the solar phase angle at the time of the first set of observations. All data were corrected to this phase angle using G = 0.15, unless otherwise stated. -
Appendix 1 1311 Discoverers in Alphabetical Order
Appendix 1 1311 Discoverers in Alphabetical Order Abe, H. 28 (8) 1993-1999 Bernstein, G. 1 1998 Abe, M. 1 (1) 1994 Bettelheim, E. 1 (1) 2000 Abraham, M. 3 (3) 1999 Bickel, W. 443 1995-2010 Aikman, G. C. L. 4 1994-1998 Biggs, J. 1 2001 Akiyama, M. 16 (10) 1989-1999 Bigourdan, G. 1 1894 Albitskij, V. A. 10 1923-1925 Billings, G. W. 6 1999 Aldering, G. 4 1982 Binzel, R. P. 3 1987-1990 Alikoski, H. 13 1938-1953 Birkle, K. 8 (8) 1989-1993 Allen, E. J. 1 2004 Birtwhistle, P. 56 2003-2009 Allen, L. 2 2004 Blasco, M. 5 (1) 1996-2000 Alu, J. 24 (13) 1987-1993 Block, A. 1 2000 Amburgey, L. L. 2 1997-2000 Boattini, A. 237 (224) 1977-2006 Andrews, A. D. 1 1965 Boehnhardt, H. 1 (1) 1993 Antal, M. 17 1971-1988 Boeker, A. 1 (1) 2002 Antolini, P. 4 (3) 1994-1996 Boeuf, M. 12 1998-2000 Antonini, P. 35 1997-1999 Boffin, H. M. J. 10 (2) 1999-2001 Aoki, M. 2 1996-1997 Bohrmann, A. 9 1936-1938 Apitzsch, R. 43 2004-2009 Boles, T. 1 2002 Arai, M. 45 (45) 1988-1991 Bonomi, R. 1 (1) 1995 Araki, H. 2 (2) 1994 Borgman, D. 1 (1) 2004 Arend, S. 51 1929-1961 B¨orngen, F. 535 (231) 1961-1995 Armstrong, C. 1 (1) 1997 Borrelly, A. 19 1866-1894 Armstrong, M. 2 (1) 1997-1998 Bourban, G. 1 (1) 2005 Asami, A. 7 1997-1999 Bourgeois, P. 1 1929 Asher, D. -
Direct Exploration of Jupiter Trojan Asteroid Using Solar Power Sail
Direct Exploration of Jupiter Trojan Asteroid using Solar Power Sail Osamu MORI*, Hideki KATO, Jun MATSUMOTO, Takanao SAIKI, Yuichi TSUDA, Naoko OGAWA, Yuya MIMASU, Junichiro KAWAGUCHI, Koji TANAKA, Hiroyuki TOYOTA, Nobukatsu OKUIZUMI, Fuyuto TERUI, Atsushi TOMIKI, Shigeo KAWASAKI, Hitoshi KUNINAKA, Kazutaka NISHIYAMA, Ryudo TSUKIZAKI, Satoshi HOSODA, Nobutaka BANDO, Kazuhiko YAMADA, Tatsuaki OKADA, Takahiro IWATA, Hajime YANO, Yoko KEBUKAWA, Jun AOKI, Masatsugu OTSUKI, Ryosuke NAKAMURA, Chisato OKAMOTO, Shuji MATSUURA, Daisuke YONETOKU, Ayako MATSUOKA, Reiko NOMURA, Ralf BODEN, Toshihiro CHUJO, Yusuke OKI, Yuki TAKAO, Kazuaki IKEMOTO, Kazuhiro KOYAMA, Hiroyuki KINOSHITA, Satoshi KITAO, Takuma NAKAMURA, Hirokazu ISHIDA, Keisuke UMEDA, Shuya KASHIOKA, Miyuki KADOKURA, Masaya KURAKAWA and Motoki WATANABE 1 Introduction (1) Direct exploration mission of small celestial bodies, inspired by Hayabusa, are being actively carried out Hayabusa-2, OSIRIS-REx and ARM etc • Due to constraints of resources and orbital mechanics, the current target objects are mainly near-Earth asteroids and Mars satellites. • In the near future, it can be expected that the targets will shift to higher primordial celestial bodies, located farther away from the Sun. 2 Introduction (2) • In the navigation of the outer planetary region, ensuring electric power becomes increasingly difficult and ΔV requirements become large. • It is not possible to perform sampling (direct exploration) missions beyond the main belt with combination of solar panels and chemical propulsion system. • NASA selected Jupiter Trojan multi-flyby as Discovery mission. • However, we propose a landing and sample return of Jupiter Trojan using the solar power sail-craft. L5 NASA Jupiter L4 JAXA 3 What is Solar Power Sail ? • Solar Power Sail is original Japanese concept in which electrical power is generated by thin-film solar cells on the sail membrane. -
Trojan Tour Decadal Study
SDO-12348 Trojan Tour Decadal Study Mike Brown [email protected] SDO-12348 Planetary Science Decadal Survey Mission Concept Study Final Report Executive Summary ................................................................................................................ 5 1. Scientific Objectives ......................................................................................................... 6 Science Questions and Objectives ................................................................................................................................... 6 Science Traceability ............................................................................................................................................................ 12 2. High‐Level Mission Concept ........................................................................................... 14 Study Request and Concept Maturity Level .............................................................................................................. 14 Overview ................................................................................................................................................................................. 14 Technology Maturity .......................................................................................................................................................... 16 Key Trades ............................................................................................................................................................................. -
Updated on 1 September 2018
20813 Aakashshah 12608 Aesop 17225 Alanschorn 266 Aline 31901 Amitscheer 30788 Angekauffmann 2341 Aoluta 23325 Arroyo 15838 Auclair 24649 Balaklava 26557 Aakritijain 446 Aeternitas 20341 Alanstack 8651 Alineraynal 39678 Ammannito 11911 Angel 19701 Aomori 33179 Arsenewenger 9117 Aude 16116 Balakrishnan 28698 Aakshi 132 Aethra 21330 Alanwhitman 214136 Alinghi 871 Amneris 28822 Angelabarker 3810 Aoraki 29995 Arshavsky 184535 Audouze 3749 Balam 28828 Aalamiharandi 1064 Aethusa 2500 Alascattalo 108140 Alir 2437 Amnestia 129151 Angelaboggs 4094 Aoshima 404 Arsinoe 4238 Audrey 27381 Balasingam 33181 Aalokpatwa 1142 Aetolia 19148 Alaska 14225 Alisahamilton 32062 Amolpunjabi 274137 Angelaglinos 3400 Aotearoa 7212 Artaxerxes 31677 Audreyglende 20821 Balasridhar 677 Aaltje 22993 Aferrari 200069 Alastor 2526 Alisary 1221 Amor 16132 Angelakim 9886 Aoyagi 113951 Artdavidsen 20004 Audrey-Lucienne 26634 Balasubramanian 2676 Aarhus 15467 Aflorsch 702 Alauda 27091 Alisonbick 58214 Amorim 30031 Angelakong 11258 Aoyama 44455 Artdula 14252 Audreymeyer 2242 Balaton 129100 Aaronammons 1187 Afra 5576 Albanese 7517 Alisondoane 8721 AMOS 22064 Angelalewis 18639 Aoyunzhiyuanzhe 1956 Artek 133007 Audreysimmons 9289 Balau 22656 Aaronburrows 1193 Africa 111468 Alba Regia 21558 Alisonliu 2948 Amosov 9428 Angelalouise 90022 Apache Point 11010 Artemieva 75564 Audubon 214081 Balavoine 25677 Aaronenten 6391 Africano 31468 Albastaki 16023 Alisonyee 198 Ampella 25402 Angelanorse 134130 Apaczai 105 Artemis 9908 Aue 114991 Balazs 11451 Aarongolden 3326 Agafonikov 10051 Albee -
Appendix 1 897 Discoverers in Alphabetical Order
Appendix 1 897 Discoverers in Alphabetical Order Abe, H. 22 (7) 1993-1999 Bohrmann, A. 9 1936-1938 Abraham, M. 3 (3) 1999 Bonomi, R. 1 (1) 1995 Aikman, G. C. L. 3 1994-1997 B¨orngen, F. 437 (161) 1961-1995 Akiyama, M. 14 (10) 1989-1999 Borrelly, A. 19 1866-1894 Albitskij, V. A. 10 1923-1925 Bourgeois, P. 1 1929 Aldering, G. 3 1982 Bowell, E. 563 (6) 1977-1994 Alikoski, H. 13 1938-1953 Boyer, L. 40 1930-1952 Alu, J. 20 (11) 1987-1993 Brady, J. L. 1 1952 Amburgey, L. L. 1 1997 Brady, N. 1 2000 Andrews, A. D. 1 1965 Brady, S. 1 1999 Antal, M. 17 1971-1988 Brandeker, A. 1 2000 Antonini, P. 25 (1) 1996-1999 Brcic, V. 2 (2) 1995 Aoki, M. 1 1996 Broughton, J. 179 1997-2002 Arai, M. 43 (43) 1988-1991 Brown, J. A. 1 (1) 1990 Arend, S. 51 1929-1961 Brown, M. E. 1 (1) 2002 Armstrong, C. 1 (1) 1997 Broˇzek, L. 23 1979-1982 Armstrong, M. 2 (1) 1997-1998 Bruton, J. 1 1997 Asami, A. 5 1997-1999 Bruton, W. D. 2 (2) 1999-2000 Asher, D. J. 9 1994-1995 Bruwer, J. A. 4 1953-1970 Augustesen, K. 26 (26) 1982-1987 Buchar, E. 1 1925 Buie, M. W. 13 (1) 1997-2001 Baade, W. 10 1920-1949 Buil, C. 4 1997 Babiakov´a, U. 4 (4) 1998-2000 Burleigh, M. R. 1 (1) 1998 Bailey, S. I. 1 1902 Burnasheva, B. A. 13 1969-1971 Balam, D.