Ati Radeon Comparison Table
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
AMD Powerpoint- White Template
RDNA Architecture Forward-looking statement This presentation contains forward-looking statements concerning Advanced Micro Devices, Inc. (AMD) including, but not limited to, the features, functionality, performance, availability, timing, pricing, expectations and expected benefits of AMD’s current and future products, which are made pursuant to the Safe Harbor provisions of the Private Securities Litigation Reform Act of 1995. Forward-looking statements are commonly identified by words such as "would," "may," "expects," "believes," "plans," "intends," "projects" and other terms with similar meaning. Investors are cautioned that the forward-looking statements in this presentation are based on current beliefs, assumptions and expectations, speak only as of the date of this presentation and involve risks and uncertainties that could cause actual results to differ materially from current expectations. Such statements are subject to certain known and unknown risks and uncertainties, many of which are difficult to predict and generally beyond AMD's control, that could cause actual results and other future events to differ materially from those expressed in, or implied or projected by, the forward-looking information and statements. Investors are urged to review in detail the risks and uncertainties in AMD's Securities and Exchange Commission filings, including but not limited to AMD's Quarterly Report on Form 10-Q for the quarter ended March 30, 2019 2 Highlights of the RDNA Workgroup Processor (WGP) ▪ Designed for lower latency and higher -
Report of Contributions
X.Org Developers Conference 2020 Report of Contributions https://xdc2020.x.org/e/XDC2020 X.Org Developer … / Report of Contributions State of text input on Wayland Contribution ID: 1 Type: not specified State of text input on Wayland Wednesday, 16 September 2020 20:15 (5 minutes) Between the last impromptu talk at GUADEC 2018, text input on Wayland has become more organized and more widely adopted. As before, the three-pronged approach of text_input, in- put_method, and virtual keyboard still causes confusion, but increased interest in implementing it helps find problems and come closer to something that really works for many usecases. The talk will mention how a broken assumption causes a broken protocol, and why we’re notdone with Wayland input methods yet. It’s recommended to people who want to know more about the current state of input methods on Wayland. Recommended background: aforementioned GUADEC talk, wayland-protocols reposi- tory, my blog: https://dcz_self.gitlab.io/ Code of Conduct Yes GSoC, EVoC or Outreachy No Primary author: DCZ, Dorota Session Classification: Demos / Lightning talks I Track Classification: Lightning Talk September 30, 2021 Page 1 X.Org Developer … / Report of Contributions IGT GPU Tools 2020 Update Contribution ID: 2 Type: not specified IGT GPU Tools 2020 Update Wednesday, 16 September 2020 20:00 (5 minutes) Short update on IGT - what has changed in the last year, where are we right now and what we have planned for the near future. IGT GPU Tools is a collection of tools and tests aiding development of DRM drivers. It’s widely used by Intel in its public CI system. -
GPU Developments 2018
GPU Developments 2018 2018 GPU Developments 2018 © Copyright Jon Peddie Research 2019. All rights reserved. Reproduction in whole or in part is prohibited without written permission from Jon Peddie Research. This report is the property of Jon Peddie Research (JPR) and made available to a restricted number of clients only upon these terms and conditions. Agreement not to copy or disclose. This report and all future reports or other materials provided by JPR pursuant to this subscription (collectively, “Reports”) are protected by: (i) federal copyright, pursuant to the Copyright Act of 1976; and (ii) the nondisclosure provisions set forth immediately following. License, exclusive use, and agreement not to disclose. Reports are the trade secret property exclusively of JPR and are made available to a restricted number of clients, for their exclusive use and only upon the following terms and conditions. JPR grants site-wide license to read and utilize the information in the Reports, exclusively to the initial subscriber to the Reports, its subsidiaries, divisions, and employees (collectively, “Subscriber”). The Reports shall, at all times, be treated by Subscriber as proprietary and confidential documents, for internal use only. Subscriber agrees that it will not reproduce for or share any of the material in the Reports (“Material”) with any entity or individual other than Subscriber (“Shared Third Party”) (collectively, “Share” or “Sharing”), without the advance written permission of JPR. Subscriber shall be liable for any breach of this agreement and shall be subject to cancellation of its subscription to Reports. Without limiting this liability, Subscriber shall be liable for any damages suffered by JPR as a result of any Sharing of any Material, without advance written permission of JPR. -
Penguin Computing Upgrades Corona with Latest AMD Radeon Instinct GPU Technology for Enhanced ML and AI Capabilities
Penguin Computing Upgrades Corona with latest AMD Radeon Instinct GPU Technology for Enhanced ML and AI Capabilities November 18, 2019 Fremont, CA., November 18, 2019 -Penguin Computing, a leader in high-performance computing (HPC), artificial intelligence (AI), and enterprise data center solutions and services, today announced that Corona, an HPC cluster first delivered to Lawrence Livermore National Lab (LLNL) in late 2018, has been upgraded with the newest AMD Radeon Instinct™ MI60 accelerators, based on Vega which, per AMD, is the World’s 1st 7nm GPU architecture that brings PCIe® 4.0 support. This upgrade is the latest example of Penguin Computing and LLNL’s ongoing collaboration aimed at providing additional capabilities to the LLNL user community. As previously released, the cluster consists of 170 two-socket nodes with 24-core AMD EPYCTM 7401 processors and a PCIe 1.6 Terabyte (TB) nonvolatile (solid-state) memory device. Each Corona compute node is GPU-ready with half of those nodes today utilizing four AMD Radeon Instinct MI25 accelerators per node, delivering 4.2 petaFLOPS of FP32 peak performance. With the MI60 upgrade, the cluster increases its potential PFLOPS peak performance to 9.45 petaFLOPS of FP32 peak performance. This brings significantly greater performance and AI capabilities to the research communities. “The Penguin Computing DOE team continues our collaborative venture with our vendor partners AMD and Mellanox to ensure the Livermore Corona GPU enhancements expand the capabilities to continue their mission outreach within various machine learning communities,” said Ken Gudenrath, Director of Federal Systems at Penguin Computing. Corona is being made available to industry through LLNL’s High Performance Computing Innovation Center (HPCIC). -
Macbook Pro (15-Inch, 2019) - Technical Specifications
MacBook Pro (15-inch, 2019) - Technical Specifications Touch Bar Touch Bar with integrated Touch ID sensor Finish Silver Space Gray Display Retina display 15.4-inch (diagonal) LED-backlit display with IPS technology; 2880- by-1800 native resolution at 220 pixels per inch with support for millions of colors Supported scaled resolutions: 1920 by 1200 1680 by 1050 1280 by 800 1024 by 640 500 nits brightness Wide color (P3) True Tone technology Processor 2.6GHz 2.6GHz 6-core Intel Core i7, Turbo Boost up to 4.5GHz, with 12MB shared L3 cache Configurable to 2.4GHz 8-core Intel Core i9, Turbo Boost up to 5.0GHz, with 16MB shared L3 cache 2.3GHz 2.3GHz 8-core Intel Core i9, Turbo Boost up to 4.8GHz, with 16MB shared L3 cache Configurable to 2.4GHz 8-core Intel Core i9, Turbo Boost up to 5.0GHz, with 16MB shared L3 cache Storage MacBook Pro (15-inch, 2019) - Technical Specifications 256GB 256GB SSD Configurable to 512GB, 1TB, 2TB, or 4TB SSD 512GB 512GB SSD Configurable to 1TB, 2TB, or 4TB SSD Memory 16GB of 2400MHz DDR4 onboard memory Configurable to 32GB of memory Graphics 2.6GHz Radeon Pro 555X with 4GB of GDDR5 memory and automatic graphics switching Intel UHD Graphics 630 Configurable to Radeon Pro 560X with 4GB of GDDR5 memory 2.3GHz Radeon Pro 560X with 4GB of GDDR5 memory and automatic graphics switching Intel UHD Graphics 630 Configurable to Radeon Pro Vega 16 with 4GB of HBM2 memory or Radeon Pro Vega 20 with 4GB of HBM2 memory Charging and Expansion Four Thunderbolt 3 (USB-C) ports with support for: Charging DisplayPort Thunderbolt -
Manual for a Ati Rage Iic Driver Win98.Pdf
Manual For A Ati Rage Iic Driver Win98 Do a custom install and check the Free drivers for ATI Rage 128 / PRO. rage 128 pro ultra 32 sdr driver, wmew98r1284126292.exe (more), Windows 98. manuals BIOS Ovladaèe chipset Slot Socket information driver info manual driver ati 3d rage pro agp 2x driver 128 32mb ati driver rage ultra ati rage iic Go here. HP Pavilion dv7-3165dx 17.3 Notebook PC - AMD Turion II Ultra Dual-Core ATI RAGE. ATI Catalyst Display Driver (Windows 98/Me) Catalyst 6.2 Drivers and ATI Multimedia acer LCD Monitor X173W asus A181HL Manual • Manual acer A181HV ATI also shipped a TV encoder companion chip for RAGE II, the ImpacTV chip. How to make manual edits: ATI's Linux drivers never did support Wonder, Mach or Rage series cards. mode doesn't work at any bit depth on 4 MiB cards even though Windows 98 SE can manage it at 16 bpp. Although the Rage IIC has some kind of hardware 3D, it's not supported by the Mach64 module of X.Org. Drivers for Discontinued ATI Rage™ Series Products for Windows 98/Windows 98SE/Windows ME Display Driver Rage IIC. Release Notes Download ATI. class="portal)art book d hunter vampire (/url)sony p51 driver windows 98 class="register)child/x27s song (/url)x-10 powerhouse ur19a manual johnny cash ive microsoft access jdbc driver ati technologies 3d rage iic agp win2000 driver. Manual For A Ati Rage Iic Driver Win98 Read/Download driver windows 98. Ati rage 128 driver + Conexant bt878 driver xp Ii ar2td-b3 p le vivo r200 250500mhz 64mb ddr 128-bit hynix, Later, ati developed. -
Apple Products and Pricing List
Follow us on Facebook and Twitter!! www.illutechstore.com www.facebook.com/LLUcomputerstore (909) 558-4129 www.twitter/iLLUTechStore MacBook Pro 13” 1.4GHz Intel i5 quad-core 8th-gen Processor, iMac Touch Bar & ID, 8GB 2133MHz Memory, Intel MacBook Air Iris Plus Graphics 640, 128GB SSD Storage 21.5” 2.3GHz i5 dual–core Processor, MUHN2LL/A or MUHQ2LL/A Education $1199 8GB 2133MHz Memory, 1TB Hard Drive, Intel Iris Plus Graphics 640 13” 1.6GHz i5 dual-core , (New Model) 1.4GHz Intel i5 quad-core 8th-gen Processor, MMQA2LL/A Education $1049 8GB 2133MHz Memory, 128GB SSD Storage, Touch Bar and ID, 8GB 2133MHz Memory, Intel UHD 617 Graphics Intel Iris Plus Graphics 640, 256GB SSD Stor- 21.5” 3.6GHz quad–core Intel core i3, MVFK2LL/A / MVFM2LL/A age Retina 4K Display, (New Model) MVFHLL/A Education $999 MUHP2LL/A or MUHR2LL/A Education $1399 8GB 2666MHz DDR4 Memory, 1TB Hard Drive, Radeon Pro 555X with 2GB Memory 13” 1.6GHz i5 dual-core , (New Model) 2.4GHz quad-core 8th-generation Intel core i5 MRT32LL/A Education $1249 8GB 2133MHz Memory, 256GB SSD Storage, Processor, Touch Bar and Touch ID, Intel UHD 617 Graphics 8GB 2133MHz LPDDR3 Memory, Intel Iris Plus 21.5” 3.0GHz 6-core Intel Core i5 Turbo MVFL2LL/A / MVFN2LL/A Graphics 655, 256GB SSD Storage MVFJ2LL/A Education $1199 MV962LL/A or MV992LL/A Education $1699 Boost up to 4.1GHz, (New Model) Retina 4K Display, 2.4GHz quad-core 8th-generation Intel core i5 8GB 2666MHz Memory, 1TB Fusion Drive, Processor, Touch Bar & ID, Radeon Pro 560X with 4GB Memory 8GB 2133MHz LPDDR3 Memory, Intel Iris -
Survey and Benchmarking of Machine Learning Accelerators
1 Survey and Benchmarking of Machine Learning Accelerators Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally, Siddharth Samsi, and Jeremy Kepner MIT Lincoln Laboratory Supercomputing Center Lexington, MA, USA freuther,pmichaleas,michael.jones,vijayg,sid,[email protected] Abstract—Advances in multicore processors and accelerators components play a major role in the success or failure of an have opened the flood gates to greater exploration and application AI system. of machine learning techniques to a variety of applications. These advances, along with breakdowns of several trends including Moore’s Law, have prompted an explosion of processors and accelerators that promise even greater computational and ma- chine learning capabilities. These processors and accelerators are coming in many forms, from CPUs and GPUs to ASICs, FPGAs, and dataflow accelerators. This paper surveys the current state of these processors and accelerators that have been publicly announced with performance and power consumption numbers. The performance and power values are plotted on a scatter graph and a number of dimensions and observations from the trends on this plot are discussed and analyzed. For instance, there are interesting trends in the plot regarding power consumption, numerical precision, and inference versus training. We then select and benchmark two commercially- available low size, weight, and power (SWaP) accelerators as these processors are the most interesting for embedded and Fig. 1. Canonical AI architecture consists of sensors, data conditioning, mobile machine learning inference applications that are most algorithms, modern computing, robust AI, human-machine teaming, and users (missions). Each step is critical in developing end-to-end AI applications and applicable to the DoD and other SWaP constrained users. -
Videocard Benchmarks
Software Hardware Benchmarks Services Store Support About Us Forums 0 CPU Benchmarks Video Card Benchmarks Hard Drive Benchmarks RAM PC Systems Android iOS / iPhone Videocard Benchmarks Over 1,000,000 Video Cards Benchmarked Video Card List Below is an alphabetical list of all Video Card types that appear in the charts. Clicking on a specific Video Card will take you to the chart it appears in and will highlight it for you. Find Videocard VIDEO CARD Single Video Card Passmark G3D Rank Videocard Value Price Videocard Name Mark (lower is better) (higher is better) (USD) High End (higher is better) 3DP Edition 826 822 NA NA High Mid Range Low Mid Range 9xx Soldiers sans frontiers Sigma 2 21 1926 NA NA Low End 15FF 8229 114 NA NA 64MB DDR GeForce3 Ti 200 5 2004 NA NA Best Value Common 64MB GeForce2 MX with TV Out 2 2103 NA NA Market Share (30 Days) 128 DDR Radeon 9700 TX w/TV-Out 44 1825 NA NA 128 DDR Radeon 9800 Pro 62 1768 NA NA 0 Compare 128MB DDR Radeon 9800 Pro 66 1757 NA NA 128MB RADEON X600 SE 49 1809 NA NA Video Card Mega List 256MB DDR Radeon 9800 XT 37 1853 NA NA Search Model 256MB RADEON X600 67 1751 NA NA GPU Compute 7900 MOD - Radeon HD 6520G 610 1040 NA NA Video Card Chart 7900 MOD - Radeon HD 6550D 892 775 NA NA A6 Micro-6500T Quad-Core APU with RadeonR4 220 1421 NA NA A10-8700P 513 1150 NA NA ABIT Siluro T400 3 2059 NA NA ALL-IN-WONDER 9000 4 2024 NA NA ALL-IN-WONDER 9800 23 1918 NA NA ALL-IN-WONDER RADEON 8500DV 5 2009 NA NA ALL-IN-WONDER X800 GT 84 1686 NA NA All-in-Wonder X1800XL 30 1889 NA NA All-in-Wonder X1900 127 1552 -
Radeon GPU Profiler Documentation
Radeon GPU Profiler Documentation Release 1.11.0 AMD Developer Tools Jul 21, 2021 Contents 1 Graphics APIs, RDNA and GCN hardware, and operating systems3 2 Compute APIs, RDNA and GCN hardware, and operating systems5 3 Radeon GPU Profiler - Quick Start7 3.1 How to generate a profile.........................................7 3.2 Starting the Radeon GPU Profiler....................................7 3.3 How to load a profile...........................................7 3.4 The Radeon GPU Profiler user interface................................. 10 4 Settings 13 4.1 General.................................................. 13 4.2 Themes and colors............................................ 13 4.3 Keyboard shortcuts............................................ 14 4.4 UI Navigation.............................................. 16 5 Overview Windows 17 5.1 Frame summary (DX12 and Vulkan).................................. 17 5.2 Profile summary (OpenCL)....................................... 20 5.3 Barriers.................................................. 22 5.4 Context rolls............................................... 25 5.5 Most expensive events.......................................... 28 5.6 Render/depth targets........................................... 28 5.7 Pipelines................................................. 30 5.8 Device configuration........................................... 33 6 Events Windows 35 6.1 Wavefront occupancy.......................................... 35 6.2 Event timing............................................... 48 6.3 -
AI Chips: What They Are and Why They Matter
APRIL 2020 AI Chips: What They Are and Why They Matter An AI Chips Reference AUTHORS Saif M. Khan Alexander Mann Table of Contents Introduction and Summary 3 The Laws of Chip Innovation 7 Transistor Shrinkage: Moore’s Law 7 Efficiency and Speed Improvements 8 Increasing Transistor Density Unlocks Improved Designs for Efficiency and Speed 9 Transistor Design is Reaching Fundamental Size Limits 10 The Slowing of Moore’s Law and the Decline of General-Purpose Chips 10 The Economies of Scale of General-Purpose Chips 10 Costs are Increasing Faster than the Semiconductor Market 11 The Semiconductor Industry’s Growth Rate is Unlikely to Increase 14 Chip Improvements as Moore’s Law Slows 15 Transistor Improvements Continue, but are Slowing 16 Improved Transistor Density Enables Specialization 18 The AI Chip Zoo 19 AI Chip Types 20 AI Chip Benchmarks 22 The Value of State-of-the-Art AI Chips 23 The Efficiency of State-of-the-Art AI Chips Translates into Cost-Effectiveness 23 Compute-Intensive AI Algorithms are Bottlenecked by Chip Costs and Speed 26 U.S. and Chinese AI Chips and Implications for National Competitiveness 27 Appendix A: Basics of Semiconductors and Chips 31 Appendix B: How AI Chips Work 33 Parallel Computing 33 Low-Precision Computing 34 Memory Optimization 35 Domain-Specific Languages 36 Appendix C: AI Chip Benchmarking Studies 37 Appendix D: Chip Economics Model 39 Chip Transistor Density, Design Costs, and Energy Costs 40 Foundry, Assembly, Test and Packaging Costs 41 Acknowledgments 44 Center for Security and Emerging Technology | 2 Introduction and Summary Artificial intelligence will play an important role in national and international security in the years to come. -
Optimizing for the Radeon RDNA Architecture
OPTIMIZING FOR THE RADEONTM RDNA ARCHITECTURE LOU KRAMER DEVELOPER TECHNOLOGY ENGINEER, AMD WHO AM I? Lou Kramer Developer Technology Engineer at AMD since Nov. 2017 I work closely with game studios to make their games look amazing and run fast on AMD GPUs ☺ AMD Public | Let’s build… 2020 | Optimizing for the RadeonTM RDNA architecture | May 15, 2020 | 2 WHY THIS TALK? On July 7th 2019, we released a new GPU architecture with our RadeonTM RX 5700 cards! → RadeonTM New Architecture (RDNA) Today, we have several products based on RDNA AMD Public | Let’s build… 2020 | Optimizing for the RadeonTM RDNA architecture | May 15, 2020 | 3 WHY THIS TALK? RDNA is present in a bunch of different products Design goals of RDNA • Scalability • Special focus on • Geometry handling • Cache flushes • Amount of work in flight needed • Latency AMD Public | Let’s build… 2020 | Optimizing for the RadeonTM RDNA architecture | May 15, 2020 | 4 AGENDA • Architecture • Compute Unit (CU) Work Group Processor (WGP) • GCN RDNA • Highlights of changes • Optimizations • Texture access • Workload distribution • Shader optimizations AMD Public | Let’s build… 2020 | Optimizing for the RadeonTM RDNA architecture | May 15, 2020 | 5 COMPUTE UNIT (CU) SIMD16 SIMD16 SIMD16 SIMD16 SALU LDS Texture L1$ VGPR VGPR VGPR VGPR 64KB Units 16KB I$ SGPR 32KB 64KB 64KB 64KB 64KB K$ CU 16KB CU CU A GCN based GPU has several Compute Units - a CU has: • 4 SIMD16 + VGPRs This is where the shaders get • 1 Scalar ALU + SGPRs executed! • 1 L1 Cache • … AMD Public | Let’s build… 2020 | Optimizing