A Functionally Accurate Simulation Toolset for the Cyclops64 Cellular Architecture

Total Page:16

File Type:pdf, Size:1020Kb

A Functionally Accurate Simulation Toolset for the Cyclops64 Cellular Architecture FAST: A Functionally Accurate Simulation Toolset for the Cyclops64 Cellular Architecture Juan del Cuvillo Weirong Zhu Ziang Hu Guang R. Gao Department of Electrical and Computer Engineering University of Delaware Newark, Delaware 19716, U.S.A jcuvillo,weirong,hu,ggao ¡ @capsl.udel.edu Abstract application software development and testing. For our pur- poses, a cycle accurate (rather than function accurate) sim- This paper reports our experience and lessons learned ulator would be too slow for a system consisting of one in the design, implementation and experimentation of an or more fully-populated C64 chips. Currently, FAST effi- instruction-set level simulator for the IBM Cyclops-64 (or ciently handles C64 systems consisting of either a single C64 for short) architecture. This simulation tool, named processing core, a C64 chip fully populated or a system built Functionally Accurate Simulation Toolset (FAST), is de- out of several nodes connected with a 3D mesh. signed for the purpose of architecture design verification We present several important aspects of the FAST simu- as well as early system and application software develop- lator and highlight the tradeoffs faced during its design and ment and testing. FAST has been in use by the C64 architec- implementation. Some design decisions are made based on ture team, system software developers and application sci- the unique features of the C64 architecture. For instance, entists. We report some preliminary results and illustrate, C64 employs no data caches. Instead, on-chip memories are through case studies, how the FAST toolchain performs in organized in two levels — global interleaved memory banks terms of its design objectives as well as where it should be that are uniformly addressable, and scratch memories that improved in the future. are local to individual processing cores. FAST has been in use by the C64 architecture team, sys- tem software developers and application scientists. We re- port some preliminary results and illustrate, through case 1. Introduction studies, how FAST performs in terms of its design objec- tives as well as where it should be improved in the future. It is increasingly clear that the huge number of transis- tors that can be put on a chip (now is reaching 1 billion and 2. Cyclops64 chip architecture continues to grow) can no longer be effectively utilized by traditional microprocessor technology that only integrates a The Cyclops-64 (C64) is the latest version of the Cy- single processor on a chip. A new generation of technology clops cellular architecture designed to serve as a dedi- is emerging by integrating a large number of tightly-coupled cated petaflop compute engine for running high perfor- simple processor cores on a chip empowered by parallel mance applications [10]. A C64 supercomputer is attached system software technology that will coordinate these pro- — through a number of Gigabit Ethernet links — to a host cessors toward a scalable solution. system. The host system provides a familiar computing en- This paper reports our experience and lessons learned vironment to application software developers and end users. in the design, implementation and experimentation of an A C64 is built out of tens of thousands of C64 process- instruction-set level simulator for the IBM Cyclops-64 ar- ing nodes arranged in a 3D-mesh network. Each process- chitecture that integrates on a single chip up to 150 process- ing node consists of a C64 chip, external DRAM, and a ing cores, an equal number of SRAM memory banks and small amount of external interface logic. A C64 chip em- 75 floating point units. This simulation tool, named Func- ploys a multiprocessor-on-a-chip design with a large num- tionally Accurate Simulator Toolset (FAST), is designed for ber of hardware thread units, half as many floating point the following goals (1) architecture design verification; (2) units, embedded memory, an interface to the off-chip DDR early system software development and testing; (3) early SDRAM memory and bidirectional inter-chip routing ports, Node Chip Processor Table 1: Simulation parameters SP SP SP SP SP SP SP SP Component # of units Params./unit TU TU TU TU TU TU TU TU Gigabit Threads 150 single in-order issue, ethernet Off−chip Memory FP FP FP FP 500MHz FPUs 75 floating point/MAC, Off−chip Memory Crossbar Network divide/square root A−switch 3D−mesh I-cache 15 32KB Off−chip Memory GM GM GM GM GM GM GM GM SRAM (on-chip) 150 32KB ATA HD DRAM (off-chip) 4 256MB Off−chip Memory Crossbar 1 96 ports, 4GB/s port A-switch 1 6 ports, 4GB/s port Figure 1: Cyclops-64 node see Figure 1. A C64 chip has 75 processors, each with two the memory bank where they operate upon while the re- thread units, a floating-point unit and two SRAM memory maining banks proceed servicing other requests. This func- banks of 32KB each. A 32KB instruction cache, not shown tionality provides a higher memory bandwidth. in the figure, is shared among five processors. The C64 chip has no data cache. Instead a portion of each SRAM bank 3. FAST design and implementation can be configured as scratchpad memory (SP). The remain- ing sections of SRAM together form the global memory FAST is an execution-driven, binary-compatible simula- (GM) that is uniformly addressable from all thread units. tor of a multichip multithreaded C64 system. It accurately On-chip resources are connected to a 96-port crossbar net- reproduces the functional behavior and count of hardware work, which sustains all the intra-chip traffic communica- components such thread units, on-chip and off-chip mem- tion and provides access to the routing ports that connect ory banks, and the 3D-mesh network, see Table 1. The ac- each C64 chip to its nearest neighbors in the 3D-mesh net- tual number of simulated chips is limited by practical rea- work. The intra-chip network also facilitates access to spe- sons, since the memory corresponding to all the chips need cial devices such as the Gigabit Ethernet port and the serial to be allocated in the host machine. ATA disk drive attached to each C64 node. FAST has been developed following a modular ap- The C64 architecture represents a major departure from proach, such that additional features could be easily incor- mainstream microprocessor design in several aspects. The porated into the existing design. To help the architecture C64 chip integrates processing logic, embedded memory team with the verification of the C64 chip design, the simu- and communication hardware in the same piece of sili- lator executes instructions (3.1), models the architecture ex- con. However, it provides no resource virtualization mech- ceptions (3.2), reproduces the C64 memory map (3.3) and anisms. For instance, execution is non preemptive and there produces histograms of the instruction mix as well as de- is no hardware virtual memory manager. The former means tailed traces of all instructions executed (3.4). For the pur- a single application can run at a given time on a set of C64 pose of early system and application software design and nodes. Additionally, the OS will not interrupt the user pro- evaluation, in addition FAST accounts for memory and in- gram running on the thread units unless the user explic- terconnect contention (3.5), supports intra-chip communi- itly specifies preemption or an exception occurs. The latter cation through the A-switch device (3.6) and incorporates means the three-level memory hierarchy of the C64 chip is debugging facilities (3.7). Finally, an overview of the simu- visible by the programmer. From the processing core stand- lator internals is provided (3.8). point, a thread unit is a simple 64-bit, single issue, in-order RISC processor with a small instruction set architecture 3.1. Instruction execution (60 instruction groups) operating at a moderate clock rate (500MHz). Nonetheless, it incorporates efficient support for FAST simulates the four-stage pipeline employed in the thread level execution. For instance, a thread can stop exe- C64 architecture, see Figure 2. cuting instructions for a number of cycles or indefinitely; At the first stage of the pipeline, an instruction (see Ta- and when asleep it can be woken up by another thread ble 2) is fetched from the program instruction buffer (PIB) through a hardware interrupt. Additionally, the integration and decoded. FAST may account for the access to the PIB of processing logic and memory is further leveraged with a and subsequent delay if the instruction has to be read from rich set of hardware supported in-memory atomic instruc- the instruction cache or memory, if a miss should occur. tions. Unlike similar instructions on common off-the-shelf Whenever the branch prediction is incorrect, execution in microprocessors, atomic instructions in the C64 only block a thread unit stalls for three cycles while the pipeline is Table 2: Instruction set summary Table 3: Instruction timing ¢ Instruction type Core Integer and Branch Floating Point Branches 2 0 Count population 1 1 Load, Store Add, Subtract Integer multiplication 1 5 Load, Store Multiple Multiply, Divide Integer divide, remainder 1 33 Add, Subtract [Immediate] Multiply and Add Floating add, mult. and conv. 1 5 Multiply, Divide Conversions Floating mult. and add 1 10 Compare [Immediate] Square Root Floating divide double 1 30 Trap on Condition [Immediate] Floating square root double 1 56 Logic [Immediate] Floating mult. and accumulate 1 5 Shift [Immediate] Memory operation (local SRAM) 1 2 Shift left 16 then OR immediate Memory operation (global SRAM) 1 20 Insert, Extract Memory operation (off-chip DRAM) 1 36 Move if Condition All other operations 1 0 Branch on Condition Branch and Link Exotic Control struction becomes available.
Recommended publications
  • System Trends and Their Impact on Future Microprocessor Design
    IBM Research System Trends and their Impact on Future Microprocessor Design Tilak Agerwala Vice President, Systems IBM Research System Trends and their Impact | MICRO 35 | Tilak Agerwala © 2002 IBM Corporation IBM Research Agenda System and application trends Impact on architecture and microarchitecture The Memory Wall Cellular architectures and IBM's Blue Gene Summary System Trends and their Impact | MICRO 35 | Tilak Agerwala © 2002 IBM Corporation IBM Research TRENDSTRENDS Microprocessors < 10 GHz in systems 64-256 Way SMP 65-45nm, Copper, Highest performance SOI Best MP Scalability 1-2 GHz Leading edge process technology 4-8 Way SMP RAS, virtualization ~100nm technology 10+ of GHz 4-8 Way SMP SMP/Large 65-45nm, Copper, SOI Systems Highest Frequency Cost and power Low GHz sensitive Leading edge process Uniprocessor technology Desktop ~100nm technology 2-4 GHz, Uniproc, Component-based and Game ~100nm, Copper, SOI Consoles Lowest Power / Lowest Multi MHz cost designs SoC capable Embedded Uniprocessor ASIC / Foundry ~100-200nm technologies Systems technology System Trends and their Impact | MICRO 35 | Tilak Agerwala © 2002 IBM Corporation IBM Research TRENDSTRENDS Large system application trends Traditional commercial applications Databases, transaction processing, business apps like payroll etc. The internet has driven the growth of new commercial applications New life sciences applications are commercial and high-growth Drug discovery and genetic engineering research needs huge amounts of compute power (e.g. protein folding simulations)
    [Show full text]
  • An Overview of the Blue Gene/L System Software Organization
    An Overview of the Blue Gene/L System Software Organization George Almasi´ , Ralph Bellofatto , Jose´ Brunheroto , Calin˘ Cas¸caval , Jose´ G. ¡ Castanos˜ , Luis Ceze , Paul Crumley , C. Christopher Erway , Joseph Gagliano , Derek Lieber , Xavier Martorell , Jose´ E. Moreira , Alda Sanomiya , and Karin ¡ Strauss ¢ IBM Thomas J. Watson Research Center Yorktown Heights, NY 10598-0218 £ gheorghe,ralphbel,brunhe,cascaval,castanos,pgc,erway, jgaglia,lieber,xavim,jmoreira,sanomiya ¤ @us.ibm.com ¥ Department of Computer Science University of Illinois at Urbana-Champaign Urabana, IL 61801 £ luisceze,kstrauss ¤ @uiuc.edu Abstract. The Blue Gene/L supercomputer will use system-on-a-chip integra- tion and a highly scalable cellular architecture. With 65,536 compute nodes, Blue Gene/L represents a new level of complexity for parallel system software, with specific challenges in the areas of scalability, maintenance and usability. In this paper we present our vision of a software architecture that faces up to these challenges, and the simulation framework that we have used for our experiments. 1 Introduction In November 2001 IBM announced a partnership with Lawrence Livermore National Laboratory to build the Blue Gene/L (BG/L) supercomputer, a 65,536-node machine de- signed around embedded PowerPC processors. Through the use of system-on-a-chip in- tegration [10], coupled with a highly scalable cellular architecture, Blue Gene/L will de- liver 180 or 360 Teraflops of peak computing power, depending on the utilization mode. Blue Gene/L represents a new level of scalability for parallel systems. Whereas existing large scale systems range in size from hundreds (ASCI White [2], Earth Simulator [4]) to a few thousands (Cplant [3], ASCI Red [1]) of compute nodes, Blue Gene/L makes a jump of almost two orders of magnitude.
    [Show full text]
  • Cellular Wave Computers and CNN Technology – a Soc Architecture with Xk Processors and Sensor Arrays*
    Cellular Wave Computers and CNN Technology – a SoC architecture with xK processors and sensor arrays* Tamás ROSKA1 Fellow IEEE 1. Introduction and the main theses 1.1 Scenario: Architectural lessons from the trends in manufacturing billion component devices when crossing the threshold of 100 nm feature size Preliminary proposition: The nature of fabrication technology, the nature and type of data to be processed, and the nature and type of events to be detected or „computed” will determine the architecture, the elementary instructions, and the type of algorithms needed, hence also the complexity of the solution. In view of this proposition, let us list a few key features of the electronic technology of Today and its consequences.. (i) Convergence of CMOS, NANO and OPTICAL technologies towards a cellular architecture with short and sparse wires CMOS chips: * Processors: K or M transistors on an M or G transistor die =>K processors /chip * Wires: at 180 nm or below, gate delay is smaller than wire delay NANO processors and sensors: * Mainly 2D organization of cells integrating processing and sensing * Interactions mainly with the neighbours OPTICAL devices: * parallel processing * optical correlators * VCSELs and programable SLMs, Hence the architecture should be characterized by * 2 D layers (or a layered 3D) * Cellular architecture with * mainly local and /or regular sparse wireing leading via Î a Cellular Nonlinear Network (CNN) Dynamics 1 The Faculty of Information Technology and the Jedlik Laboratories of the Pázmány University, Budapest and the Computer and Automation Institute of the Hungarian Academy of Sciences, Budapest, Hungary ([email protected], www.itk.ppke.hu) * Research supported by the Office of Naval Research, Human Frontiers of Science Program, EU Future and Emergent Technologies Program, the Hungarian Academy of Sciences, and the Jedlik Laboratories of the Pázmány University, Budapest 0-7803-9254-X/05/$20.00 ©2005 IEEE.
    [Show full text]
  • Performance Modelling and Optimization of Memory Access on Cellular Computer Architecture Cyclops64
    Performance modelling and optimization of memory access on cellular computer architecture Cyclops64 Yanwei Niu, Ziang Hu, Kenneth Barner and Guang R. Gao Department of ECE, University of Delaware, Newark, DE, 19711, USA {niu, hu, barner, ggao}@ee.udel.edu Abstract. This paper focuses on the Cyclops64 computer architecture and presents an analytical model and performance simulation results for the preloading and loop unrolling approaches to optimize the performance of SVD (Singular Value Decomposition) benchmark. A performance model for dissecting the total execu- tion cycles is presented. The data preloading using “memcpy” or hand optimized “inline” assembly code, and the loop unrolling approach are implemented and compared with each other in terms of the total number of memory access cycles. The key idea is to preload data from offchip to onchip memory and store the data back after the computation. These approaches can reduce the total memory access cycles and can thus improve the benchmark performance significantly. 1 Introduction The design concept of computer architecture over the last two decades has been mainly on the exploitation of the instruction level parallelism, such as pipelining,VLIW or superscalar architecture. For the next generation of computer architecture, hardware threading multiprocessor is becoming more and more popular. One approach of hard- ware multithreading is called CMP (Chip MultiProcessor) approach, which proposes a single chip design that uses a collection of independent processors with less resource sharing. An example of CMP architecture design is Cyclops64 [1–5], a new architec- ture for high performance parallel computers being developed at the IBM T. J. Watson Research Center and University of Delaware.
    [Show full text]
  • Focal-Plane Analog VLSI Cellular Implementation of the Boundary Contour System
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 46, NO. 2, FEBRUARY 1999 327 [6] K. F. Hui and B. E. Shi, “Robustness of CNN implementations for Gabor-type image filtering,” in Proc. Asia Pacific Conf. Circuits Systems, Seoul, South Korea, Nov. 1996, pp. 105–108. [7] C. C. Enz, F. Krummenacher, and E. A. Vittoz, “An analytical MOS transistor model valid in all regions of operation and dedicated to low-voltage and low-current applications,” Anal. Integr. Circuits Signal Processing, vol. 8, no. 1, pp. 83–114, July 1995. [8] B. E. Shi and K. F. Hui, “An analog VLSI neural network for phase based machine vision,” in Advances in Neural Information Process- ing Systems 10, M. I. Jordan, M. J. Kearns, and S. A. Solla, Eds. Cambridge, MA: MIT, 1998, pp. 726–732. [9] C. A. Mead and T. Delbruck, “Scanners for visualizing activity of analog VLSI circuitry,” Anal. Integr. Circuits Signal Processing, vol. 1, no. 2, pp. 93–106, Oct. 1991. (a) Focal-Plane Analog VLSI Cellular Implementation of the Boundary Contour System Gert Cauwenberghs and James Waskiewicz Abstract—We present an analog very large scale integration (VLSI) cellular architecture implementing a version of the boundary contour system (BCS) for real-time focal-plane image processing. Inspired by neuromorphic models across the retina and several layers of visual cortex, the design integrates in each pixel the functions of phototransduction and simple cells, complex cells, hypercomplex cells, and bipole cells in each of three directions interconnected on a hexagonal grid. Analog current- mode complementary metal–oxide–semiconductor (CMOS) circuits are used throughout to perform edge detection, local inhibition, directionally (b) selective long-range diffusive kernels, and renormalizing global gain control.
    [Show full text]
  • Software-Defined Hyper-Cellular Architecture for Green and Elastic
    1 Software-Defined Hyper-Cellular Architecture for Green and Elastic Wireless Access Sheng Zhou, Tao Zhao, Zhisheng Niu, and Shidong Zhou Abstract To meet the surging demand of increasing mobile Internet traffic from diverse applications while maintaining moderate energy cost, the radio access network (RAN) of cellular systems needs to take a green path into the future, and the key lies in providing elastic service to dynamic traffic demands. To achieve this, it is time to rethink RAN architectures and expect breakthroughs. In this article, we review the state-of-art literature which aims to renovate RANs from the perspectives of control-traffic decoupled air interface, cloud-based RANs, and software-defined RANs. We then propose a software- defined hyper-cellular architecture (SDHCA) that identifies a feasible way of integrating the above three trends to enable green and elastic wireless access. We further present key enabling technologies to realize SDHCA, including separation of the air interface, green base station operations, and base station functions virtualization, followed by our hardware testbed for SDHCA. Besides, we summarize several future research issues worth investigating. I. INTRODUCTION Since their birth, cellular systems have evolved from the first generation analog systems with very low data rate to today’s fourth generation (4G) systems with more than 100 Mbps capacity to end users. However, the radio access network (RAN) architecture has not experienced arXiv:1512.04935v1 [cs.NI] 15 Dec 2015 many changes: base stations (BSs) are generally deployed and operated in a distributed fashion, Sheng Zhou, Zhisheng Niu and Shidong Zhou are with Tsinghua National Laboratory for Information Science and Technology, Dept.
    [Show full text]
  • An Overview on Cyclops-64 Architecture - a Status Report on the Programming Model and Software Infrastructure
    An Overview on Cyclops-64 Architecture - A Status Report on the Programming Model and Software Infrastructure Guang R. Gao Endowed Distinguished Professor Electrical & Computer Engineering University of Delaware [email protected] 2007/6/14 SOS11-06-2007.ppt 1 Outline • Introduction • Multi-Core Chip Technology • IBM Cyclops-64 Architecture/Software • Cyclops-64 Programming Model and System Software • Future Directions • Summary 2007/6/14 SOS11-06-2007.ppt 2 TIPs of compute power operating on Tera-bytes of data Transistor Growth in the near future Source: Keynote talk in CGO & PPoPP 03/14/07 by Jesse Fang from Intel 2007/6/14 SOS11-06-2007.ppt 3 Outline • Introduction • Multi-Core Chip Technology • IBM Cyclops-64 Architecture/Software • Programming/Compiling for Cyclops-64 • Looking Beyond Cyclops-64 • Summary 2007/6/14 SOS11-06-2007.ppt 4 Two Types of Multi-Core Architecture Trends • Type I: Glue “heavy cores” together with minor changes • Type II: Explore the parallel architecture design space and searching for most suitable chip architecture models. 2007/6/14 SOS11-06-2007.ppt 5 Multi-Core Type II • New factors to be considered –Flops are cheap! –Memory per core is small –Cache-coherence is expensive! –On-chip bandwidth can be enormous! –Examples: Cyclops-64, and others 2007/6/14 SOS11-06-2007.ppt 6 Flops are Cheap! An example to illustrate design tradeoffs: • If fed from small, local register files: 64-bit FP – 3200 GB/s, 10 pJ/op unit – < $1/Gflop (60 mW/Gflop) (drawn to a 64-bit FPU is < 1mm^2 scale) and ~= 50pJ • If fed from global on-chip memory: Can fit over 200 on a chip.
    [Show full text]
  • Virtualized Baseband Units Consolidation in Advanced Lte Networks Using Mobility- and Power-Aware Algorithms
    San Jose State University SJSU ScholarWorks Master's Projects Master's Theses and Graduate Research Fall 2017 VIRTUALIZED BASEBAND UNITS CONSOLIDATION IN ADVANCED LTE NETWORKS USING MOBILITY- AND POWER-AWARE ALGORITHMS Uladzimir Karneyenka San Jose State University Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects Part of the Computer Sciences Commons Recommended Citation Karneyenka, Uladzimir, "VIRTUALIZED BASEBAND UNITS CONSOLIDATION IN ADVANCED LTE NETWORKS USING MOBILITY- AND POWER-AWARE ALGORITHMS" (2017). Master's Projects. 571. DOI: https://doi.org/10.31979/etd.sg3g-dr33 https://scholarworks.sjsu.edu/etd_projects/571 This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. VIRTUALIZED BASEBAND UNITS CONSOLIDATION IN ADVANCED LTE NETWORKS USING MOBILITY - AND POWER -AWARE ALGORITHMS A Writing Project Report Presented to The Faculty of the Department of Computer Science San Jose State University In Partial Fulfillment Of the Requirements for the Degree Master of Science By Uladzimir Karneyenka May 2017 © 2017 Uladzimir Karneyenka ALL RIGHTS RESERVED ABSTRACT Virtualization of baseband units in Advanced Long-Term Evolution networks and a rapid performance growth of general purpose processors naturally raise the interest in resource multiplexing. The concept of resource sharing and management between virtualized instances is not new and extensively used in data centers. We adopt some of the resource management techniques to organize virtualized baseband units on a pool of hosts and investigate the behavior of the system in order to identify features which are particularly relevant to mobile environment.
    [Show full text]
  • Simulating Linux Clusters on Linux Clusters
    Full Circle: Simulating Linux Clusters on Linux Clusters ¡ ¢ ¡ Luis Ceze , Karin Strauss , George Almasi , Patrick J. Bohrer , Jose´ R. Brunheroto , ¡ ¡ ¡ ¡ Calin Cas¸caval , Jose´ G. Castanos˜ , Derek Lieber , Xavier Martorell , ¡ ¡ ¡ Jose´ E. Moreira , Alda Sanomiya , and Eugen Schenfeld £ luisceze,kstrauss ¤ @uiuc.edu £ gheorghe,pbohrer,brunhe,cascaval,castanos,lieber, xavim,jmoreira,sanomiya,eugen ¤ @us.ibm.com ¥ Department of Computer Science, University of Illinois at Urbana-Champaign Urbana, IL 61801 ¦ IBM Thomas J. Watson Research Center Yorktown Heights, NY 10598-0218 § IBM Austin Research Laboratory Austin, TX 78758 Abstract. BGLsim is a complete system simulator for parallel machines. It is currently being used in hardware validation and software development for the BlueGene/L cellular architecture machine. BGLsim is capable of functionally simulating multiple nodes of this machine operating in parallel. It simulates in- struction execution in each node and the communication that happens between nodes. BGLsim allows us to develop, test, and run the exactly same code that will be used in the real system. Using BGLsim, we can gather data that helps us debug and enhance software (including parallel software) and evaluate hard- ware. To illustrate the capabilities of BGLsim, we describe experiments running the NAS Parallel Benchmark IS on a simulated BlueGene/L machine. BGLsim is a parallel application that runs on Linux clusters. It executes fast enough to run complete operating systems and complex MPI codes. 1 Introduction Linux clusters have revolutionized high-performance computing by delivering large amounts of compute cycles at a low price. This has enabled computing at a scale that was previously not affordable to many people.
    [Show full text]
  • Evaluating Cyclops64
    Mstack: A Lightweight Cross-Platform Benchmark for Evaluating Co-processing Technologies by Mark Pellegrini and Daniel M. Pressel ARL-MR-0683 December 2007 Approved for public release; distribution is unlimited. NOTICES Disclaimers The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents. Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the use thereof. Destroy this report when it is no longer needed. Do not return it to the originator. Army Research Laboratory Aberdeen Proving Ground, MD 21005-5067 ARL-MR-0683 December 2007 Mstack: A Lightweight Cross-Platform Benchmark for Evaluating Co-processing Technologies Mark Pellegrini and Daniel M. Pressel Computational and Information Sciences Directorate, ARL Approved for public release; distribution is unlimited. REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
    [Show full text]
  • Efficient Synchronization for a Large-Scale Multi-Core Chip Architecture
    EFFICIENT SYNCHRONIZATION FOR A LARGE-SCALE MULTI-CORE CHIP ARCHITECTURE by Weirong Zhu A dissertation submitted to the Faculty of the University of Delaware in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical and Computer Engineering Spring 2007 c 2007 Weirong Zhu All Rights Reserved UMI Number: 3267164 Copyright 2007 by Zhu, Weirong All rights reserved. UMI Microform 3267164 Copyright 2007 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, MI 48106-1346 EFFICIENT SYNCHRONIZATION FOR A LARGE-SCALE MULTI-CORE CHIP ARCHITECTURE by Weirong Zhu Approved: Gonzalo R. Arce, Ph.D. Chairperson of the Department of Electrical and Computer Engineering Approved: Eric W. Kaler, Ph.D. Dean of the College of Engineering Approved: Carolyn A. Thoroughgood, Ph.D. Vice Provost for Research and Graduate Studies I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: Guang R. Gao, Ph.D. Professor in charge of dissertation I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy. Signed: Fouad Kiamilev, Ph.D. Member of dissertation committee I certify that I have read this dissertation and that in my opinion it meets the academic and professional standard required by the University as a dissertation for the degree of Doctor of Philosophy.
    [Show full text]
  • Toward a Software Infrastructure for the Cyclops-64 Cellular Architecture
    Toward a Software Infrastructure for the Cyclops-64 Cellular Architecture JuandelCuvillo WeirongZhu ZiangHu GuangR.Gao Department of Electrical and Computer Engineering University of Delaware Newark, Delaware 19716, U.S.A {jcuvillo,weirong,hu,ggao}@capsl.udel.edu Abstract tem through a number of Gigabit Ethernet links. The host system provides a familiar computing environment to appli- This paper presents the initial design of the Cyclops-64 cations software developers and end users. Besides access (C64) system software infrastructure and tools under devel- (through the Ethernet links) to a common file server, each opment as a joint effort between IBM T.J. Watson Research C64 chip can be connected to a serial ATA disk drive. Center, ETI Inc. and the University of Delaware. The C64 A C64 is built out of tens of thousands of C64 pro- system is the latest version of the Cyclops cellular architec- cessing nodes. Each processing node consists of a C64 ture that consists of a large number of compute nodes each chip, external DRAM, and a small amount of external in- employs a multiprocessor-on-a-chip architecture with 160 terface logic. A C64 chip employs a multiprocessor-on-a- hardware thread units. The first version of the C64 system chip architecture containing 160 hardware thread units, half software has been developed and is now under evaluation. as many floating point units, on-chip SRAM, on-chip in- The current version of the C64 software infrastructure in- struction cache, bidirectional inter-chip routing ports, and cludes a C64 toolchain (compiler, linker, functionally accu- interface to off-chip DDR SDRAM.
    [Show full text]