Regents Questions: Plate Tectonics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Canada's Active Western Margin
Geoscience Canada. Volume 3. Nunber 4 269 in the area of Washington and Oregon seemed necessary geometrically. This suggestion was reiterated by Tobin and Sykes (1968) in their study of the seismicity ofthe regionanddevelopedin established the presence and basic bathymetric trench at the foot of the Canada's Active configuration of an active spreading continental slope, the absence of a ocean ridge system ofl the west coast of clearly defined eastward dipping Beniofl Western Margin - Vancwver Island. The theory of the earthquake zone and the apparently geometrical mwement of rigid quiescent state of present volcanism The Case for lithospheric plates on a spherical earth have all contributed toward a (introducedas the 'paving stone' theory) widespreaa uncertalnfy as to whether Subduction was tirst ~ro~osedand tasted bv subddctlon 1s cbrrently taking place ~c~enziiand Parker (1967) using data (e.8.. Crosson. 1972: ~rivast&a,1973; R. P. Riddihough and R. D. Hyndnan from the N. Pacific and in the global Stacey. 1973). Past subduction, fran Victoria Geophysical Observatory, extension of the theory by Morgan several tens of m.y. ago until at leastone Earth Physics Branch, (1 968) this reglon again played a major or two m y. ago. IS more generally Department Energy, Mines and role Morgan alsoconcluded that a small accepted ana it seems to us that the Resources, block eitof theJuandeFuca ridge (the case for contemporary subduction, in a 5071 W. Saanich Rd. Juan de Fuca plate. Fig. 2) was moving large part, must beargued upona Victoria B. C. independently of the main Pacific plate. continuation into the present of the The possibility that theJuan de Fuca processes shown to be active in the Summary plate is now underthrustingNorth recent geological past. -
Washington Division of Geology and Earth Resources Open File Report
l 122 EARTHQUAKES AND SEISMOLOGY - LEGAL ASPECTS OPEN FILE REPORT 92-2 EARTHQUAKES AND Ludwin, R. S.; Malone, S. D.; Crosson, R. EARTHQUAKES AND SEISMOLOGY - LEGAL S.; Qamar, A. I., 1991, Washington SEISMOLOGY - 1946 EVENT ASPECTS eanhquak:es, 1985. Clague, J. J., 1989, Research on eanh- Ludwin, R. S.; Qamar, A. I., 1991, Reeval Perkins, J. B.; Moy, Kenneth, 1989, Llabil quak:e-induced ground failures in south uation of the 19th century Washington ity of local government for earthquake western British Columbia [abstract). and Oregon eanhquake catalog using hazards and losses-A guide to the law Evans, S. G., 1989, The 1946 Mount Colo original accounts-The moderate sized and its impacts in the States of Califor nel Foster rock avalanches and auoci earthquake of May l, 1882 [abstract). nia, Alaska, Utah, and Washington; ated displacement wave, Vancouver Is Final repon. Maley, Richard, 1986, Strong motion accel land, British Columbia. erograph stations in Oregon and Wash Hasegawa, H. S.; Rogers, G. C., 1978, EARTHQUAKES AND ington (April 1986). Appendix C Quantification of the magnitude 7.3, SEISMOLOGY - NETWORKS Malone, S. D., 1991, The HAWK seismic British Columbia earthquake of June 23, AND CATALOGS data acquisition and analysis system 1946. [abstract). Berg, J. W., Jr.; Baker, C. D., 1963, Oregon Hodgson, E. A., 1946, British Columbia eanhquak:es, 1841 through 1958 [ab Milne, W. G., 1953, Seismological investi earthquake, June 23, 1946. gations in British Columbia (abstract). stract). Hodgson, J. H.; Milne, W. G., 1951, Direc Chan, W.W., 1988, Network and array anal Munro, P. S.; Halliday, R. J.; Shannon, W. -
Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information
Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information Index Abancay Deflection, 201, 204–206, 223 Allmendinger, R. W., 206 Abant, Turkey, earthquake of 1957 Ms 7.0, 286 allochthonous terranes, 26 Abdrakhmatov, K. Y., 381, 383 Alpine fault, New Zealand, 482, 486, 489–490, 493 Abercrombie, R. E., 461, 464 Alps, 245, 249 Abers, G. A., 475–477 Alquist-Priolo Act, California, 75 Abidin, H. Z., 464 Altay Range, 384–387 Abiz, Iran, fault, 318 Alteriis, G., 251 Acambay graben, Mexico, 182 Altiplano Plateau, 190, 191, 200, 204, 205, 222 Acambay, Mexico, earthquake of 1912 Ms 6.7, 181 Altunel, E., 305, 322 Accra, Ghana, earthquake of 1939 M 6.4, 235 Altyn Tagh fault, 336, 355, 358, 360, 362, 364–366, accreted terrane, 3 378 Acocella, V., 234 Alvarado, P., 210, 214 active fault front, 408 Álvarez-Marrón, J. M., 219 Adamek, S., 170 Amaziahu, Dead Sea, fault, 297 Adams, J., 52, 66, 71–73, 87, 494 Ambraseys, N. N., 226, 229–231, 234, 259, 264, 275, Adria, 249, 250 277, 286, 288–290, 292, 296, 300, 301, 311, 321, Afar Triangle and triple junction, 226, 227, 231–233, 328, 334, 339, 341, 352, 353 237 Ammon, C. J., 464 Afghan (Helmand) block, 318 Amuri, New Zealand, earthquake of 1888 Mw 7–7.3, 486 Agadir, Morocco, earthquake of 1960 Ms 5.9, 243 Amurian Plate, 389, 399 Age of Enlightenment, 239 Anatolia Plate, 263, 268, 292, 293 Agua Blanca fault, Baja California, 107 Ancash, Peru, earthquake of 1946 M 6.3 to 6.9, 201 Aguilera, J., vii, 79, 138, 189 Ancón fault, Venezuela, 166 Airy, G. -
Geology 111 • Discovering Planet Earth • Steven Earle • 2010
H1) Earthquakes The plates that make up the earth's lithosphere are constantly in motion. The rate of motion is a few centimetres per year, or approximately 0.1 mm per day (about as fast as your fingernails grow). This does not mean, however, that the rocks present at the places where plates meet (e.g., convergent boundaries and transform faults) are constantly sliding past each other. Under some circumstances they do, but in most cases, particularly in the upper part of the crust, the friction between rocks at a boundary is great enough so that the two plates are locked together. As the plates themselves continue to move, deformation takes place in the rocks close to the locked boundary and strain builds up in the deformed rocks. This strain, or elastic deformation, represents potential energy stored within the rocks in the vicinity of the boundary between two plates. Eventually the strain will become so great that the friction and rock-strength that is preventing movement between the plates will be overcome, the rocks will break and the plates will suddenly slide past each other - producing an earthquake [see Fig. 10.4]. A huge amount of energy will suddenly be released, and will radiate away from the location of the earthquake in the form of deformation waves within the surrounding rock. S-waves (shear waves), and P-waves (compression waves) are known as body waves as they travel through the rock. As soon as this happens, much of the strain that had built up along the fault zone will be released1. -
This Report Is Preliminary and Has Not Bee Reviewed for Conformity with US
UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY Northeast-trending subcrustal fault transects western Washington by Kenneth F. Fox, Jr.* Open-File Report 83-398 This report is preliminary and has not bee reviewed for conformity with U.S Geological Survey editorial standards and stratigraphic nomenclature. *U.S. Geological Survey 3^5 Middlefield Road Menlo Park, California 9^025 Page Table of Contents Tectonic setting......................................................... 1 Seisraicity............................................................... 4 Discussion............................................................... 4 References cited......................................................... 6 Figures Figure 1. Magnetic anomalies in the northeastern Pacific................ 8 Figure 2. Bathymetry at intersection of Columbia lineament and Blanco fracture zone................................................. 9 Figure 3. Plane vector representation of movement of Gorda plate........ 10 Figure 4. Reconstruction of Pacific-Juan de Fuca plate geometry 2 m.y. before present................................................ 11 Figure 5. Epicenters of historical earthquakes with intensity greater than V........................................................ 12 TECTONIC SETTING The north-trending magnetic anomalies of the Juan de Fuca plate are off set along two conspicuous northeast-trending lineaments (fig. 1), named the Columbia offset and the Destruction offset by Carlson (1981). The northeast ward projections of these lineaments intersect the continental area of western Washington, hence are of potential significance to the tectonics of the Pacific Northwest region. Pavoni (1966) suggested that these lineaments were left-lateral faults, and that the Columbia, 280 km in length, had 52 km of offset, and the Destruction, with a length of 370 km, had 75 km of offset. Based on Vine's (1968) correlation of the magnetic anomalies mapped in this area by Raff and Mason (1961), with the magnetic reversal time scale, Silver (1971b, p. -
Geology and Geochemistry of the Southern Explorer Ridge Seafloor Hydrothermal Site Using an Integrated GIS Database and 3D Modeling
Physiology, Geology and Geochemistry of the Southern Explorer Ridge Seafloor Hydrothermal Site Using an Integrated GIS Database and 3D Modeling Yannick C. Beaudoin A thesis subrnitted in conformity with the requirements for the degree of Master of Science Graduate Department of Geology University of Toronto O March 2001 National Library Bibliothèque nationale If1 of Canada du Canada Acquisitions and Acquisitions et Bibliogmphic Sewices services bibliogrâphiques 395 Wellington Street 395. rue Wellington Ottawa ON K1A ON4 Ottawa ON K1A ON4 Canada Canada Yow Ne votro nlfémma Our fiie Notre réfdrenw The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exciusive permettant à la National Lhrary of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sell reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/film, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fkom it Ni la thèse ni des extraits substantiels may be printed or othe*se de celle-ci ne doivent être imprimes reproduced without the author's ou autrement reproduits sans son permission. autorisation. Physiology, Geology and Geochemistry of the Southern Explorer Ridge Seafloor Hydrothermal Site Using an Integrated GIS Database and 3D Modeling by Yannick Beaudoin in partial fulfillment of the requirements for the degree of Master's of Science, March 2001, Graduate Department of Geology, University of Toronto Southem Explorer Ridge (SER) is an anomalously-rate shallow, intemediate spreading ridge located 200 kilometers off the west Coast of Vancouver Island, Canada. -
Mantle Flow Through the Northern Cordilleran Slab Window Revealed by Volcanic Geochemistry
Downloaded from geology.gsapubs.org on February 23, 2011 Mantle fl ow through the Northern Cordilleran slab window revealed by volcanic geochemistry Derek J. Thorkelson*, Julianne K. Madsen, and Christa L. Sluggett Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada ABSTRACT 180°W 135°W 90°W 45°W 0° The Northern Cordilleran slab window formed beneath west- ern Canada concurrently with the opening of the Californian slab N 60°N window beneath the southwestern United States, beginning in Late North Oligocene–Miocene time. A database of 3530 analyses from Miocene– American Holocene volcanoes along a 3500-km-long transect, from the north- Juan Vancouver Northern de ern Cascade Arc to the Aleutian Arc, was used to investigate mantle Cordilleran Fuca conditions in the Northern Cordilleran slab window. Using geochemi- Caribbean 30°N Californian Mexico Eurasian cal ratios sensitive to tectonic affi nity, such as Nb/Zr, we show that City and typical volcanic arc compositions in the Cascade and Aleutian sys- Central African American Cocos tems (derived from subduction-hydrated mantle) are separated by an Pacific 0° extensive volcanic fi eld with intraplate compositions (derived from La Paz relatively anhydrous mantle). This chemically defi ned region of intra- South Nazca American plate volcanism is spatially coincident with a geophysical model of 30°S the Northern Cordilleran slab window. We suggest that opening of Santiago the slab window triggered upwelling of anhydrous mantle and dis- Patagonian placement of the hydrous mantle wedge, which had developed during extensive early Cenozoic arc and backarc volcanism in western Can- Scotia Antarctic Antarctic 60°S ada. -
Recent Movements of the Juan De Fuca Plate System
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 89, NO. B8, PAGES 6980-6994, AUGUST 10, 1984 Recent Movements of the Juan de Fuca Plate System ROBIN RIDDIHOUGH! Earth PhysicsBranch, Pacific GeoscienceCentre, Departmentof Energy, Mines and Resources Sidney,British Columbia Analysis of the magnetic anomalies of the Juan de Fuca plate system allows instantaneouspoles of rotation relative to the Pacific plate to be calculatedfrom 7 Ma to the present.By combiningthese with global solutions for Pacific/America and "absolute" (relative to hot spot) motions, a plate motion sequencecan be constructed.This sequenceshows that both absolute motions and motions relative to America are characterizedby slower velocitieswhere younger and more buoyant material enters the convergencezone: "pivoting subduction."The resistanceprovided by the youngestportion of the Juan de Fuca plate apparently resulted in its detachmentat 4 Ma as the independentExplorer plate. In relation to the hot spot framework, this plate almost immediately began to rotate clockwisearound a pole close to itself such that its translational movement into the mantle virtually ceased.After 4 Ma the remainder of the Juan de Fuca plate adjusted its motion in responseto the fact that the youngest material entering the subductionzone was now to the south. Differencesin seismicityand recent uplift betweennorthern and southernVancouver Island may reflect a distinction in tectonicstyle betweenthe "normal" subductionof the Juan de Fuca plate to the south and a complex "underplating"occurring as the Explorer plate is overriddenby the continent.The history of the Explorer plate may exemplifythe conditionsunder which the self-drivingforces of small subductingplates are overcomeby the influenceof larger, adjacent plates. The recent rapid migration of the absolutepole of rotation of the Juan de Fuca plate toward the plate suggeststhat it, too, may be nearingthis condition. -
Tidally Controlled Gas Bubble Emissions: a Comprehensive 10.1002/2016GC006528 Study Using Long-Term Monitoring Data from the NEPTUNE
PUBLICATIONS Geochemistry, Geophysics, Geosystems RESEARCH ARTICLE Tidally controlled gas bubble emissions: A comprehensive 10.1002/2016GC006528 study using long-term monitoring data from the NEPTUNE Key Points: cabled observatory offshore Vancouver Island Continuous monitoring of transient gas bubble emissions over 1 year was Miriam Romer€ 1, Michael Riedel2, Martin Scherwath3, Martin Heesemann3, and George D. Spence4 enabled by the NEPTUNE cabled observatory 1 Flare onsets were triggered and MARUM-Center for Marine Environmental Sciences and Department of Geosciences, University of Bremen, Germany, controlled by tidally induced bottom 2GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany, 3Ocean Networks Canada, University of Victoria, British pressure changes Columbia, Canada, 4School of Earth and Ocean Sciences, University of Victoria, British Columbia, Canada Decreasing pressure allowing gas to migrate and shifting the CH4 solubility in pore waters leads to ebullition Abstract Long-term monitoring over 1 year revealed high temporal variability of gas emissions at a cold seep in 1250 m water depth offshore Vancouver Island, British Columbia. Data from the North East Pacific Supporting Information: Time series Underwater Networked Experiment observatory operated by Ocean Networks Canada were Figure S1 used. The site is equipped with a 260 kHz Imagenex sonar collecting hourly data, conductivity-temperature- Table S1 Movie S1 depth sensors, bottom pressure recorders, current meter, and an ocean bottom seismograph. This enables correlation of the data and analyzing trigger mechanisms and regulating criteria of gas discharge activity. Correspondence to: Three periods of gas emission activity were observed: (a) short activity phases of few hours lasting several M. Romer,€ months, (b) alternating activity and inactivity of up to several day-long phases each, and (c) a period of sev- [email protected] eral weeks of permanent activity. -
Forwards Geology,Seismology & Geotechnical
- c. x . @ , , C PUBLIC DOCUMENT ROOM , , , , UNITED STATES //- - / #,% O[ ~ !" o NUCLEAR REGULATORY COMMISSION 2 9 . 3 ; ,E WASHINGTON, D. C. 20555 @@ %...../ g e October 3, 1979 . a Valentine B. Deale, Esq., Chairman Dr. Frank F. Hooper Atomic Safety and Licensing Board School of Natural Resources 1001 Connecti:ut Avenue, N.W. University of Michigan Washington, DC 20036 Ann Arbor, MI 48109 Mr. Gustave A. Linenberger Atomic Safety and Licensing Board U.S. Nuclear Regulatory Commission Washington, DC 20555 In the Matter of Puget Sound Power & Light Company,~et al. (Skagit Nuclear Power Project, Units 1 and 2) ~~ - , Docket Nos. STN 50-522 and STN 50-523 Gentlemen: Enclosed is the NRC Staff's geology, seismology and geotechnical engineering review report which will be incorporated as Section 2.5 of the Final Supple- ment to the Staff's Safety Evaluation Report (SER). This report will also constitute the Staff's direct testimony on geology-seismology issues in this proceeding. The Staff's witnesses will consist of H. Lefevre, S. Wastler, Dr. J. Kelleher, and Dr. R. Regan. Also enclosed is the supplemental testi- many of Dr. Kelleher which addresses the Board request for testimony concerning the methods used by the Staff to estimate strong ground motion. The U.S. Geological Survey has assisted the NRC Staff in the review of the Skagit site. The U.S.G.S.'s review reports of February 23, 1978 and Sep- tember 17, 1979 (these reports have been previously distributed to the Board and parties), are attached as Appendix D to the Staff's report. -
Detailed Structures of the Subducted Philippine Sea Plate Beneath
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 104, NO. B1, PAGES 1015-1033,JANUARY 10, 1999 Detailed structuresof the subductedPhilippine Sea plate beneath northeast Taiwan' A new type of double seismiczone Honn Kao and Ruey-JuinRau Instituteof Earth Sciences,Academia Sinica, Taipei, Taiwan Abstract. We studiedthe detailedstructure of the subductedPhilippine Sea plate beneath northeastTaiwan whereoblique subduction, regional collision, and back arc openingare all activelyoccurring. Simultaneousinversion for velocitystructure and earthquakehypocenters areperformed using the vast,high-quality data recorded by the TaiwanSeismic Network. We furthersupplement the inversionresults with earthquakesource parameters determined from inversionof teleseismicP and $H waveforms,a criticalstep to definethe positionof plateinterface and the stateof strainwithin the subductedslab. The mostinteresting feature is that relocatedhypocenters tend to occuralong a two-layeredstructure. The upperlayer is locatedimmediately below the plate interfaceand extendsdown to 70-80 krn at a dip of 40ø- 50ø. Below approximately100 km, the dip increasesdramatically to 700-80ø. The lower layer commencesat 45-50 km andstays approximately parallel to the upperlayer with a separationof 15+5 km in betweendown to 70-80 km. Below thatthe separationdecreases andthe two layersseem to graduallymerge into one Wadati-BenioffZone. We proposeto term the classicdouble seismic zones observed beneath Japan and Kuril as "type I" andthat we observedas "typeII," respectively.A globalsurvey indicates that type II doubleseismic zonesare alsoobserved in New Zealandnear the southernmostNorth Island,Cascadia, just northof the Mendocinotriple junction, and the Cook Inlet areaof Alaska. All of them are locatednear the terrniniof subductedslabs in a tectonicsetting of obliquesubduction. We interpretthe seismogenesisof type II doubleseismic zones as reflecting the lateralcompres- sivestress between the subductedplate and the adjacentlithosphere (originming from oblique subduction)and the downdipextension (from slabpulling force). -
On the Dynamics of the Juan De Fuca Plate
Earth and Planetary Science Letters 189 (2001) 115^131 www.elsevier.com/locate/epsl On the dynamics of the Juan de Fuca plate Rob Govers *, Paul Th. Meijer Faculty of Earth Sciences, Utrecht University, P.O. Box 80.021, 3508 TA Utrecht, The Netherlands Received 11 October 2000; received in revised form 17 April 2001; accepted 27 April 2001 Abstract The Juan de Fuca plate is currently fragmenting along the Nootka fault zone in the north, while the Gorda region in the south shows no evidence of fragmentation. This difference is surprising, as both the northern and southern regions are young relative to the central Juan de Fuca plate. We develop stress models for the Juan de Fuca plate to understand this pattern of breakup. Another objective of our study follows from our hypothesis that small plates are partially driven by larger neighbor plates. The transform push force has been proposed to be such a dynamic interaction between the small Juan de Fuca plate and the Pacific plate. We aim to establish the relative importance of transform push for Juan de Fuca dynamics. Balancing torques from plate tectonic forces like slab pull, ridge push and various resistive forces, we first derive two groups of force models: models which require transform push across the Mendocino Transform fault and models which do not. Intraplate stress orientations computed on the basis of the force models are all close to identical. Orientations of predicted stresses are in agreement with observations. Stress magnitudes are sensitive to the force model we use, but as we have no stress magnitude observations we have no means of discriminating between force models.