Species Diversity and Abundance of Grasshopper Fauna (Orthoptera) in Rice Ecosystem
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Literature Cited
LITERATURE CITED Abercrombie, M., C. J. Hichman, and M. L. Johnson. 1962. A Dictionary of Biology. Chicago: Aldine Publishing Company. Adkisson, C. S. 1996. Red Crossbill (Loxia curvirostra). In The Birds of North America, No. 256 (A. Poole and F. Gill, eds.). The Academy of Natural Sciences, Philadelphia, PA, and the American Ornithologists’ Union, Washington, D.C. Agee, J. K. 1993. Fire ecology of Pacific Northwest forests. Island Press, Covelo, CA. Albert, S. K., N. Luna, and A. L. Chopito. 1995. Deer, small mammal, and songbird use of thinned piñon–juniper plots: preliminary results. Pages 54–64 in Desired future conditions for piñon–juniper ecosystems (D. W. Shaw, E. F. Aldon, and C. LaSapio, eds.). Gen. Tech. Rep. GTR–RM–258. Fort Collins, CO: Rocky Mountain Research Station, Forest Service, U.S. Department of Agriculture. Aldrich, J. W. 1946. New subspecies of birds from western North America. Proceedings of the Biological Society of Washington 59:129–136. Aldrich, J. W. 1963. Geographic orientation of American Tetraonidae. Journal of Wildlife Management 27:529–545. Allen, R. K. 1984. A new classification of the subfamily Ephemerellinae and the description of a new genus. Pan–Pacific Entomologist 60(3): 245–247. Allen, R. K., and G. F. Edmunds, Jr. 1976. A revision of the genus Ametropus in North America (Ephemeroptera: Ephemerellidae). Journal of the Kansas Entomological Society 49:625–635. Allen, R. P. 1958. A progress report on the wading bird survey. National Audubon Society, unpubl. rep., Tavernier, FL. American Ornithologists’ Union. 1931. Check–list of North American birds. 4th ed. American Ornithologists’ Union, Lancaster, PA. -
Locusts in Queensland
LOCUSTS Locusts in Queensland PEST STATUS REVIEW SERIES – LAND PROTECTION by C.S. Walton L. Hardwick J. Hanson Acknowledgements The authors wish to thank the many people who provided information for this assessment. Clyde McGaw, Kevin Strong and David Hunter, from the Australian Plague Locust Commission, are also thanked for the editorial review of drafts of the document. Cover design: Sonia Jordan Photographic credits: Natural Resources and Mines staff ISBN 0 7345 2453 6 QNRM03033 Published by the Department of Natural Resources and Mines, Qld. February 2003 Information in this document may be copied for personal use or published for educational purposes, provided that any extracts are fully acknowledged. Land Protection Department of Natural Resources and Mines GPO Box 2454, Brisbane Q 4000 #16401 02/03 Contents 1.0 Summary ................................................................................................................... 1 2.0 Taxonomy.................................................................................................................. 2 3.0 History ....................................................................................................................... 3 3.1 Outbreaks across Australia ........................................................................................ 3 3.2 Outbreaks in Queensland........................................................................................... 3 4.0 Current and predicted distribution ........................................................................ -
Full Text (.PDF)
Journal of Research in Ecology An International Scientific Research Journal Original Research Does distribution of Acridomorpha is influenced by parasitoid attack? A model with Scelio aegyptiacus (Priesner, 1951) in the experimental farm Authors: ABSTRACT: ElSayed WM Abu ElEla SA and In a survey of the Acridomorpha assemblage in two different sampling Eesa NM localities I and II at an experimental farm, Faculty of Agriculture, Cairo University-ten different species had been recorded. These species were belonging to two subfamilies and representing ten tribes. Family Acrididae was found to exhibit the highest number of tribes (8 tribes and 8 species) whereas, family Pyrgomorphinae was represented by Institution: only two tribes harboring two species. The current research provides an attempt to Department of Entomology, point out the significance of Scelio aegyptiacus (Priesner, 1951) potential Faculty of Science, parasitoidism on natural acridomorphine populations through examining the egg- Cairo University, pods. It was clear that only three acridomorphine species; Aiolopus thalassinus Giza-12613-Egypt. (Fabricius, 1798), Acrotylus patruelis (Herrich-Schäffer, 1838) and Pyrgomorpha conica (Olivier, 1791), were virtually attacked by the hymenopterous S. aegyptiacus (Priesner, 1951). Keywords: Parasitoidism, Acridomorpha, Scelio aegyptiacus, Stenophagous, presence- absence. Corresponding author: Article Citation: El-Sayed WM ElSayed WM,Abu ElEla SA and Eesa NM Does distribution of Acridomorpha is influenced by parasitoid attack? A model -
An Inventory of Short Horn Grasshoppers in the Menoua Division, West Region of Cameroon
AGRICULTURE AND BIOLOGY JOURNAL OF NORTH AMERICA ISSN Print: 2151-7517, ISSN Online: 2151-7525, doi:10.5251/abjna.2013.4.3.291.299 © 2013, ScienceHuβ, http://www.scihub.org/ABJNA An inventory of short horn grasshoppers in the Menoua Division, West Region of Cameroon Seino RA1, Dongmo TI1, Ghogomu RT2, Kekeunou S3, Chifon RN1, Manjeli Y4 1Laboratory of Applied Ecology (LABEA), Department of Animal Biology, Faculty of Science, University of Dschang, P.O. Box 353 Dschang, Cameroon, 2Department of Plant Protection, Faculty of Agriculture and Agronomic Sciences (FASA), University of Dschang, P.O. Box 222, Dschang, Cameroon. 3 Département de Biologie et Physiologie Animale, Faculté des Sciences, Université de Yaoundé 1, Cameroun 4 Department of Biotechnology and Animal Production, Faculty of Agriculture and Agronomic Sciences (FASA), University of Dschang, P.O. Box 222, Dschang, Cameroon. ABSTRACT The present study was carried out as a first documentation of short horn grasshoppers in the Menoua Division of Cameroon. A total of 1587 specimens were collected from six sites i.e. Dschang (265), Fokoue (253), Fongo – Tongo (267), Nkong – Ni (271), Penka Michel (268) and Santchou (263). Identification of these grasshoppers showed 28 species that included 22 Acrididae and 6 Pyrgomorphidae. The Acrididae belonged to 8 subfamilies (Acridinae, Catantopinae, Cyrtacanthacridinae, Eyprepocnemidinae, Oedipodinae, Oxyinae, Spathosterninae and Tropidopolinae) while the Pyrgomorphidae belonged to only one subfamily (Pyrgomorphinae). The Catantopinae (Acrididae) showed the highest number of species while Oxyinae, Spathosterninae and Tropidopolinae showed only one species each. Ten Acrididae species (Acanthacris ruficornis, Anacatantops sp, Catantops melanostictus, Coryphosima stenoptera, Cyrtacanthacris aeruginosa, Eyprepocnemis noxia, Gastrimargus africanus, Heteropternis sp, Ornithacris turbida, and Trilophidia conturbata ) and one Pyrgomorphidae (Zonocerus variegatus) were collected in all the six sites. -
Little Spurthroated Grasshopper Melanoplus Infantilis Scudder
Wyoming_________________________________________________________________________________________ Agricultural Experiment Station Bulletin 912 • Species Fact Sheet September 1994 Little Spurthroated Grasshopper Melanoplus infantilis Scudder Distribution and Habitat Large populations infest regions of bunchgrass-sagebrush in Idaho where densities may reach The little spurthroated grasshopper has a wide geographic 20 to 40 per square yard in outbreak years. This species range in Western North America. It occurs in grasslands, often confined in field cages on western wheatgrass in Montana, as the dominant grasshopper, from the Canadian provinces to caused a loss of 35 mg dry weight of forage per adult northern New Mexico. It is common in clearings of montane grasshopper per day. This amount was less than that caused coniferous forest and in the parklands of the Canadian northern by an adult big-headed grasshopper, Aulocara elliotti, forest. In Colorado, it is found in montane grasslands as high as which caused a loss of 62 mg per day. The reason for this 10,000 feet. Its northern geographic range and its distribution difference is no doubt related to the difference in weight of in montane habitats indicate tolerance for colder temperate the two species. The larger grasshopper, which requires climates and intolerance for warmer conditions. more food, caused the greater damage. Unconfined in its natural habitat, the little spurthroated grasshopper may be Economic Importance even less damaging because it feeds on forbs as well as This grasshopper is an economically important species, grasses. becoming abundant in grasslands and feeding on both grasses and forbs. In a rangeland assemblage it is sometimes the Food Habits dominant grasshopper. During 1953 it was the dominant The little spurthroated grasshopper feeds on both species in 11 of 42 sites sampled in the mixedgrass prairie of grasses and forbs. -
20 Taxonomic Significance of Aedeagus in the Classification Of
International Journal of Entomology Research International Journal of Entomology Research ISSN: 2455-4758; Impact Factor: RJIF 5.24 www.entomologyjournals.com Volume 1; Issue 7; November 2016; Page No. 20-31 Taxonomic significance of aedeagus in the classification of Indian Acrididae (Orthoptera: Acridoidea) Shahnila USMANI, Mohd. Kamil Usmani, Mohammad AMIR Section of Entomology, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India Abstract Comparative study of aedeagus is made in one hundred and two species of grasshoppers representing fifty-nine genera belonging to the family Acrididae. Its taxonomic significance is shown. Divided, undivided or flexured conditions of aedeagus is taken as familial character. Apical valve of aedeagus longer or shorter than basal valve is considered as generic character. Shape of apical and basal valves is suggested as specific character. Keywords: 1. Introduction done in clove oil. The aedeagus was mounted in Canada The aedeagus is a main intromittent organ consisting of a pair balsam on a cavity slide under 22mm square cover glass. of basal and apical valves. The basal valves are lying above the Drawings were made with the help of Camera lucida. spermatophore sac and connected by the flexure with the long curved apical valves which are normally concealed under the 3. Description of Aedeagus membranous pallium. During the course of copulation it is Subfamily Acridinae inserted between ventral ovipositor valves of the female into 1. Truxalis eximia Eichwald, 1830 (Fig. 1 A) vagina and its tip reaches the spermathecal duct. Dirsh & Aedeagus flexured, apical valve long and narrow, slightly Uvarov (1953) [2] studied apical valves of penis in three species curved, apex obtusely pointed, slightly narrower and shorter of Anacridium. -
(Orthoptera, Caelifera, Acrididae) on the Subfamily Level Using Molecular Markers
e-ISSN 1734-9168 Folia Biologica (Kraków), vol. 67 (2019), No 3 http://www.isez.pan.krakow.pl/en/folia-biologica.html https://doi.org/10.3409/fb_67-3.12 The Evaluation of Genetic Relationships within Acridid Grasshoppers (Orthoptera, Caelifera, Acrididae) on the Subfamily Level Using Molecular Markers Igor SUKHIKH , Kirill USTYANTSEV , Alexander BUGROV, Michael SERGEEV, Victor FET, and Alexander BLINOV Accepted August 20, 2019 Published online September 11, 2019 Issue online September 30, 2019 Original article SUKHIKH I., USTYANTSEV K., BUGROV A., SERGEEV M., FET V., BLINOV A. 2019. The evaluation of genetic relationships within Acridid grasshoppers (Orthoptera, Caelifera, Acrididae) on the subfamily level using molecular markers. Folia Biologica (Kraków) 67: 119-126. Over the last few decades, molecular markers have been extensively used to study phylogeny, population dynamics, and genome mapping in insects and other taxa. Phylogenetic methods using DNA markers are inexpensive, fast and simple to use, and may help greatly to resolve phylogenetic relationships in groups with problematic taxonomy. However, different markers have various levels of phylogenetic resolution, and it’s important to choose the right set of molecular markers for a studied taxonomy level. Acrididae is the most diverse family of grasshoppers. Many attempts to resolve the phylogenetic relationships within it did not result in a clear picture, partially because of the limited number of molecular markers used. We have tested a phylogenetic resolution of three sets of the most commonly utilized mitochondrial molecular markers available for Acrididae sequences in the database: (i) complete protein-coding mitochondrial sequences, (ii) concatenated mitochondrial genes COI, COII, and Cytb, and (iii) concatenated mitochondrial genes COI and COII. -
(Acrididae: Ordo Orthoptera) Pada Agroekosistem (Zea Mays L.) Dan Ekosistem Hutan Tanaman Di Kebun Raya Baturaden, Banyumas
Biosfera Vol 34, No 2 Mei 2017 : 80-88 DOI: 10.20884/1.mib.2017.34.2.490 Biodiversitas Belalang (Acrididae: ordo Orthoptera) pada Agroekosistem (zea mays l.) dan Ekosistem Hutan Tanaman di Kebun Raya Baturaden, Banyumas Bagas Prakoso1 1Program Studi Biologi, FMIPA, Universitas Ma’arif Nahdlatul Ulama (UMNU) Kebumen Email : [email protected] Abstarct This study aims to determine the diversity of grasshoppers (Acrididae: Orthoptera Order) on agro-ecosystems (Zea mays L.) and plants of forest ecosystems and to determine the role of locusts on both ecosystems. This research was conducted by field survey method. The parameters were observed at each site included the diversity of vegetation, the collection of the order Orthoptera Acrididae grasshoppers and locusts Acrididae direct observation of the order Orthoptera. Grasshopper diversity found in ecosystems diversity indices analyzed include: diversity index (H '), evenness (E) and Sorensen similarity index (C) as well as correlation and regression analysis. Samples were taken from agroecosystem (Zea mays L.) and forest plant ecosystem which was repeated four times. The results of this study found as many as 3,097 individuals were included in the Family Orthoptera Tetrigidae, Acrididae and Pyrgomorphidae consisting of 7 genus that is Atractomorpha, Criotettix, Gesunola, Hesperotettix, Miramella, Oxya, and Valanga with 7 Species. In agro-ecosystem, 3 species were found with 1,030 individuals, while in plantation forest were found 5 species with 2,067 individuals. The results of the Shannon diversity index value-Weinner on forest ecosystem diversity a higher value (0.6307) when compared to the agro-ecosystem (0.5325). Under these conditions, forests ecosystems grasshopper plant has a higher biodiversity than agroekosistem (Zea mays L.). -
Downloaded from Brill.Com09/24/2021 02:27:59AM Via Free Access T E, 147, 2004
1 2 FER WILLEMSE & SIGFRID INGRISCH 1 Eygelshoven, The Netherlands 2 Bad Karlshafen, Germany A NEW GENUS AND SPECIES OF ACRIDIDAE FROM SOUTH INDIA (ORTHOPTERA, ACRIDOIDEA) Willemse, F. & S. Ingrisch 2004. A new genus and species of Acrididae from South India (Or- thoptera, Acridoidea). – Tijdschrift voor Entomologie 147: 191-196, figs. 1-22. [ISSN 0040- 7496]. Published 1 December 2004. Nathanacris quadrimaculata gen. et sp. n. is described from Anaimalai Hills in South India. The systematic position of this acridid genus is not yet clear. For the time being we propose to arrange the genus under the unclassified group of Catantopinae sensu lato. Dr. Fer Willemse (corresponding author), Laurastraat 67, Eygelshoven 6471 JH, The Nether- lands. E-mail: [email protected] Dr. Sigfrid Ingrisch, Eichendorffweg 4, D-34385 Bad Karlshafen, Germany. E-mail: sigfrid.in- [email protected] Key words. – Orthoptera, Acrididae, Catantopinae (s.l.), South India. Major contributions to the Acrididae fauna of than wide, in female a little shorter than wide, in male South India were provided by Bolívar (1902), Hebard lateral margins almost parallel and converging towards (1929), Uvarov (1929), Henry (1940), Muralirangan widely rounded apex, in female lateral margins short et al. (1992) and Shrinivasan & Muralirangan (1992). and apical margin semicircular (figs. 2, 7); in lateral Nevertheless our knowledge of the grasshopper fauna view tip angularly merging with frons, foveolae obso- of south India is still insufficient, particularly of lete or scarcely recognisable as elongate triangular fur- species living in natural habitats and commonly dis- rows. Frontal ridge projecting slightly between anten- tributed over small areas. -
Description of New Species of Oxya from Pakistan with Comparison to a Close Ally (Oxyinae: Acrididae: Orthoptera)
Pakistan J. Zool., pp 1-6, 2020. DOI: https://dx.doi.org/10.17582/journal.pjz/20190212100223 Description of New Species of Oxya from Pakistan with Comparison to a Close Ally (Oxyinae: Acrididae: Orthoptera) Riffat Sultana*, Nuzhat Soomro and Muhammad Saeed Wagan Department of Zoology, University of Sindh, Jamshoro, Pakistan Article Information Received 12 February 2019 Revised 22 July 2019 ABSTRACT Accepted 02 September 2019 Available online 26 November 2019 A new species Oxya kashmorensis (Oxyinae: Acrididae: Orthoptera) from Kashmore, Sindh, Pakistan is Authors’ Contribution described and illustrated. We provide a comparison of Oxya kashmorensis sp.nov. and O. nitidula which is RS designed the study and compiled recorded from Pakistan for the first time. Comparative information on the female genitalia of both species the data. NS collected the samples and is provided. Further, a note on the ecology and distribution of both species is given. With the addition of MSW identified the species. O. kashmorensis and the new record of O. nitidula, the numbers of known species in genus Oxya is raised to 9 for Pakistan and 5 for Sindh. We further provide a key to the Oxya species from Sindh. Key words Oxyinae, New species, Kashmore, Sindh, Illustrations, Sub-genital plate, Ecology INTRODUCTION Seino et al., 2013; Soomro et al., 2019), none of these studies provided detailed taxonomic status and correct he genus Oxya belongs to the Acrididae and has a wide identification ofOxya from Sindh, Pakistan. Tdistribution in Asia and Africa. Species of the genus Species of the genus are well adapted to the marshy are known to damage a variety of crops, e.g. -
President's Message
ISSN 2372-2517 (Online), ISSN 2372-2479 (Print) METALEPTEAMETALEPTEA THE NEWSLETTER OF THE ORTHOPTERISTS’ SOCIETY * Table of Contents is now clickable, which will President’s Message take you to a desired page. By MICHAEL SAMWAYS President [1] PRESIDENT’S MESSAGE [email protected] [2] SOCIETY NEWS n this age of decline of biodi- [2] New Editor’s Vision for JOR by versity worldwide, it is es- CORINNA S. BAZELET [3] Orthopteroids set to steal the spot- sential that we have in place light once again at ESA, 2015 by sentinels of change. We require DEREK A. WOLLER organisms to measure deterio- [4] Open Call for Proposals for Sympo- I ration of landscapes, but also sia, Workshops, Information Sessions at I ICO 2016 by MARCOS LHANO their improvement. Improvement can [5] Announcing the publication of be through land sparing (the setting “Jago’s Grasshoppers & Locusts of aside of land for the conservation of East Africa: An Identification Hand- biodiversity in an agricultural produc- book” by HUGH ROWELL focal species varies with area, but the tion landscape) and land sharing (the cross section of life history types is [8] REGIONAL REPORTS combining of production and conser- remarkably similar. [8] India by ROHINI BALAKRISHNAN vation within agricultural fields). We What this means, apart from the also need to measure optimal stocking [9] T.J. COHN GRANT REPORTS enormous practical value of grasshop- rates for domestic livestock. [9] Evaluating call variation and female pers, is that we need to keep abreast decisions in a lekking cricket by KIT It is fascinating how researchers of taxonomy, simply because we must KEANE around the world are finding that have actual identities. -
Invertebrates Recorded from the Northern
MARIANA ISLANDS BIODIVERSITY. Short-horn grasshoppers Phylum: Arthropoda Class: Insecta Order: Orthoptera Suborder: Caelifera Superfamilies: Tetrigoidea and Acridoidea. Diversity Micronesia – 23 species, Mariana Isl. – 10 species, CNMI - 9 species Ecological and human significance Short-horn grasshoppers are herbivores usually living in open grassy or weedy areas. Although they have been implicated in crop damage, such as maize, severe damage usually occurs only when there is a buildup of numbers, such as that occurring sometimes with the locust (Locusta migratoria). It is unlikely that any of the grasshoppers are indigenous to the Northern Mariana Islands as they are dwellers of open grassland or of, at least, low-cover, open areas. It is probable that most of the islands were mostly covered by forest prior to the advent and influence of man. It does seem that Stenocatantops splendens has recently entered the Northern Marianas, as , although it is now common on Saipan, there were no records prior to the recent (2000) collected material. It is a moderately sized animal and unlikely to be missed by collectors. Heteropternis obscurella seems, similarly, to have recently colonised the CNMI although its presence on Sarigan indicates a longer occupation period. Both species are in the University of Guam collection but were not recorded by Kevan et al 1997 from the Marianas. Conservation There are no conservation issues recognised at present, and none can really be determined until a thorough survey of the areas has been undertaken. All remaining natural habitats need to be conserved as much as possible. Identification There are no keys for in house identification, specimens have been sent (2002) to Dr.