The Epicranias
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Most Common Causes of Eye Pain at 2 Tertiary Ophthalmology and Neurology Clinics
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2018 The Most Common Causes of Eye Pain at 2 Tertiary Ophthalmology and Neurology Clinics Bowen, Randy C ; Koeppel, Jan N ; Christensen, Chance D ; Snow, Karisa B ; Ma, Junjie ; Katz, Bradley J ; Krauss, Howard R ; Landau, Klara ; Warner, Judith E A ; Crum, Alison V ; Straumann, Dominik ; Digre, Kathleen B Abstract: BACKGROUND Eye pain is a common complaint, but no previous studies have determined the most common causes of this presenting symptom. Our objective was to determine the most com- mon causes of eye pain in 2 ophthalmology and neurology departments at academic medical centers. METHODS This was a retrospective cross-sectional analysis and chart review at the departments of ophthalmology and neurology at the University Hospital Zurich (USZ), University of Zürich, Switzer- land, and the University of Utah (UU), USA. Data were analyzed from January 2012 to December 2013. We included patients aged 18 years or older presenting with eye pain as a major complaint. RESULTS Two thousand six hundred three patient charts met inclusion criteria; 742 were included from USZ and 1,861 were included from UU. Of these, 2,407 had been seen in an ophthalmology clinic and 196 had been seen in a neurology clinic. Inflammatory eye disease (conjunctivitis, blepharitis, keratitis, uveitis, dry eye, chalazion, and scleritis) was the underlying cause of eye pain in 1,801 (69.1%) of all patients analyzed. Although only 71 (3%) of 2,407 patients had migraine diagnosed in an ophthalmology clinic as the cause of eye pain, migraine was the predominant cause of eye pain in the neurology clinics (100/196; 51%). -
Nonspecific Orbital Inflammation (Idiopathic; Associated with Systemic Inflammatory Syndrome/Autoimmune Disease)
Ophthalmology Grand Rounds Christopher Adam, M.D. (PGY2) August 6, 2015 Case Presentation • 39 y/o BF who presented to UHB-ED with c/o painless right upper and lower eyelid swelling x 2 days. History • Pertinent positives (+): multiple past episodes of eyelid swelling which resolved with steroids. • Pertinent negatives (-): denied decreased vision, pain, diplopia, trauma, discharge, insect bites, HA, fevers, weight loss, arthralgias/myalgias, rash. History • PMH: SLE (Dx 2008), Anemia, Sickle cell trait. • POH: multiple past episodes of eyelid swelling. • PSH: LEEP, Myomectomy. • Meds: Prednisone and Ciprofloxacin (started by Rheum PTA), Bosentan, Omeprazole, Vitamin D. Previously on Hydroxychloroquine. • All: NKDA. • SH: no use of tobacco products, alcohol, or illicit drugs. • FH: no glaucoma, blindness, auto-immune disease. Exam Findings • NVasc: 20/20- OD, 20/20 OS • Pupils: 5-3mm err OU, no APD • EOMs: full OU; no pain/diplopia/limitations • CVF: ftfc OU • Tpen: 13/13 Slit Lamp Exam • L/L/A: +right upper/lower eyelid edema with thickened SQ tissue. +warmth/erythema. +Focal point tenderness of superior trochlea region on deep palpation of right orbit. • C/S: w/q OU. • Cornea: clear OU. • A/C: d/q OU. • Iris/Pupils: rr OU. • Lens: clear OU. Dilated Fundus Exam • Vitreous: clear OU. • C/D: 0.4, s/p OU. • Macula: flat OU. • V/P: normal caliber, no heme/holes/tears OU. Axial CT w/o contrast showing soft tissue thickening of the right preseptal region and orbital fat standing (arrow). Thickening of the MR insertion. Absence of sinus disease. Axial CT w/o contrast showing right SO and trochlea hyperdensity (arrow). -
The Treatment of Medically Intractable Trigeminal Autonomic Cephalalgia
Neuromodulation: Technology at the Neural Interface Received: October 10, 2011 Revised: February 2, 2012 Accepted: March 12, 2012 (onlinelibrary.wiley.com) DOI: 10.1111/j.1525-1403.2012.00455.x The Treatment of Medically Intractable Trigeminal Autonomic Cephalalgia With Supraorbital/Supratrochlear Stimulation: A Retrospective Case Series Julien Vaisman, MD*, Herbert Markley, MD†, Joe Ordia, MD*, Timothy Deer, MD‡ Introduction: This is a retrospective case series of five patients with intractable trigeminal autonomic cephalalgia (TAC) who were implanted with a supraorbital/supratrochlear neuromodulation system. Objectives: The aim of this Institutional Review Board–approved study was to investigate the percentage of pain relief, treatment response, pain level, work status, medication intake, implantation technique, lead placement, programming information, and device use. Results: Trial stimulation led to implantation of all five patients. All patients reported improvement in their functional status in regard to activities of daily living. The device was revised in two patients due to skin erosion. It was later reimplanted in both patients due to worsening of symptoms, again with good pain relief. The device was explanted in two other patients because of the need to perform a magnetic resonance imaging or implant an automatic implantable cardioverter defibrillator. The follow-up of the patients ranged between 18 months and 36 months, with a mean of 25.2 months. There was no change in work status. Following the implant, the Visual Analog Scale score was reduced to a mean of 1.6 from an initial mean score of 8.9. Three patients were completely weaned off opioid medications, while two patients continued to take opioid at a lower dosage. -
Atlas of the Facial Nerve and Related Structures
Rhoton Yoshioka Atlas of the Facial Nerve Unique Atlas Opens Window and Related Structures Into Facial Nerve Anatomy… Atlas of the Facial Nerve and Related Structures and Related Nerve Facial of the Atlas “His meticulous methods of anatomical dissection and microsurgical techniques helped transform the primitive specialty of neurosurgery into the magnificent surgical discipline that it is today.”— Nobutaka Yoshioka American Association of Neurological Surgeons. Albert L. Rhoton, Jr. Nobutaka Yoshioka, MD, PhD and Albert L. Rhoton, Jr., MD have created an anatomical atlas of astounding precision. An unparalleled teaching tool, this atlas opens a unique window into the anatomical intricacies of complex facial nerves and related structures. An internationally renowned author, educator, brain anatomist, and neurosurgeon, Dr. Rhoton is regarded by colleagues as one of the fathers of modern microscopic neurosurgery. Dr. Yoshioka, an esteemed craniofacial reconstructive surgeon in Japan, mastered this precise dissection technique while undertaking a fellowship at Dr. Rhoton’s microanatomy lab, writing in the preface that within such precision images lies potential for surgical innovation. Special Features • Exquisite color photographs, prepared from carefully dissected latex injected cadavers, reveal anatomy layer by layer with remarkable detail and clarity • An added highlight, 3-D versions of these extraordinary images, are available online in the Thieme MediaCenter • Major sections include intracranial region and skull, upper facial and midfacial region, and lower facial and posterolateral neck region Organized by region, each layered dissection elucidates specific nerves and structures with pinpoint accuracy, providing the clinician with in-depth anatomical insights. Precise clinical explanations accompany each photograph. In tandem, the images and text provide an excellent foundation for understanding the nerves and structures impacted by neurosurgical-related pathologies as well as other conditions and injuries. -
Anatomy of the Periorbital Region Review Article Anatomia Da Região Periorbital
RevSurgicalV5N3Inglês_RevistaSurgical&CosmeticDermatol 21/01/14 17:54 Página 245 245 Anatomy of the periorbital region Review article Anatomia da região periorbital Authors: Eliandre Costa Palermo1 ABSTRACT A careful study of the anatomy of the orbit is very important for dermatologists, even for those who do not perform major surgical procedures. This is due to the high complexity of the structures involved in the dermatological procedures performed in this region. A 1 Dermatologist Physician, Lato sensu post- detailed knowledge of facial anatomy is what differentiates a qualified professional— graduate diploma in Dermatologic Surgery from the Faculdade de Medician whether in performing minimally invasive procedures (such as botulinum toxin and der- do ABC - Santo André (SP), Brazil mal fillings) or in conducting excisions of skin lesions—thereby avoiding complications and ensuring the best results, both aesthetically and correctively. The present review article focuses on the anatomy of the orbit and palpebral region and on the important structures related to the execution of dermatological procedures. Keywords: eyelids; anatomy; skin. RESU MO Um estudo cuidadoso da anatomia da órbita é muito importante para os dermatologistas, mesmo para os que não realizam grandes procedimentos cirúrgicos, devido à elevada complexidade de estruturas envolvidas nos procedimentos dermatológicos realizados nesta região. O conhecimento detalhado da anatomia facial é o que diferencia o profissional qualificado, seja na realização de procedimentos mini- mamente invasivos, como toxina botulínica e preenchimentos, seja nas exéreses de lesões dermatoló- Correspondence: Dr. Eliandre Costa Palermo gicas, evitando complicações e assegurando os melhores resultados, tanto estéticos quanto corretivos. Av. São Gualter, 615 Trataremos neste artigo da revisão da anatomia da região órbito-palpebral e das estruturas importan- Cep: 05455 000 Alto de Pinheiros—São tes correlacionadas à realização dos procedimentos dermatológicos. -
Migraine Headache Surgery
_____________________________________________________________________________________ POLICY STATEMENT Migraine Headache Surgery _____________________________________________________________________________________ Background The ASPS is committed to patient safety, advancing the quality of care, innovative treatments, and practicing medicine based upon the best available scientific evidence. Due to the growing interest regarding the migraine headache surgery, the ASPS Health Policy’s Patient Safety Subcommittee created a task force to examine the safety and efficacy of peripheral nerve/trigger site surgery for refractory chronic migraine headache (MH). The task force examined the available evidence on best practices for peripheral nerve/trigger site surgery for refractory chronic MH. This statement summarizes their findings and recommendations. Definitions Headache Headache is pain in any region of the head. Headaches may occur on one or both sides of the head, be isolated to a certain location, radiate across the head from one point, or have a viselike quality. A headache may appear as a sharp pain, a throbbing sensation or a dull ache. Headaches can develop gradually or suddenly, and may last from less than an hour to several days. Migraine A condition marked by recurring moderate to severe headache with throbbing pain that usually lasts from four hours to three days, typically begins on one side of the head but may spread to both sides, is often accompanied by nausea, vomiting, and sensitivity to light or sound, and is sometimes preceded by an aura and is often followed by fatigue. Peripheral nerve/trigger site surgery A minimally invasive peripheral nerve surgery applied to relieve pressure of a nerve. INTRODUCTION Migraine headache (MH) is a debilitating disease that leads to significant functional limitations in affected patient. -
NASAL ANATOMY Elena Rizzo Riera R1 ORL HUSE NASAL ANATOMY
NASAL ANATOMY Elena Rizzo Riera R1 ORL HUSE NASAL ANATOMY The nose is a highly contoured pyramidal structure situated centrally in the face and it is composed by: ü Skin ü Mucosa ü Bone ü Cartilage ü Supporting tissue Topographic analysis 1. EXTERNAL NASAL ANATOMY § Skin § Soft tissue § Muscles § Blood vessels § Nerves ² Understanding variations in skin thickness is an essential aspect of reconstructive nasal surgery. ² Familiarity with blood supplyà local flaps. Individuality SKIN Aesthetic regions Thinner Thicker Ø Dorsum Ø Radix Ø Nostril margins Ø Nasal tip Ø Columella Ø Alae Surgical implications Surgical elevation of the nasal skin should be done in the plane just superficial to the underlying bony and cartilaginous nasal skeleton to prevent injury to the blood supply and to the nasal muscles. Excessive damage to the nasal muscles causes unwanted immobility of the nose during facial expression, so called mummified nose. SUBCUTANEOUS LAYER § Superficial fatty panniculus Adipose tissue and vertical fibres between deep dermis and fibromuscular layer. § Fibromuscular layer Nasal musculature and nasal SMAS § Deep fatty layer Contains the major superficial blood vessels and nerves. No fibrous fibres. § Periosteum/ perichondrium Provide nutrient blood flow to the nasal bones and cartilage MUSCLES § Greatest concentration of musclesàjunction of upper lateral and alar cartilages (muscular dilation and stenting of nasal valve). § Innervation: zygomaticotemporal branch of the facial nerve § Elevator muscles § Depressor muscles § Compressor -
Clinical Anatomy of the Cranial Nerves Clinical Anatomy of the Cranial Nerves
Clinical Anatomy of the Cranial Nerves Clinical Anatomy of the Cranial Nerves Paul Rea AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier Academic Press is an imprint of Elsevier 32 Jamestown Road, London NW1 7BY, UK The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands 225 Wyman Street, Waltham, MA 02451, USA 525 B Street, Suite 1800, San Diego, CA 92101-4495, USA First published 2014 Copyright r 2014 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangement with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein). Notices Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary. Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility. -
Orbital Myositis
]. CJin. Neuro-ophthalrnol. 3: 67-74, 1983. Orbital Myositis THOMAS C. SPOOR, M.D., M.5. WALTER C. HARTEL, M.D. copy. B-scan ultrasonography revealed a markedly Abstract enlarged medial rectus, better demonstrated by We report five cases of presumed orbital myositis computed tomography (Fig. 3a). There was no mimicking extraocular muscle motility disturbances other evidence for orbital pathology or involve and manifesting clinical signs of active inflammation ment of the adjacent sinuses (Fig. 3b). She was over the involved muscles. Computed tomographic treated with 80 mg prednisone daily with a rapid evidence for exraocular muscle enlargement is helpful resolution of both pain and proptosis. Steroids in confirming the diagnosis. If not present or atypical, another etiology should be sought. All patients re were tapered over 8 weeks. Three weeks later, sponded rapidly and dramatically to systemic cortico while taking 40 mg prednisone per day, she was steroids. Anterior inflammation may be accompanied asymptomatic except for mild restriction of abduc by iritis and respond to topical corticosteroids. We tion of the right eye. Examination was otherwise believe the diagnosis of orbital myositis may be made negative. Two weeks later, while taking prednisone on clinical grounds with confirmation by computed 10 mg per day, there was still limitation of ocular tomographic evidence for extraocular muscle enlarge abduction. Eight weeks after presentation, she was ment and clinical response to corticosteroids. Biopsy is asymptomatic and extraocular motility was normal. unnecessary except in atypical cases. Prednisone was discontinued and she has remained asymptomatic for the past 6 months. Introduction Case 2 The diagnosis of orbital myositis implies orbital A 16-year-old boy was referred with a diagnosis inflammation confined to one or two extraocular of orbital cellulitis. -
Anatomical Consideration of the Anterior and Lateral Cutaneous Nerves in the Scalp
J Korean Med Sci 2010; 25: 517-22 ISSN 1011-8934 DOI: 10.3346/jkms.2010.25.4.517 Anatomical Consideration of the Anterior and Lateral Cutaneous Nerves in the Scalp To better understand the anatomic location of scalp nerves involved in various neu- Seong Man Jeong1, Kyung Jae Park1, rosurgical procedures, including awake surgery and neuropathic pain control, a total Shin Hyuk Kang1, Hye Won Shin 2, of 30 anterolateral scalp cutaneous nerves were examined in Korean adult cadav- Hyun Kim3, Hoon Kap Lee1, 1 ers. The dissection was performed from the distal to the proximal aspects of the and Yong Gu Chung nerve. Considering the external bony landmarks, each reference point was defined Departments of Neurosurgery 1, Anesthesia and Pain for all measurements. The supraorbital nerve arose from the supraorbital notch or Medicine2, and Anatomy 3, Korea University Anam supraorbital foramen 29 mm lateral to the midline (range, 25-33 mm) and 5 mm below Hospital, Korea University College of Medicine, Seoul, Korea the supraorbital upper margin (range, 4-6 mm). The supratrochlear nerve exited from the orbital rim 16 mm lateral to the midline (range, 12-21 mm) and 7 mm below the supraorbital upper margin (range, 6-9 mm). The zygomaticotemporal nerve pierced the deep temporalis fascia 10 mm posterior to the frontozygomatic suture (range, 7-13 mm) and 22 mm above the upper margin of the zygomatic arch (range, 15-27 mm). In addition, three types of zygomaticotemporal nerve branches were Received : 25 March 2009 found. Considering the superficial temporal artery, the auriculotemporal nerve was Accepted : 28 July 2009 mostly located superficial or posterior to the artery (80%). -
Anatomy of the Supratrochlear Nerve: Implications for the Surgical Treatment of Migraine Headaches
RECONSTRUCTIVE Anatomy of the Supratrochlear Nerve: Implications for the Surgical Treatment of Migraine Headaches Jeffrey E. Janis, M.D. Background: Migraine headaches have been linked to compression, irritation, Daniel A. Hatef, M.D. or entrapment of peripheral nerves in the head and neck at muscular, fascial, Robert Hagan, M.D. and vascular sites. The frontal region is a trigger for many patients’ symptoms, Timothy Schaub, M.D. and the possibility for compression of the supratrochlear nerve by the corrugator Jerome H. Liu, M.D., muscle has been indirectly implied. To further delineate their relationship, a M.S.H.S. fresh tissue anatomical study was designed. Hema Thakar, M.D. Methods: Dissection of the brow region was undertaken in 25 fresh cadaveric Kelly M. Bolden, M.D. heads. The corrugator muscle was identified on both sides, and its relationship Justin B. Heller, M.D. with the supratrochlear nerve was investigated. T. Jonathan Kurkjian, M.D. Results: The supratrochlear nerve was found in all 50 hemifaces. Three po- Dallas and Houston, Texas; St. Louis, tential points of compression were uncovered in this investigation: the nerve Mo.; Scottsdale, Ariz.; Baltimore, Md.; entrance into the brow through the frontal notch or foramen, the entrance of Mountain View and Los Angeles, the nerve into the corrugator muscle, and the exit of the nerve from the Calif.; and Portland, Ore. corrugator muscle. The nerve generally bifurcates within the retro–orbicularis oculi fat pad, and these branches enter into one of four relationships with the corrugator muscle: both branches enter the muscle, one branch enters the muscle and one remains deep, both branches remain deep, and the branches further branch into ever smaller filaments that cannot be identified cranially. -
Ocular Complications of Mucopolysaccharidoses Juvenile
Australian Orthoptic Journal 2012 Volume 44 (1) Ocular Complications of Mucopolysaccharidoses Juvenile Idiopathic Arthritis and Uveitis Ocular Myositis AUSTRALIAN ORTHOPTIC JOURNAL - 2012 VOLUME 44, NUMBER 1 Congenital Fibrosis of the 04 Ocular Complications of Mucopolysaccharidoses Extraocular Muscles Azura Ramlee, Maree Flaherty, Sue Silveira, David Sillence 09 Juvenile Idiopathic Arthritis and Uveitis in a Paediatric Sydney Population Katie Geering, Stephanie Crofts 13 Ocular Myositis: A Case Study Melanie Lai 16 A Case Study: Management Options for a Patient with Congenital Fibrosis of the Extraocular Muscles Frances Vogrin, Kailin Karen Zhang 20 Named Lectures, Prizes and Awards of Orthoptics Australia 22 Presidents of Orthoptics Australia and Editors of the Australian Orthoptic Journal 23 Orthoptics Australia Office Bearers, State Branches & University Training Programs 2012 Volume 44 (1) American Orthoptic Journal Offi cial Journal of the American Association of Certifi ed Orthoptists Nidek AL-Scan Optical Biometer • Measures six values in 10 seconds for cataract surgery: - Axial length (AL) - Keratometry - Corneal curvature radius Is Your Focus: - Anterior chamber depth - Central corneal thickness • Ophthalmology - White-to-white distance - Pupil size • Pe diatric Ophthalmology • 3-D auto tracking and auto shot with X,Y,Z autoshift • Neuro-Ophthalmology • Ability to measure through dense cataracts – • Strabismus advanced SNR algorithms • Optional built-in ultrasound • Amblyopia biometer • Anterior segment observation American Orthoptic