Nuclear-Mitochondrial DNA Segments Resemble Paternally Inherited Mitochondrial DNA in Humans
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genomic Gigantism: DNA Loss Is Slow in Mountain Grasshoppers
Genomic Gigantism: DNA Loss Is Slow in Mountain Grasshoppers Douda Bensasson,* Dmitri A. Petrov,² De-Xing Zhang,³ Daniel L. Hartl,* and Godfrey M. Hewitt§ *Department of Organismic and Evolutionary Biology, Harvard University; ²Department of Biological Sciences, Stanford University; ³Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China; and §School of Biological Sciences, University of East Anglia, Norwich, England Several studies have shown DNA loss to be inversely correlated with genome size in animals. These studies include a comparison between Drosophila and the cricket, Laupala, but there has been no assessment of DNA loss in insects with very large genomes. Podisma pedestris, the brown mountain grasshopper, has a genome over 100 times as large as that of Drosophila and 10 times as large as that of Laupala. We used 58 paralogous nuclear pseudogenes of mitochondrial origin to study the characteristics of insertion, deletion, and point substitution in P. pedestris and Italopodisma. In animals, these pseudogenes are ``dead on arrival''; they are abundant in many different eukaryotes, and their mitochondrial origin simpli®es the identi®cation of point substitutions accumulated in nuclear pseudogene lineages. There appears to be a mononucleotide repeat within the 643-bp pseudogene sequence studied that acts as a strong hot spot for insertions or deletions (indels). Because the data for other insect species did not contain such an unusual region, hot spots were excluded from species comparisons. The rate of DNA loss relative to point substitution appears to be considerably and signi®cantly lower in the grasshoppers studied than in Drosophila or Laupala. This suggests that the inverse correlation between genome size and the rate of DNA loss can be extended to comparisons between insects with large or gigantic genomes (i.e., Laupala and Podisma). -
Human Chromosome‐Specific Aneuploidy Is Influenced by DNA
Article Human chromosome-specific aneuploidy is influenced by DNA-dependent centromeric features Marie Dumont1,†, Riccardo Gamba1,†, Pierre Gestraud1,2,3, Sjoerd Klaasen4, Joseph T Worrall5, Sippe G De Vries6, Vincent Boudreau7, Catalina Salinas-Luypaert1, Paul S Maddox7, Susanne MA Lens6, Geert JPL Kops4 , Sarah E McClelland5, Karen H Miga8 & Daniele Fachinetti1,* Abstract Introduction Intrinsic genomic features of individual chromosomes can contri- Defects during cell division can lead to loss or gain of chromosomes bute to chromosome-specific aneuploidy. Centromeres are key in the daughter cells, a phenomenon called aneuploidy. This alters elements for the maintenance of chromosome segregation fidelity gene copy number and cell homeostasis, leading to genomic instabil- via a specialized chromatin marked by CENP-A wrapped by repeti- ity and pathological conditions including genetic diseases and various tive DNA. These long stretches of repetitive DNA vary in length types of cancers (Gordon et al, 2012; Santaguida & Amon, 2015). among human chromosomes. Using CENP-A genetic inactivation in While it is known that selection is a key process in maintaining aneu- human cells, we directly interrogate if differences in the centro- ploidy in cancer, a preceding mis-segregation event is required. It was mere length reflect the heterogeneity of centromeric DNA-depen- shown that chromosome-specific aneuploidy occurs under conditions dent features and whether this, in turn, affects the genesis of that compromise genome stability, such as treatments with micro- chromosome-specific aneuploidy. Using three distinct approaches, tubule poisons (Caria et al, 1996; Worrall et al, 2018), heterochro- we show that mis-segregation rates vary among different chromo- matin hypomethylation (Fauth & Scherthan, 1998), or following somes under conditions that compromise centromere function. -
Centromere RNA Is a Key Component for the Assembly of Nucleoproteins at the Nucleolus and Centromere
Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Letter Centromere RNA is a key component for the assembly of nucleoproteins at the nucleolus and centromere Lee H. Wong,1,3 Kate H. Brettingham-Moore,1 Lyn Chan,1 Julie M. Quach,1 Melisssa A. Anderson,1 Emma L. Northrop,1 Ross Hannan,2 Richard Saffery,1 Margaret L. Shaw,1 Evan Williams,1 and K.H. Andy Choo1 1Chromosome and Chromatin Research Laboratory, Murdoch Childrens Research Institute & Department of Paediatrics, University of Melbourne, Royal Children’s Hospital, Parkville 3052, Victoria, Australia; 2Peter MacCallum Research Institute, St. Andrew’s Place, East Melbourne, Victoria 3002, Australia The centromere is a complex structure, the components and assembly pathway of which remain inadequately defined. Here, we demonstrate that centromeric ␣-satellite RNA and proteins CENPC1 and INCENP accumulate in the human interphase nucleolus in an RNA polymerase I–dependent manner. The nucleolar targeting of CENPC1 and INCENP requires ␣-satellite RNA, as evident from the delocalization of both proteins from the nucleolus in RNase-treated cells, and the nucleolar relocalization of these proteins following ␣-satellite RNA replenishment in these cells. Using protein truncation and in vitro mutagenesis, we have identified the nucleolar localization sequences on CENPC1 and INCENP. We present evidence that CENPC1 is an RNA-associating protein that binds ␣-satellite RNA by an in vitro binding assay. Using chromatin immunoprecipitation, RNase treatment, and “RNA replenishment” experiments, we show that ␣-satellite RNA is a key component in the assembly of CENPC1, INCENP, and survivin (an INCENP-interacting protein) at the metaphase centromere. -
3 Chromosome Chapter
Chromosome 3 ©Chromosome Disorder Outreach Inc. (CDO) Technical genetic content provided by Dr. Iosif Lurie, M.D. Ph.D Medical Geneticist and CDO Medical Consultant/Advisor. Ideogram courtesy of the University of Washington Department of Pathology: ©1994 David Adler.hum_03.gif Introduction The size of chromosome 3 is ~200 Mb. Within this chromosome, there are thousands of genes, many of which are necessary for normal intellectual development or involved in the formation of body organs. Deletions of Chromosome 3 The length of the short arm of chromosome 3 is ~90 Mb. Most known deletions of 3p are caused by the loss of its distal 15 Mb segment (3p25–pter). Deletions of the more proximal segments are relatively rare; there are only ~50 reports on such patients. Therefore, it would be premature to talk about any syndrome related to deletions of the proximal part of 3p. The location of the breakpoints, size of deletion, and reported abnormalities are different in most described patients. However, recurrent aortal stenosis in patients with deletion 3p11p14.2, abnormal lung lobation in patients with deletion 3p12p14.2, agenesis or hypoplasia of the corpus callosum in patients with deletion 3p13, microphthalmia and coloboma in patients with deletion 3p13p21.1, choanal atresia and absent gallbladder in patients with deletion 3p13p21, and hearing loss in patients with deletion 3p14 are all indicators that the above–mentioned segments likely contain genes involved in the formation of these systems. Deletions of 3p Deletion of 3p25–pter The most distal segment of the short arm of chromosome 3 is 3p26 and spans ~8 Mb. -
4P Duplications
4p Duplications rarechromo.org Sources 4p duplications The information A 4p duplication is a rare chromosome disorder in which in this leaflet some of the material in one of the body’s 46 chromosomes comes from the is duplicated. Like most other chromosome disorders, this medical is associated to a variable extent with birth defects, literature and developmental delay and learning difficulties. from Unique’s 38 Chromosomes come in different sizes, each with a short members with (p) and a long (q) arm. They are numbered from largest to 4p duplications, smallest according to their size, from number 1 to number 15 of them with 22, in addition to the sex chromosomes, X and Y. We a simple have two copies of each of the chromosomes (23 pairs), duplication of 4p one inherited from our father and one inherited from our that did not mother. People with a chromosome 4p duplication have a involve any other repeat of some of the material on the short arm of one of chromosome, their chromosomes 4. The other chromosome 4 is the who were usual size. 4p duplications are sometimes also called surveyed in Trisomy 4p. 2004/5. Unique is This leaflet explains some of the features that are the same extremely or similar between people with a duplication of 4p. grateful to the People with different breakpoints have different features, families who but those with a duplication that covers at least two thirds took part in the of the uppermost part of the short arm share certain core survey. features. References When chromosomes are examined, they are stained with a dye that gives a characteristic pattern of dark and light The text bands. -
Aneuploidy and Aneusomy of Chromosome 7 Detected by Fluorescence in Situ Hybridization Are Markers of Poor Prognosis in Prostate Cancer'
[CANCERRESEARCH54,3998-4002,August1, 19941 Advances in Brief Aneuploidy and Aneusomy of Chromosome 7 Detected by Fluorescence in Situ Hybridization Are Markers of Poor Prognosis in Prostate Cancer' Antonio Alcaraz, Satoru Takahashi, James A. Brown, John F. Herath, Erik J- Bergstralh, Jeffrey J. Larson-Keller, Michael M Lieber, and Robert B. Jenkins2 Depart,nent of Urology [A. A., S. T., J. A. B., M. M. U, Laboratory Medicine and Pathology (J. F. H., R. B. fl, and Section of Biostatistics (E. J. B., J. J. L-JCJ, Mayo Clinic and Foundation@ Rochester, Minnesota 55905 Abstract studies on prostate carcinoma samples. Interphase cytogenetic analy sis using FISH to enumerate chromosomes has the potential to over Fluorescence in situ hybridization is a new methodologj@which can be come many of the difficulties associated with traditional cytogenetic used to detect cytogenetic anomalies within interphase tumor cells. We studies. Previous studies from this institution have demonstrated that used this technique to identify nonrandom numeric chromosomal alter ations in tumor specimens from the poorest prognosis patients with path FISH analysis with chromosome enumeration probes is more sensitive ological stages T2N@M,Jand T3NOMOprostate carcinomas. Among 1368 than FCM for detecting aneuploid prostate cancers (4, 5, 7). patients treated by radical prostatectomy, 25 study patients were ascer We designed a case-control study to test the hypothesis that spe tamed who died most quickly from progressive prostate carcinoma within cific, nonrandom cytogenetic changes are present in tumors removed 3 years of diagnosis and surgery. Tumors from 25 control patients who from patients with prostate carcinomas with poorest prognoses . -
7Q Deletions Proximal Interstitial FTNP
Support and Information Rare Chromosome Disorder Support Group, G1, The Stables, Station Road West, Oxted, Surrey RH8 9EE, United Kingdom Tel/Fax: +44(0)1883 723356 [email protected] III www.rarechromo.org Join Unique for family links, information and support. 7q deletions Unique is a charity without government funding, existing entirely on donations and grants. If you can, please make a donation via our website at www.rarechromo.org Please help us to help you! proximal interstitial Facebook group for 7q deletions and duplications: www.facebook.com/groups/493223084038489 Unique lists external message boards and websites in order to be helpful to families looking for information and support. This does not imply that we endorse their content or have any responsibility for it. This information guide is not a substitute for personal medical advice. Families should consult a medically qualified clinician in all matters relating to genetic diagnosis, management and health. Information on genetic changes is a very fast-moving field and while the information in this guide is believed to be the best available at the time of publication, some facts may later change. Unique does its best to keep abreast of changing information and to review its published guides as needed. The guide was compiled by Unique and reviewed by Dr Steve Scherer, Centre for Applied Genomics, Hospital for Sick Children, Toronto, Canada and by Professor Maj Hultén, BSc, PhD, MD, FRCPath, Professor of Medical Genetics, University of Warwick, 2009. Copyright © Unique 2009 Rare Chromosome Disorder Support Group Charity Number 1110661 Registered in England and Wales Company Number 5460413 rrraraaarrrreeeecccchhhhrrrroooommmmoooo....oooorrrrgggg 24 A 7q deletion the development of an embryo. -
Numts in Sequenced Eukaryotic Genomes
NUMTs in Sequenced Eukaryotic Genomes Erik Richly and Dario Leister Mitochondrial DNA sequences are frequently transferred to the nucleus giving rise to the so-called nuclear mitochondrial DNA (NUMT). Analysis of 13 eukaryotic species with sequenced mitochondrial and nuclear genomes reveals a large interspecific variation of NUMT number and size. Copy number ranges from none or few copies in Anopheles, Caenorhabditis, Plasmodium, Drosophila, and Fugu to more than 500 in human, rice, and Arabidopsis. The average size is between 62 (baker’s yeast) and 647 bps (Neurospora), respectively. A correlation between the abundance of NUMTs and the size of the nuclear or the mitochondrial genomes, or of the nuclear gene density, is not evident. Other factors, such as the number and/or stability of mitochondria in the germline, or species-specific mechanisms controlling accumulation/loss of nuclear DNA, might be responsible for the interspecific diversity in NUMT accumulation. Key words: duplication, gene transfer, genome evolution, mito- chondria, NUMT, pseudogene. In eukaryotes, nuclear DNA exists that is homologous they range from less than ten in Fugu, Drosophila, to mitochondrial DNA (mtDNA). These sequences, which Plasmodium, and Caenorhabditis to more than 500 in originate from the invasion of nuclear DNA by mtDNA, human, rice, and Arabidopsis. Between 10 and 100 NUMTs are designated nuclear mtDNA (NUMT) (Lopez et al. are present in rat, Ciona, Neurospora, and in the yeast 1994). NUMTs exhibit different degrees of homology to species. No NUMTs at all have been detected in Anopheles. their mitochondrial counterparts; are variable in size; For N. crassa only a preliminary estimate is possible evenly distributed within and among chromosomes, and, because sequence information of its mtDNA is still in cases, are highly rearranged and/or fragmented (Zhang incomplete; nevertheless, between 11 (threshold ,10250) and Hewitt 1996; Ricchetti, Fairhead, and Dujon 1999; and 22 (1024) NUMTs exist in this fungal species (fig. -
Detailed Genetic and Physical Map of the 3P Chromosome Region Surrounding the Familial Renal Cell Carcinoma Chromosome Translocation, T(3;8)(Pl4.2;Q24.1)1
[CANCER RESEARCH 53. 3118-3124. July I. 1993] Detailed Genetic and Physical Map of the 3p Chromosome Region Surrounding the Familial Renal Cell Carcinoma Chromosome Translocation, t(3;8)(pl4.2;q24.1)1 Sal LaForgia,2 Jerzy Lasota, Parida Latif, Leslie Boghosian-Sell, Kumar Kastury, Masataka Olita, Teresa Druck, Lakshmi Atchison, Linda A. Cannizzaro, Gilad Barnea, Joseph Schlessinger, William Modi, Igor Kuzmin, Kaiman Tory, Berton Zbar, Carlo M. Croce, Michael Lerman, and Kay Huebner3 Jefferson Cancer Institute. Thomas Jefferson Medical College. Philadelphia, Pennsylvania 19107 (S. L. J. L. L B-S.. K. K.. M. O.. T. D.. L A. C.. C. M. C.. K. H.I: Laboratory of Immunobiology. National Cancer Institute. Frederick Cancer Research and Development Center. Frederick. Maryland 21701 (F. L, l. K.. K. T.. B. Z.. M. L): Biological Carcinogenesis and Development Program. Program Resources Inc./Dyn Corp.. Frederick Cancer Research and Development Center. Frederick. Maryland 21701 1W. M.Õ: Chestnut Hill College. Philadelphia. Pennsylvania 19118 (L A.): and Department oj Pharmacology. New York University. New York. New York 10012 (G. B., J. S.I ABSTRACT location of the critical 3p region(s) harboring the target gene(s) had been hampered by the paucity of well-localized, widely available Extensive studies of loss of heterozygosity of 3p markers in renal cell molecular probes. Recently, efforts to isolate and localize large num carcinomas (RCCs) have established that there are at least three regions bers of 3p molecular probes have been undertaken (25-28). As the critical in kidney tumorigenesis, one most likely coincident with the von Hippel-Lindau gene at 3p25.3, one in 3p21 which may also be critical in probe density on 3p increased, in parallel with recent LOH studies, it small cell lung carcinomas, and one in 3pl3-pl4.2, a region which includes became clear that multiple independent loci on 3p were involved the 3p chromosome translocation break of familial RCC with the t(3;8)- (summarized in Refs. -
The Human Gene Encoding Phosphatidylinositol-3 Kinase Associated P85a Is at Chromosome Region 5Ql2-13'
[CANCER RESEARCH 5l. .1818-.1820, July 15, 1991| Advances in Brief The Human Gene Encoding Phosphatidylinositol-3 Kinase Associated p85a Is at Chromosome Region 5ql2-13' L. A. Cannizzaro, E. Y. Skolnik, B. Margolis, C. M. Croce, J. Schlesinger, and K. Huebner2 Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140 [L. A. C., C. M. C., K. H.J, and Department of Pharmacology, New York University Medical Center, New York, New York 10016 [E. Y. S., B. M., J. S.J Abstract scribed previously (10, 11). Hybrids 9142 (full name GM9142), 114 (GM100114), 115 (GM100115), 7297 (GM7297), 7300 (GM7300), I In' human chromosomal location of the gene encoding the phospha- 449 (GM10449), 10095 (GM10095), and 7301 (GM7301) were ob tidylinositol-3 kinase associated protein, p85a, has been determined by tained from the National Institute of General Medical Sciences Human analysis of its segregation in rodent-human hybrids and by chromosome Genetic Mutant Cell Repository (Corieli Institute for Medical Re in situ hybridization using a complementary DNA clone, GRB-1. search, Camden, NJ). Human chromosomes or chromosome regions The gene for p85<*is at chromosome region 5ql3, perhaps near the retained by individual hybrids in the panel are illustrated in Fig. 1. gene encoding another receptor associated signal transducing protein, the Hybrids retaining partial chromosome 5 have also been described GTPase activating protein. previously (12). Filter Hybridization. DNA from mouse, human, and hybrid cell lines Introduction was obtained by a standard phenol-chloroform extraction procedure (10). Approximately 10 Mgof DNA were digested to completion with Skolnik et al. -
Cytogenetic and Molecular Delineation of the Smallest Commonly Deleted Region of Chromosome 5 in Malignant Myeloid Diseases
Proc. Natl. Acad. Sci. USA Vol. 90, pp. 5484-5488, June 1993 Medical Sciences Cytogenetic and molecular delineation of the smallest commonly deleted region of chromosome 5 in malignant myeloid diseases (myeloid leukemias/tumor-suppressor genes/fluorescence in situ hybridization/therapy-related leukemia) MICHELLE M. LE BEAU*, RAFAEL ESPINOSA III, WILMA L. NEUMAN, WENDY STOCK, DIANE ROULSTON, RICHARD A. LARSON, MAURI KEINANEN, AND CAROL A. WESTBROOK Section of Hematology/Oncology, The University of Chicago, Chicago, IL 60637-1470 Communicated by Janet D. Rowley, March 5, 1993 ABSTRACT Loss ofa whole chromosomeS or a deletion of nonmalignant diseases (4). Therapy-related MDS or AML its long arm (5q) is a recurring abnormality in malignant (t-MDS/t-AML) typically presents =5 years after treatment. myeloid neoplasms. To determine the location of genes on Sq Frequently, all three hematopoietic cell lines (erythroid, that may be involved in leukemogenesis, we examined the myeloid, and megakaryocytic) are involved in the myelo- deleted chromosome 5 homologs in a series of 135 patients with dysplastic process. Survival times ofpatients with t-AML are malignant myeloid diseases. By comparing the breakpoints, we usually short (median, 8 months). identified a small segment of 5q, consisting of band 5q31, that At the cytogenetic level, t-MDS/t-AML is characterized by was deleted in each patient. This segment has been termed the loss ofan entire chromosome 5 or7 or a deletion ofthe long arm critical region. Distal Sq contains a number of genes encoding of these chromosomes [del(5q)/del(7q)] (5, 6). In our recently growth factors, hormone receptors, and proteins involved in updated series of 129 consecutive patients with t-MDS/t-AML signal transduction or transcriptional regulation. -
Chromosome 13 Introduction Chromosome 13 (As Well As Chromosomes 14, 15, 21 and 22) Is an Acrocentric Chromosome. Short Arms Of
Chromosome 13 ©Chromosome Disorder Outreach Inc. (CDO) Technical genetic content provided by Dr. Iosif Lurie, M.D. Ph.D Medical Geneticist and CDO Medical Consultant/Advisor. Ideogram courtesy of the University of Washington Department of Pathology: ©1994 David Adler.hum_13.gif Introduction Chromosome 13 (as well as chromosomes 14, 15, 21 and 22) is an acrocentric chromosome. Short arms of acrocentric chromosomes do not contain any genes. All genes are located in the long arm. The length of the long arm is ~95 Mb. It is ~3.5% of the total human genome. Chromosome 13 is a gene poor area. There are only 600–700 genes within this chromosome. Structural abnormalities of the long arm of chromosome 13 are very common. There are at least 750 patients with deletions of different segments of the long arm (including patients with an associated imbalance for another chromosome). There are several syndromes associated with deletions of the long arm of chromosome 13. One of these syndromes is caused by deletions of 13q14 and neighboring areas. The main manifestation of this syndrome is retinoblastoma. Deletions of 13q32 and neighboring areas cause multiple defects of the brain, eye, heart, kidney, genitalia and extremities. The syndrome caused by this deletion is well known since the 1970’s. Distal deletions of 13q33q34 usually do not produce serious malformations. Deletions of the large area between 13q21 and 13q31 do not produce any stabile and well–recognized syndromes. Deletions of Chromosome 13 Chromosome 13 (as well as chromosomes 14, 15, 21 and 22) belongs to the group of acrocentric chromosomes.