The Cosmic Code: Quantum Physics As the Language of Nature Pdf, Epub, Ebook
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Francis E. Low
NATIONAL ACADEMY OF SCIENCES F R A N C I S E . L OW 1 9 2 1 – 2 0 0 7 A Biographical Memoir by DAVID KAISER AND MARC A . K A S T N E R Any opinions expressed in this memoir are those of the authors and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 2010 NATIONAL ACADEMY OF SCIENCES WASHINGTON, D.C. Courtesy of MIT Archives. FRANCIS E. LOW October 27, 1921–February 16, 2007 BY DAVID KAISER AND MARC A . K ASTNER RANCIS E. LOW, A MEMBER OF THE NATIONAL ACADEMY OF SCIENCES Fsince 1967, died on February 16, 2007, in Haverford, Pennsylvania. His career exemplified the maturing of theo- retical physics in the United States during the years after World War II. Low also experienced some of the new roles for physicists, from organized political engagement and consulting on national security issues to high-level university administration. One of Low’s landmark articles helped to lay the groundwork for the renormalization-group approach in quantum field theory, a seminal technique in condensed- matter and particle physics. He also contributed influential approximation techniques for treating particle scattering. EARLY YEARS Low was an only child, who lived near Washington Square Park in Greenwich Village. His mother’s parents were physi- cians and socialists. In fact, his grandfather helped found the Socialist Party of America. His mother also became a doctor. She made house calls at night in Greenwich Village until she turned 80, treating patients such as anthropolo- gist Margaret Mead. -
Scaling Laws in Particle Physics and Astrophysics
SCALING LAWS IN PARTICLE PHYSICS AND ASTROPHYSICS RUDOLF MURADYAN Dedicated to the Golden Jubilee (1961-2011) of publication of the article by Geoffrey Chew and Steven Frautschi in Phys. Rev. Lett. 7, 394, 1961, where a celebrated scaling law J m2 has been conjectured for spin/mass dependence of hadrons. G. Chew S. Frautschi 1. INTRODUCTION: WHAT IS SCALING? Any polynomial power law f() x c xn , where constant c has a dimension dim f dimc (dimx )n exhibits the property of scaling or scale invariance. Usually n is called scaling exponent. The word scaling express the fact that function f is shape-invariant with respect to the dilatation transformation x x f ( x) c ( x)n n f() x and this transformation preserves the shape of function f . We say, following Leonhard Euler, that f is homogeneous of degree “n” if for any value of parameter f ( x) n f() x . Differentiating this relation with respect to and putting 1we obtain simple differential equation x f() x n f() x solution of which brings back to the polynomial power scaling law. There are tremendously many different scaling laws in Nature. The most important of them can be revealed by Google search of scaling site:nobelprize.org in the official site of Nobel Foundation, where nearly 100 results appears. Ten of them are shown below: 1. Jerome I. Friedman - Nobel Lecture 2. Daniel C. Tsui - Nobel Lecture 3. Gerardus 't Hooft - Nobel Lecture 4. Henry W. Kendall - Nobel Lecture 5. Pierre-Gilles de Gennes - Nobel Lecture 6. Jack Steinberger - Nobel Lecture 7. -
Math, Physics, and Calabi–Yau Manifolds
Math, Physics, and Calabi–Yau Manifolds Shing-Tung Yau Harvard University October 2011 Introduction I’d like to talk about how mathematics and physics can come together to the benefit of both fields, particularly in the case of Calabi-Yau spaces and string theory. This happens to be the subject of the new book I coauthored, THE SHAPE OF INNER SPACE It also tells some of my own story and a bit of the history of geometry as well. 2 In that spirit, I’m going to back up and talk about my personal introduction to geometry and how I ended up spending much of my career working at the interface between math and physics. Along the way, I hope to give people a sense of how mathematicians think and approach the world. I also want people to realize that mathematics does not have to be a wholly abstract discipline, disconnected from everyday phenomena, but is instead crucial to our understanding of the physical world. 3 There are several major contributions of mathematicians to fundamental physics in 20th century: 1. Poincar´eand Minkowski contribution to special relativity. (The book of Pais on the biography of Einstein explained this clearly.) 2. Contributions of Grossmann and Hilbert to general relativity: Marcel Grossmann (1878-1936) was a classmate with Einstein from 1898 to 1900. he was professor of geometry at ETH, Switzerland at 1907. In 1912, Einstein came to ETH to be professor where they started to work together. Grossmann suggested tensor calculus, as was proposed by Elwin Bruno Christoffel in 1868 (Crelle journal) and developed by Gregorio Ricci-Curbastro and Tullio Levi-Civita (1901). -
Round Table Talk: Conversation with Nathan Seiberg
Round Table Talk: Conversation with Nathan Seiberg Nathan Seiberg Professor, the School of Natural Sciences, The Institute for Advanced Study Hirosi Ooguri Kavli IPMU Principal Investigator Yuji Tachikawa Kavli IPMU Professor Ooguri: Over the past few decades, there have been remarkable developments in quantum eld theory and string theory, and you have made signicant contributions to them. There are many ideas and techniques that have been named Hirosi Ooguri Nathan Seiberg Yuji Tachikawa after you, such as the Seiberg duality in 4d N=1 theories, the two of you, the Director, the rest of about supersymmetry. You started Seiberg-Witten solutions to 4d N=2 the faculty and postdocs, and the to work on supersymmetry almost theories, the Seiberg-Witten map administrative staff have gone out immediately or maybe a year after of noncommutative gauge theories, of their way to help me and to make you went to the Institute, is that right? the Seiberg bound in the Liouville the visit successful and productive – Seiberg: Almost immediately. I theory, the Moore-Seiberg equations it is quite amazing. I don’t remember remember studying supersymmetry in conformal eld theory, the Afeck- being treated like this, so I’m very during the 1982/83 Christmas break. Dine-Seiberg superpotential, the thankful and embarrassed. Ooguri: So, you changed the direction Intriligator-Seiberg-Shih metastable Ooguri: Thank you for your kind of your research completely after supersymmetry breaking, and many words. arriving the Institute. I understand more. Each one of them has marked You received your Ph.D. at the that, at the Weizmann, you were important steps in our progress. -
UC Santa Barbara UC Santa Barbara Electronic Theses and Dissertations
UC Santa Barbara UC Santa Barbara Electronic Theses and Dissertations Title Aspects of Emergent Geometry, Strings, and Branes in Gauge / Gravity Duality Permalink https://escholarship.org/uc/item/8qh706tk Author Dzienkowski, Eric Michael Publication Date 2015 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California University of California Santa Barbara Aspects of Emergent Geometry, Strings, and Branes in Gauge / Gravity Duality A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Physics by Eric Michael Dzienkowski Committee in charge: Professor David Berenstein, Chair Professor Joe Polchinski Professor David Stuart September 2015 The Dissertation of Eric Michael Dzienkowski is approved. Professor Joe Polchinski Professor David Stuart Professor David Berenstein, Committee Chair July 2015 Aspects of Emergent Geometry, Strings, and Branes in Gauge / Gravity Duality Copyright c 2015 by Eric Michael Dzienkowski iii To my family, who endured my absense for the better part of nine long years while I attempted to understand the universe. iv Acknowledgements There are many people and entities deserving thanks for helping me complete my dissertation. To my advisor, David Berenstein, for the guidance, advice, and support over the years. With any luck, I have absorbed some of your unique insight and intuition to solving problems, some which I hope to apply to my future as a physicist or otherwise. A special thanks to my collaborators Curtis Asplund and Robin Lashof-Regas. Curtis, it has been and will continue to be a pleasure working with you. Ad- ditional thanks for various comments and discussions along the way to Yuhma Asano, Thomas Banks, Frederik Denef, Jim Hartle, Sean Hartnoll, Matthew Hastings, Gary Horowitz, Christian Maes, Juan Maldacena, John Mangual, Don Marolf, Greg Moore, Niels Obers, Joe Polchisnki, Jorge Santos, Edward Shuryak, Christoph Sieg, Eva Silverstein, Mark Srednicki, and Matthias Staudacher. -
The Strong and Weak Senses of Theory-Ladenness of Experimentation: Theory-Driven Versus Exploratory Experiments in the History of High-Energy Particle Physics
[Accepted for Publication in Science in Context] The Strong and Weak Senses of Theory-Ladenness of Experimentation: Theory-Driven versus Exploratory Experiments in the History of High-Energy Particle Physics Koray Karaca University of Wuppertal Interdisciplinary Centre for Science and Technology Studies (IZWT) University of Wuppertal Gaußstr. 20 42119 Wuppertal, Germany [email protected] Argument In the theory-dominated view of scientific experimentation, all relations of theory and experiment are taken on a par; namely, that experiments are performed solely to ascertain the conclusions of scientific theories. As a result, different aspects of experimentation and of the relation of theory to experiment remain undifferentiated. This in turn fosters a notion of theory- ladenness of experimentation (TLE) that is too coarse-grained to accurately describe the relations of theory and experiment in scientific practice. By contrast, in this article, I suggest that TLE should be understood as an umbrella concept that has different senses. To this end, I introduce a three-fold distinction among the theories of high-energy particle physics (HEP) as background theories, model theories and phenomenological models. Drawing on this categorization, I contrast two types of experimentation, namely, “theory-driven” and “exploratory” experiments, and I distinguish between the “weak” and “strong” senses of TLE in the context of scattering experiments from the history of HEP. This distinction enables to identify the exploratory character of the deep-inelastic electron-proton scattering experiments— performed at the Stanford Linear Accelerator Center (SLAC) between the years 1967 and 1973—thereby shedding light on a crucial phase of the history of HEP, namely, the discovery of “scaling”, which was the decisive step towards the construction of quantum chromo-dynamics (QCD) as a gauge theory of strong interactions. -
Verlinde's Emergent Gravity and Whitehead's Actual Entities
The Founding of an Event-Ontology: Verlinde's Emergent Gravity and Whitehead's Actual Entities by Jesse Sterling Bettinger A Dissertation submitted to the Faculty of Claremont Graduate University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate Faculty of Religion and Economics Claremont, California 2015 Approved by: ____________________________ ____________________________ © Copyright by Jesse S. Bettinger 2015 All Rights Reserved Abstract of the Dissertation The Founding of an Event-Ontology: Verlinde's Emergent Gravity and Whitehead's Actual Entities by Jesse Sterling Bettinger Claremont Graduate University: 2015 Whitehead’s 1929 categoreal framework of actual entities (AE’s) are hypothesized to provide an accurate foundation for a revised theory of gravity to arise compatible with Verlinde’s 2010 emergent gravity (EG) model, not as a fundamental force, but as the result of an entropic force. By the end of this study we should be in position to claim that the EG effect can in fact be seen as an integral sub-sequence of the AE process. To substantiate this claim, this study elaborates the conceptual architecture driving Verlinde’s emergent gravity hypothesis in concert with the corresponding structural dynamics of Whitehead’s philosophical/scientific logic comprising actual entities. This proceeds to the extent that both are shown to mutually integrate under the event-based covering logic of a generative process underwriting experience and physical ontology. In comparing the components of both frameworks across the epistemic modalities of pure philosophy, string theory, and cosmology/relativity physics, this study utilizes a geomodal convention as a pre-linguistic, neutral observation language—like an augur between the two theories—wherein a visual event-logic is progressively enunciated in concert with the specific details of both models, leading to a cross-pollinized language of concepts shown to mutually inform each other. -
The Early Years of String Theory: a Personal Perspective
CALT-68-2657 THE EARLY YEARS OF STRING THEORY: A PERSONAL PERSPECTIVE John H. Schwarz California Institute of Technology Pasadena, CA 91125, USA Abstract arXiv:0708.1917v3 [hep-th] 3 Apr 2009 This article surveys some of the highlights in the development of string theory through the first superstring revolution in 1984. The emphasis is on topics in which the author was involved, especially the observation that critical string theories provide consistent quantum theories of gravity and the proposal to use string theory to construct a unified theory of all fundamental particles and forces. Based on a lecture presented on June 20, 2007 at the Galileo Galilei Institute 1 Introduction I am happy to have this opportunity to reminisce about the origins and development of string theory from 1962 (when I entered graduate school) through the first superstring revolution in 1984. Some of the topics were discussed previously in three papers that were written for various special events in 2000 [1, 2, 3]. Also, some of this material was reviewed in the 1985 reprint volumes [4], as well as the string theory textbooks [5, 6]. In presenting my experiences and impressions of this period, it is inevitable that my own contributions are emphasized. Some of the other early contributors to string theory have presented their recollections at the Galileo Galilei Institute meeting on “The Birth of String Theory” in May 2007. Since I was unable to attend that meeting, my talk was given at the GGI one month later. Taken together, the papers in this collection should -
Physics and Feynman's Diagrams » American Scientist 6/3/10 12:09 PM
Physics and Feynman's Diagrams » American Scientist 6/3/10 12:09 PM FEATURE ARTICLE Physics and Feynman's Diagrams In the hands of a postwar generation, a tool intended to lead quantum electrodynamics out of a decades-long morass helped transform physics David Kaiser George Gamow, the wisecracking theoretical physicist who helped invent the Big Bang model of the universe, was fond of explaining what he liked best about his line of work: He could lie down on a couch and close his eyes, and no one would be able to tell whether he was working or not. A fine gag, but a bad model for thinking about the day-to-day work that theoretical physicists do. For too long, physicists, historians and philosophers took Gamow's joke quite seriously. Research in theory, we were told, concerns abstract thought wholly separated from anything like labor, activity or skill. Theories, worldviews or paradigms seemed the appropriate units of analysis, and the challenge lay in charting the birth and conceptual development of particular ideas. In the accounts that resulted from such studies, the skilled manipulation of tools played little role. Ideas, embodied in texts, traveled easily from theorist to theorist, shorn of the material constraints that encumbered experimental physicists (tied as they were to their electron microscopes, accelerators or bubble chambers). The age-old trope of minds versus hands has been at play in our account of progress in physics, which pictures a purely cognitive realm of ideas separated from a manual realm of action. This depiction of what theorists do, I am convinced, obscures a great deal more than it clarifies. -
The Future of Theoretical Physics and Cosmology Celebrating Stephen Hawking's 60Th Birthday
The Future of Theoretical Physics and Cosmology Celebrating Stephen Hawking's 60th Birthday Edited by G. W. GIBBONS E. P. S. SHELLARD S. J. RANKIN CAMBRIDGE UNIVERSITY PRESS Contents List of contributors xvii Preface xxv 1 Introduction Gary Gibbons and Paul Shellard 1 1.1 Popular symposium 2 1.2 Spacetime singularities 3 1.3 Black holes 4 1.4 Hawking radiation 5 1.5 Quantum gravity 6 1.6 M theory and beyond 7 1.7 De Sitter space 8 1.8 Quantum cosmology 9 1.9 Cosmology 9 1.10 Postscript 10 Part 1 Popular symposium 15 2 Our complex cosmos and its future Martin Rees '• • •. V 17 2.1 Introduction . ...... 17 2.2 The universe observed . 17 2.3 Cosmic microwave background radiation 22 2.4 The origin of large-scale structure 24 2.5 The fate of the universe 26 2.6 The very early universe 30 vi Contents 2.7 Multiverse? 35 2.8 The future of cosmology • 36 3 Theories of everything and Hawking's wave function of the universe James Hartle 38 3.1 Introduction 38 3.2 Different things fall with the same acceleration in a gravitational field 38 3.3 The fundamental laws of physics 40 3.4 Quantum mechanics 45 3.5 A theory of everything is not a theory of everything 46 3.6 Reduction 48 3.7 The main points again 49 References 49 4 The problem of spacetime singularities: implications for quantum gravity? Roger Penrose 51 4.1 Introduction 51 4.2 Why quantum gravity? 51 4.3 The importance of singularities 54 4.4 Entropy 58 4.5 Hawking radiation and information loss 61 4.6 The measurement paradox 63 4.7 Testing quantum gravity? 70 Useful references for further -
MATTERS of GRAVITY Contents
MATTERS OF GRAVITY The newsletter of the Topical Group on Gravitation of the American Physical Society Number 36 Fall 2010 Contents GGR News: we hear that . , by David Garfinkle ..................... 4 Network of Gravitational-wave Detectors, by Stan Whitcomb ........ 5 Research briefs: New tests of General Relativity, by Quentin Bailey ............. 7 Conference reports: Theory Meets Data Analysis, by Steve Detweiler .............. 11 Ascona Conference, by Simon Ross ..................... 14 Condensed Matter at AdS/CFT/Strings 2010, by Christopher Herzog . 17 1 Editor David Garfinkle Department of Physics Oakland University Rochester, MI 48309 Phone: (248) 370-3411 Internet: garfinkl-at-oakland.edu WWW: http://www.oakland.edu/?id=10223&sid=249#garfinkle Associate Editor Greg Comer Department of Physics and Center for Fluids at All Scales, St. Louis University, St. Louis, MO 63103 Phone: (314) 977-8432 Internet: comergl-at-slu.edu WWW: http://www.slu.edu/colleges/AS/physics/profs/comer.html ISSN: 1527-3431 DISCLAIMER: The opinions expressed in the articles of this newsletter represent the views of the authors and are not necessarily the views of APS. The articles in this newsletter are not peer reviewed. 2 Editorial The next newsletter is due February 1st. This and all subsequent issues will be available on the web at https://files.oakland.edu/users/garfinkl/web/mog/ All issues before number 28 are available at http://www.phys.lsu.edu/mog Any ideas for topics that should be covered by the newsletter, should be emailed to me, or Greg Comer, or the relevant correspondent. Any comments/questions/complaints about the newsletter should be emailed to me. -
String Theory and Geometry of the Universe's Hidden Dimensions
String Theory and Geometry of the Universe’s Hidden Dimensions Shing-Tung Yau Harvard University Fields Institute January 20, 2011 Introduction This is the second part of my talk, which relates to THE SHAPE OF INNER SPACE, a new book I’ve written with the science writer Steve Nadis. At the heart of this book is a mathematical conjecture, raised by the geometer Eugenio Calabi, which ties topology to geometry in ways that many mathematicians considered hard to believe. I was among them. My colleagues and I believed the conjecture was “too good to be true,” and, for several years, I tried very hard to prove it was wrong. In my abject failure to do so, I realized that Calabi must have been right after all. I then spent another several years amassing the tools I would need to prove the conjecture, just as he stated it. 2 VI. A Proof at Long Last I felt I was close to that point in May 1976. I had all the ducks lined up, as they say. Perhaps my confidence in this problem had something to do with the fact that my girlfriend and I got engaged at that time, while I was visiting her in Princeton. In June, I drove cross-country with my fiance and her parents from Princeton to Los Angeles. It was a very enjoyable trip. But for me, it wasn’t strictly for pleasure. Along the way, I was working behind the scenes. 3 As I drove and sightseed, I was thinking long and hard about solving both the Poincare conjecture and the Calabi conjecture-two of the biggest problems of the day.