Curriculum Vitae

Total Page:16

File Type:pdf, Size:1020Kb

Curriculum Vitae Novel Cholinergics for Treatment of Central Nervous System Disorders Item Type dissertation Authors Johnson, Chad Publication Date 2019 Abstract Approximately 16% of Americans are diagnosed with major depressive disorder, a mental disorder thought be caused by a combination of characterized by genetic, biological, environmental, and psychological factors. It can be accompanied by low self-est... Keywords Pharmaceutical sciences; behavioral pharmacology; medicinal chemistry; Antidepressive Agents; Chemistry, Pharmaceutical; Drug Design; Pharmacology; Receptors, Muscarinic Download date 07/10/2021 09:00:20 Link to Item http://hdl.handle.net/10713/11602 Curriculum Vitae NAME: Chad Johnson TITLE: Ph.D. Candidate Department of Pharmaceutical Sciences University of Maryland School of Pharmacy 20 N Pine St, Room N706 Baltimore, MD 21201 Phone: 410-706-1578 Email: [email protected] RESIDENT STATUS: USA Permanent Resident EDUCATION: B.S. Chemistry University of Virginia Charlottesville, VA 2005-2009 M.A. Chemistry (Organic/Bio-Organic) Johns Hopkins University Baltimore, MD 2009-2013 Ph.D. Candidate (Pharmaceutical Sciences) University of Maryland, Baltimore Baltimore, MD 2015-2019 TEACHING EXPERIENCE: UNIVERSITY OF MARYLAND, BALTIMORE Training course for departmental hydrogenator Training course for Advion Expression L benchtop Mass Spectrometer Weekly synthetic Chemistry group meetings Teaching Assistant for Medicinal Chemistry 1/2 and Infectious Disease Therapeutics 1/2 PHMY5008-Professional Communication Strategies MS in Medical Cannabis and Therapeutics-Instructor for MSMC 602 (Principles of Drug Action and Cannabinoid Pharmacology, Teaching Assistant for MSMC 601 (Introduction to Medical Cannabis History, Culture, and Policy) JOHNS HOPKINS UNIVERSITY Teaching Assistant Organic Chemistry and Organic Chemistry Laboratory 1/2 (August 2009-July 2014) UNIVERSITY OF VIRGINIA Teaching Assistant Organic Chemistry 1/2 Laboratory (August 2008-May 2009) PRIVATE TUTOR GRE, MCAT, and Organic Chemistry (August 2009- Current) HONORS/AWARDS: Finalist for Best Teaching Assistant Award (JHU, 2014) Finalist for Hertz Fellowship Award (UMB, 2016) Inducted into Rho Chi Honor Society (UMB, 2016) Travel Award for Behavior, Biology, and Chemistry (BBC) Translation Research in Addiction Conference (2017,2018, and 2019) Wal-Mart Scholar (UMB, American Association of Colleges of Pharmacy, 2019) PROFESSIONAL MEMBERSHIPS: American Chemical Society: Student Member 2009- Current American Association of Pharmaceutical Scientists: Student Member 2016-Current American Association of Colleges of Pharmacy: Student Member 2017-Current American Association for the Advancement of Science: Student Member: 2016-Current Rho Chi Honor Society: 2016-Current (Serve on Academic Committee) PUBLICATIONS: 1) Ansari, M. I.; Johnson, C.; Coop, A. PARP Inhibitors: A Breakthrough in Cancer Chemotherapy. Modern Approaches in Drug Design , 2(1), 2018. 2) Johnson, C.; Ansari, M. I.; Coop, A. Tetrabutylammonium Bromide Promoted Metal-Free, Efficient, Rapid, and Scalable Synthesis of N-Arylated Amines. ACS Omega. 2018, 3(9), 10886- 10890. 3) Saquib, M., Ansari, M. I., Johnson, C., Khatoon, S., Hussain, M. K., and Coop. A. Recent Advances in the Targeting of Human DNA Ligase 1 as a Potential New Strategy for Cancer Treatment. Eur. J. Med. Chem. 2019 , 182, 111657. PRESENTATIONS: 1. ACS National Meeting: Chemistry of the People, by the People, for the People . Philadelphia, PA. "Inhibitors of LHR-1 as Novel Anti-Parasitic Drugs." Poster Presentation, August 2016 . 2. UMD-JHU Joint Symposium on Drug Discovery : Baltimore, MD. Reinforcing Activity of Meta-Nicotine, Nicotine, and A8530. Poster Presentation. 2017 3. Behavior, Biology, and Chemistry: Translational Research in Addiction , San Antonio, TX. "Reinforcing Properties of Meta-Nicotine." Poster Presentation, Travel Awardee , 2017 . 4. School of Pharmacy Research Day : Baltimore, MD. "Comparisons of the Reinforcing Activity of Meta-Nicotine, Nicotine, and A8530." Poster Presentation, 2017 . 5. Frontiers in Chemistry and Biology Interface Symposium : Newark, DE. "Comparisons of the Reinforcing Activity of Meta-Nicotine, Nicotine, and A8530." Poster Presentation, May 2017. 6. Ph.D. Candidacy Public Seminar : Baltimore, MD. "Novel Cholinergics for Treatment of CNS Disorders." Oral Presentation, 2017 . 7. Behavior, Biology, and Chemistry: Translational Research in Addiction, San Antonio, TX. "Muscarinic Antagonists and Anti-depressant-like Effects in Rodents: Some Chemical Forays Toward New Compounds." Poster Presentation, Travel Awardee, 2018. 8. Graduate Research Conference: Baltimore, MD. "Muscarinic Antagonists and Anti- depressant-like Effects in Rodents: Some Chemical Forays Toward New Compounds." Poster Presentation, 2018 . 9. School of Pharmacy Research Day : Baltimore, MD. "Muscarinic Antagonists and Anti- depressant-like Effects in Rodents: Some Chemical Forays Toward New Compounds." Poster Presentation, 2018 . 10. Frontiers in Chemistry and Biology Interface Symposium : Philadelphia, PA. "Novel Muscarinic Antagonists: Design, Synthesis and Pharmacological Evaluation in Rodents." Poster Presentation, 2018 . 11. Computer Aided Drug Design Symposium , Baltimore, MD. "Novel Muscarinic Antagonists: Design, Synthesis and Pharmacological Evaluation in Rodents." Poster Presentation, 2018 . 12. American Association of Colleges of Pharmacy National Meeting , Boston, MA. "Mentoring Undergraduate Students in an Academic Research Laboratory: What to Know, What to Do, and What to Expect as a Graduate Student and Faculty Mentor." Poster Presentation. 2018 . 13. Behavior, Biology, and Chemistry: Translational Research in Addiction , San Antonio, TX. "Muscarinic Antagonists and Anti-depressant-like Effects in Rodents: Some Chemical Forays Toward New Compounds." Poster Presentation, Travel Awardee, 2018 . 14. School of Pharmacy Research Day : Baltimore, MD. "Muscarinic Antagonists and Anti- depressant-like Effects in Rodents: Methyl to Cyclopropyl." Poster Presentation, 2018 . 15. American Chemical Society Mid-Atlantic Regional Meeting : Baltimore, MD. "Novel Muscarinic Antagonists with Anti-Depressant-Like Effects in Rodents." Poster Presentation, 2019 . RESEARCH: UNIVERSITY OF MARYLAND, BALTIMORE Research Topic : Novel Cholinergics for Treatment of CNS Disorders Major depression is a widespread psychiatric disorder demonstrating severe symptoms in how a person feels, thinks, and handles daily activities (nih.gov). Furthermore, it is linked to diminished quality of life, medical morbidity, and mortality. Depression has a lifetime prevalence of 16% in the United States and appears to be caused by a combination of genetic, biological, environmental, and psychological factors. Current antidepression medications possess significant problems, including a delayed onset of action and different therapeutic effects in differing patients. As such, rapid acting fully efficacious antidepressants are urgently needed. Non- selective muscarinic antagonists have been shown to display antidepressant effects, but this is accompanied by undesired cognitive deficits. The hypothesis of this project is that antagonism of one or more muscarinic subtypes leads to an antidepressant effect, and antagonism at others lead to the cognitive deficits. As selective agonists and antagonists are not available for the 5 muscarinic receptor subtypes, we aim to design and synthesize-- using the scaffolds of L-670548, L-687306, WAY-132983, and L-689660 as model scaffolds-- muscarinic ligands to allow a delineation of the structure activity relationship (SAR) for both selectivity and efficacy, with the ultimate goal of a muscarinic antagonist lacking cognitive deficits. JOHNS HOPKINS UNIVERSITY (Graduate Research Assistant): • Constructed two total syntheses with optimization of all reactions to obtain novel β-methyl carbapenem antibiotics and various derivatives thereof. • Purified each novel compound via column chromatography or preparative HPLC Ran biological assays using these compounds and purified ThnQ/SarQ grown from bacterial cells over-expressing these proteins. • Constructed synthetic standards to compare the compounds produced from the above assays (2009-2013). UNIVERSITY OF VIRGINIA (Undergraduate Research Assistant): • Designed and successfully synthesized various derivatives of FTY720 (2008-2009) Abstract Title of Dissertation: Novel Cholinergics for Treatment of Central Nervous System Disorders Chad R. Johnson, Ph.D., 2019 Dissertation Directed by: Dr. Andrew Coop, Professor and Associate Dean for Academic Affairs, Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore Approximately 16% of Americans are diagnosed with major depressive disorder, a mental disorder thought be caused by a combination of characterized by genetic, biological, environmental, and psychological factors. It can be accompanied by low self-esteem, loss of interest in normally enjoyable activities, low energy, and diminished quality of life. Between 2- 7% of adults with this disorder die by suicide. In addition, almost half of patients who are treated initially with an SSRI do not achieve complete remission, and nearly a third after four different treatment regimens (nimh.nih.gov). While counseling and antidepressant medication can be effective treatments, current selective serotonin re-uptake inhibitors (SSRI's) take weeks before therapeutic effects are observed. This "delay" period of action is not well understood and presents a significant challenge for medical
Recommended publications
  • Cell Line Descriptions Geneblazer® M1-NFAT
    Version No.: GeneBLAzer ® Validation Packet Page 1 of 5 01Sep08 Optimization of the GeneBLazer ® M1-NFAT-bla Jurkat Cell Line GeneBLAzer ® M1 NFAT-bla Jurkat Cells Catalog Numbers – K1710 Cell Line Descriptions GeneBLAzer ® M1-NFAT-bla Jurkat cells contain the human Acetylcholine (muscarinic) subtype 1 receptor (M1), (Accession # NM_000738 ) stably integrated into the CellSensor ® NFAT-bla Jurkat cell line. CellSensor ® NFAT-bla Jurkat cells (Cat. no. K1671) contain a beta-lactamase (bla ) reporter gene under control of the Nuclear Factor of Activated T-cells (NFAT) response element. M1-NFAT-bla Jurkat cells are functionally validated for Z’-factor and EC 50 concentrations of carbachol (Figure 1). In addition, GeneBLAzer ® M1-NFAT-bla CHO-K1 cells have been tested for assay performance under variable conditions. Target Description Muscarinic acetylcholine receptors are members of the G protein-coupled receptor (GPCR) superfamily. Muscarinic receptors are widely distributed and mediate the actions of acetylcholine in both the CNS and peripheral tissues. Five muscarinic receptor subtypes have been identified and are referred to as M 1-M5 (1-5). The five genes that encode the muscarinic receptors all belong to the rhodopsin-line family (Family A) and share strong sequence homology but have unique regions located at the amino terminus (extracellular) and in the third intracellular loop. The M 1, M3, and M 5 receptor subtypes couple through the G q/11 class of G-proteins and activate the phopholipase C pathway. Activation of this pathway in turn leads to increases in free intracellular calcium levels as inositol triphosphate mediates release of calcium from the endoplasmic reticulum.
    [Show full text]
  • E30 SEM. O.C. Disclosed Is a Compound Represented by the Formula (1) (51) Int
    USOO9453000B2 (12) United States Patent (10) Patent No.: US 9.453,000 B2 Kimura et al. (45) Date of Patent: *Sep. 27, 2016 (54) POLYCYCLIC COMPOUND (56) References Cited (75) Inventors: Teiji Kimura, Tsukuba (JP); Noritaka U.S. PATENT DOCUMENTS Kitazawa, Tsukuba (JP); Toshihiko 3,470,167 A 9, 1969 Sarkar Kaneko, Tsukuba (JP); Nobuaki Sato, 3,989,816 A 1 1/1976 Rajadhyaksha Tsukuba (JP); Koki Kawano, Tsukuba 4,910,200 A 3, 1990 Curtze et al. (JP): Koichi Ito, Tsukuba (JP); 5,281,626 A 1/1994 Oinuma et al. M s Tak ishi Tsukub JP 5,563,162 A 10, 1996 Oku et al. amoru Takaishi Tsukuba (JP); 5,804,577 A 9, 1998 Hebeisen et al. Takeo Sasaki, Tsukuba (JP); Yu 5,985,856 A 11/1999 Stella et al. Yoshida, Tsukuba (JP); Toshiyuki 6,235,728 B1 5, 2001 Golik et al. Uemura, Tsukuba (JP); Takashi Doko, g R 1939. E. al. Its SE E. Shinmyo, 7,138.414 B2 11/2006 Schoenafingereatch et al. et al. sukuba (JP); Daiju Hasegawa, 7,300,936 B2 11/2007 Parker et al. Tsukuba (JP); Takehiko Miyagawa, 7,314,940 B2 1/2008 Graczyk et al. Hatfield (GB); Hiroaki Hagiwara, 7,618,960 B2 11/2009 Kimura et al. Tsukuba (JP) 7,667,041 B2 2/2010 Kimura et al. 7,687,640 B2 3/2010 Kimura et al. 7,713,993 B2 5/2010 Kimura et al. (73) Assignee: EISAI R&D MANAGEMENT CO., 7,737,141 B2 6/2010 Kimura et al. LTD., Tokyo (JP) 7,880,009 B2 2/2011 Kimura et al.
    [Show full text]
  • WITHOUTUS010307409B2 (12 ) United States Patent ( 10 ) Patent No
    WITHOUTUS010307409B2 (12 ) United States Patent ( 10 ) Patent No. : US 10 , 307 ,409 B2 Chase et al. (45 ) Date of Patent: Jun . 4 , 2019 ( 54 ) MUSCARINIC COMBINATIONS AND THEIR (52 ) U . S . CI. USE FOR COMBATING CPC . .. .. A61K 31/ 4439 (2013 . 01 ) ; A61K 9 /0056 HYPOCHOLINERGIC DISORDERS OF THE (2013 . 01 ) ; A61K 9 / 7023 ( 2013 . 01 ) ; A61K CENTRAL NERVOUS SYSTEM 31 / 166 ( 2013 . 01 ) ; A61K 31 / 216 ( 2013 . 01 ) ; A61K 31 /4178 ( 2013 .01 ) ; A61K 31/ 439 (71 ) Applicant: Chase Pharmaceuticals Corporation , ( 2013 .01 ) ; A61K 31 /44 (2013 . 01 ) ; A61K Washington , DC (US ) 31/ 454 (2013 .01 ) ; A61K 31/ 4725 ( 2013 .01 ) ; A61K 31 /517 (2013 .01 ) ; A61K 45 / 06 ( 72 ) Inventors : Thomas N . Chase , Washington , DC (2013 . 01 ) (US ) ; Kathleen E . Clarence -Smith , ( 58 ) Field of Classification Search Washington , DC (US ) CPC .. A61K 31/ 167 ; A61K 31/ 216 ; A61K 31/ 439 ; A61K 31 /454 ; A61K 31 /4439 ; A61K (73 ) Assignee : Chase Pharmaceuticals Corporation , 31 /4175 ; A61K 31 /4725 Washington , DC (US ) See application file for complete search history. ( * ) Notice : Subject to any disclaimer, the term of this (56 ) References Cited patent is extended or adjusted under 35 U . S . C . 154 (b ) by 0 days . U . S . PATENT DOCUMENTS 5 ,534 ,520 A 7 / 1996 Fisher et al. ( 21) Appl . No. : 15 /260 , 996 2008 /0306103 Al 12 /2008 Fisher et al. 2011/ 0021503 A1* 1/ 2011 Chase . .. A61K 31/ 27 ( 22 ) Filed : Sep . 9 , 2016 514 / 215 2011/ 0071135 A1 * 3 / 2011 Chase . .. .. .. A61K 31/ 166 (65 ) Prior Publication Data 514 / 215 2011 /0245294 Al 10 / 2011 Paborji et al.
    [Show full text]
  • Distinct Muscarinic Acetylcholine Receptor Subtypes Contribute to Stability and Growth, but Not Compensatory Plasticity, of Neuromuscular Synapses
    14942 • The Journal of Neuroscience, November 25, 2009 • 29(47):14942–14955 Development/Plasticity/Repair Distinct Muscarinic Acetylcholine Receptor Subtypes Contribute to Stability and Growth, But Not Compensatory Plasticity, of Neuromuscular Synapses Megan C. Wright,1 Srilatha Potluri,1 Xueyong Wang,2 Eva Dentcheva,1 Dinesh Gautam,3 Alan Tessler,1,4 Ju¨rgen Wess,3 Mark M. Rich,2 and Young-Jin Son1 1Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, 2Department of Neuroscience, Cell Biology, and Physiology, Wright State University, Dayton, Ohio 45435, 3Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, and 4Department of Neurology, Department of Veterans Affairs Hospital, Philadelphia, Pennsylvania 19104 Muscarinic acetylcholine receptors (mAChRs) modulate synaptic function, but whether they influence synaptic structure remains un- known. At neuromuscular junctions (NMJs), mAChRs have been implicated in compensatory sprouting of axon terminals in paralyzed or denervated muscles. Here we used pharmacological and genetic inhibition and localization studies of mAChR subtypes at mouse NMJs to demonstrate their roles in synaptic stability and growth but not in compensatory sprouting. M2 mAChRs were present solely in motor neurons,whereasM1 ,M3 ,andM5 mAChRswereassociatedwithSchwanncellsand/ormusclefibers.BlockadeofallfivemAChRsubtypes with atropine evoked pronounced effects,
    [Show full text]
  • Wo 2007/128674 A2
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (43) International Publication Date (10) International Publication Number 15 November 2007 (15.11.2007) PCT WO 2007/128674 A2 (51) International Patent Classification: Houtenlaan 36, NL-1381 CP Weesp (NL). KRUSE, Cor- A61K 31/00 (2006.01) A61K 31/551 (2006.01) nelis G. [NL/NL]; c/o SOLVAY PHARMACEUTICALS A61K 31/439 (2006.01) A61P 25/18 (2006.01) B.V., IPSI Department, CJ. Van Houtenlaan 36, NL-1381 A61K 31/4439 (2006.01) CP Weesp (NL). (21) International Application Number: (74) Agent: VERHAGE, Marinus; Octrooibureau Zoan B.V., PCT/EP2007/053934 NL-1380 AC Weesp (NL). (22) International Filing Date: 23 April 2007 (23.04.2007) (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, (25) Filing Language: English CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, (26) Publication Language: English IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY,MA, MD, MG, MK, MN, MW, MX, MY, (30) Priority Data: MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, 061 13476.3 4 May 2006 (04.05.2006) EP RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, 60/797,355 4 May 2006 (04.05.2006) US TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW (71) Applicant (for all designated States except US): SOLVAY (84) Designated States (unless otherwise indicated, for every PHARMACEUTICALS B.V.
    [Show full text]
  • Muscarinic Acetylcholine Receptor
    mAChR Muscarinic acetylcholine receptor mAChRs (muscarinic acetylcholine receptors) are acetylcholine receptors that form G protein-receptor complexes in the cell membranes of certainneurons and other cells. They play several roles, including acting as the main end-receptor stimulated by acetylcholine released from postganglionic fibersin the parasympathetic nervous system. mAChRs are named as such because they are more sensitive to muscarine than to nicotine. Their counterparts are nicotinic acetylcholine receptors (nAChRs), receptor ion channels that are also important in the autonomic nervous system. Many drugs and other substances (for example pilocarpineand scopolamine) manipulate these two distinct receptors by acting as selective agonists or antagonists. Acetylcholine (ACh) is a neurotransmitter found extensively in the brain and the autonomic ganglia. www.MedChemExpress.com 1 mAChR Inhibitors & Modulators (+)-Cevimeline hydrochloride hemihydrate (-)-Cevimeline hydrochloride hemihydrate Cat. No.: HY-76772A Cat. No.: HY-76772B Bioactivity: Cevimeline hydrochloride hemihydrate, a novel muscarinic Bioactivity: Cevimeline hydrochloride hemihydrate, a novel muscarinic receptor agonist, is a candidate therapeutic drug for receptor agonist, is a candidate therapeutic drug for xerostomia in Sjogren's syndrome. IC50 value: Target: mAChR xerostomia in Sjogren's syndrome. IC50 value: Target: mAChR The general pharmacol. properties of this drug on the The general pharmacol. properties of this drug on the gastrointestinal, urinary, and reproductive systems and other… gastrointestinal, urinary, and reproductive systems and other… Purity: >98% Purity: >98% Clinical Data: No Development Reported Clinical Data: No Development Reported Size: 10mM x 1mL in DMSO, Size: 10mM x 1mL in DMSO, 1 mg, 5 mg 1 mg, 5 mg AC260584 Aclidinium Bromide Cat. No.: HY-100336 (LAS 34273; LAS-W 330) Cat.
    [Show full text]
  • Muscarinic Acetylcholine Type 1 Receptor Activity Constrains Neurite Outgrowth by Inhibiting Microtubule Polymerization and Mito
    fnins-12-00402 June 26, 2018 Time: 12:46 # 1 ORIGINAL RESEARCH published: 26 June 2018 doi: 10.3389/fnins.2018.00402 Muscarinic Acetylcholine Type 1 Receptor Activity Constrains Neurite Outgrowth by Inhibiting Microtubule Polymerization and Mitochondrial Trafficking in Adult Sensory Neurons Mohammad G. Sabbir1*, Nigel A. Calcutt2 and Paul Fernyhough1,3 1 Division of Neurodegenerative Disorders, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada, 2 Department of Pathology, University of California, San Diego, San Diego, CA, United States, 3 Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada The muscarinic acetylcholine type 1 receptor (M1R) is a metabotropic G protein-coupled Edited by: receptor. Knockout of M1R or exposure to selective or specific receptor antagonists Roberto Di Maio, elevates neurite outgrowth in adult sensory neurons and is therapeutic in diverse University of Pittsburgh, United States models of peripheral neuropathy. We tested the hypothesis that endogenous M1R Reviewed by: activation constrained neurite outgrowth via a negative impact on the cytoskeleton Roland Brandt, University of Osnabrück, Germany and subsequent mitochondrial trafficking. We overexpressed M1R in primary cultures Rick Dobrowsky, of adult rat sensory neurons and cell lines and studied the physiological and The University of Kansas, United States molecular consequences related to regulation of cytoskeletal/mitochondrial dynamics *Correspondence: and neurite outgrowth. In adult primary neurons, overexpression of M1R caused Mohammad G. Sabbir disruption of the tubulin, but not actin, cytoskeleton and significantly reduced neurite [email protected] outgrowth. Over-expression of a M1R-DREADD mutant comparatively increased neurite Specialty section: outgrowth suggesting that acetylcholine released from cultured neurons interacts This article was submitted to with M1R to suppress neurite outgrowth.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0110449 A1 Lorber Et Al
    US 200601 10449A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0110449 A1 LOrber et al. (43) Pub. Date: May 25, 2006 (54) PHARMACEUTICAL COMPOSITION Publication Classification (76) Inventors: Richard R. Lorber, Scotch Plains, NJ (US); Heribert W. Staudinger, Union, (51) Int. Cl. NJ (US); Robert E. Ward, Summit, NJ A6II 3/473 (2006.01) (US) A6II 3L/24 (2006.01) Correspondence Address: A6IR 9/20 (2006.01) SCHERING-PLOUGH CORPORATION (52) U.S. Cl. ........................... 424/464; 514/290: 514/540 PATENT DEPARTMENT (K-6-1, 1990) 2000 GALLOPNG HILL ROAD KENILWORTH, NJ 07033-0530 (US) (57) ABSTRACT (21) Appl. No.: 11/257,348 (22) Filed: Oct. 24, 2005 The present invention relates to formulations useful for Related U.S. Application Data treating respiratory disorders associated with the production of mucus glycoprotein, skin disorders, and allergic conjunc (60) Provisional application No. 60/622,507, filed on Oct. tivitis while substantially reducing adverse effects associ 27, 2004. Provisional application No. 60/621,783, ated with the administration of non-selective anti-cholin filed on Oct. 25, 2004. ergic agents and methods of use thereof. US 2006/01 10449 A1 May 25, 2006 PHARMACEUTICAL COMPOSITION example, Weinstein and Weinstein (U.S. Pat. No. 6,086,914) describe methods of treating allergic rhinitis using an anti CROSS REFERENCE TO RELATED cholinergic agent with a limited capacity to pass across lipid APPLICATION membranes, such as the blood-brain barrier, in combination with an antihistamine that is limited in both sedating and 0001. This application claims benefit of priority to U.S.
    [Show full text]
  • WO 2017/177262 Al 19 October 2017 (19.10.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/177262 Al 19 October 2017 (19.10.2017) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 31/198 (2006.01) A61P 27/02 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, A61K 31/375 (2006.01) A61P 27/10 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KH, KN, (21) International Application Number: KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, PCT/AU20 17/0503 10 MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, (22) International Filing Date: NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, 10 April 2017 (10.04.2017) RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, (25) Filing Language: English ZA, ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 2016901339 11 April 2016 ( 11.04.2016) AU GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: UNIVERSITY OF CANBERRA [AU/AU]; TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, University Drive, Bruce, Australian Capital Territory 2617 DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (AU).
    [Show full text]
  • (Tert- Butoxycarbonyl)Amino](3 361442- 3
    Alternative Name CAS 1. Product Name Use Number 320345- 2. Aclidinium bromide API 99-1 (2S)-[(tert- Butoxycarbonyl)amino](3 361442- 3. Saxagliptin int -hydroxyadamant-1- 00-4 yl)ethanoic acid 1,3- 1,3- 5001-18- 4. Dihydroxyadamantane Adamantanediol 3 1,3-Dimethyladamantane 702-79-4 memantine intermediate 5. 1-Acetylamido-3,5- 19982- 6. Memantine int dimethyladamantane 07-1 1- 7. 880-52-4 Acetylaminoadamantane 1- 4942-47- 8. 1-Adamantaneacetic acid Adamantylacetic 6 acid [2-(1- 6240-11- 9. 1-Adamantaneethanol Adamantylethano 5 l)] 1- 10. 1-Adamantanemethanol Adamantylmetha 770-71-8 nol 1- 1660-04- 1-Adamantyl methyl rimantadine intermediate; 11. Acetyladamantan 4 ketone e 1-Chloro-3,5- 707-36-8 memantine intermediate; 12. dimethyladamantane 1-Hydroxy-3,5- memantine intermediate; 13. 707-37-9 dimethyladamantane 2- 14. 2-Adamantanol Hydroxyadamant 700-57-2 ane 15. 2-Adamantanone 700-58-3 2-Aminoadamantane 10523- 16. hydrochloride 68-9 3-Amino-1-hydroxy- 3-Amino-1- 702-82-9 vildagliptin intermediate; 17. adamantane adamantanol 3- 38584- 18. (Hydroxymethyl)adamant 37-1 -1-ol 19. 3-aminomethyl- 865887- mequitazine intermediate; 20. quinuclidine 14-5 dihydrochloride zacopride intermediate; 6530-09- mezacopride intermediate; 3-Aminoquinuclidine 21. 2 pancopride intermediate; dihydrochloride azasetron intermediate; 3-Carbethoxy-dehydro- quifenadine intermediate; 50790- 22. quinuclidine sequifenadine intermediate; 85-7 hydrochloride quifenadine intermediate; 3- 6238-33- 23. sequifenadine intermediate; Carbethoxyquinuclidine 1 3-hydroxymethyl 79221- mequitazine intermediate; 24. quinuclidine 75-3 hydrochloride 3-Quinuclidine 6238-34- 25. carboxylic acid 2 hydrochloride 1619-34- penehyclidine intermediate; 26. 3-Quinuclidinol 7 clidinium intermediate; cevimeline intermediate; 3-Quinuclidinone 1193-65- 27.
    [Show full text]
  • PHARMACEUTICAL APPENDIX to the TARIFF SCHEDULE 2 Table 1
    Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names INN which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service CAS registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known.
    [Show full text]
  • Muscarinic Toxin 7 Signals Via Ca2+/Calmodulin-Dependent Protein Kinase Kinase Β to Augment Mitochondrial Function and Prevent Neurodegeneration
    Molecular Neurobiology (2020) 57:2521–2538 https://doi.org/10.1007/s12035-020-01900-x Muscarinic Toxin 7 Signals Via Ca2+/Calmodulin-Dependent Protein Kinase Kinase β to Augment Mitochondrial Function and Prevent Neurodegeneration Ali Saleh1 & Mohammad Golam Sabbir1 & Mohamad-Reza Aghanoori1,2 & Darrell R. Smith1 & Subir K. Roy Chowdhury1 & Lori Tessler1 & Jennifer Brown1 & Eva Gedarevich3 & Markos Z. Kassahun3 & Katie Frizzi3 & Nigel A. Calcutt 3 & Paul Fernyhough1,2 Received: 9 January 2020 /Accepted: 9 March 2020 /Published online: 20 March 2020 # The Author(s) 2020 Abstract Mitochondrial dysfunction is implicated in a variety of neurodegenerative diseases of the nervous system. Peroxisome proliferator–activated receptor-γ coactivator-1α (PGC-1α) is a regulator of mitochondrial function in multiple cell types. In sensory neurons, AMP-activated protein kinase (AMPK) augments PGC-1α activity and this pathway is depressed in diabetes leading to mitochondrial dysfunction and neurodegeneration. Antimuscarinic drugs targeting the muscarinic acetylcholine type 1 receptor (M1R) prevent/reverse neurodegeneration by inducing nerve regeneration in rodent models of diabetes and chemotherapy-induced peripheral neuropathy (CIPN). Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ)isan upstream regulator of AMPK activity. We hypothesized that antimuscarinic drugs modulate CaMKKβ to enhance activity of AMPK, and PGC-1α, increase mitochondrial function and thus protect from neurodegeneration. We used the specific M1R antagonist muscarinic toxin 7 (MT7) to manipulate muscarinic signaling in the dorsal root ganglia (DRG) neurons of normal rats or rats with streptozotocin-induced diabetes. DRG neurons treated with MT7 (100 nM) or a selective muscarinic antagonist, pirenzepine (1 μM), for 24 h showed increased neurite outgrowth that was blocked by the CaMKK inhibitor STO-609 (1 μM) or short hairpin RNA to CaMKKβ.
    [Show full text]