AUSTRIAN JOURNAL of EARTH SCIENCES Volume 98 2005
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Geological Excursion BASE-Line Earth
Geological Excursion BASE-LiNE Earth (Graz Paleozoic, Geopark Karavanke, Austria) 7.6. – 9.6. 2016 Route: 1. Day: Graz Paleozoic in the vicinity of Graz. Devonian Limestone with brachiopods. Bus transfer to Bad Eisenkappel. 2. Day: Visit of Geopark Center in Bad Eisenkappel. Walk on Hochobir (2.139 m) – Triassic carbonates. 3. Day: Bus transfer to Mezica (Slo) – visit of lead and zinc mine (Triassic carbonates). Transfer back to Graz. CONTENT Route: ................................................................................................................................... 1 Graz Paleozoic ...................................................................................................................... 2 Mesozoic of Northern Karavanke .......................................................................................... 6 Linking geology between the Geoparks Carnic and Karavanke Alps across the Periadriatic Line ....................................................................................................................................... 9 I: Introduction ..................................................................................................................... 9 II. Tectonic subdivision and correlation .............................................................................10 Geodynamic evolution ...................................................................................................16 Alpine history in eight steps ...........................................................................................17 -
Zur Geologie Des Hochlantsch (Grazer Paläozoikum, Steiermark)
Jb. Geol. B.-A. ISSN 0016-7800 Band 128 S.43-73 Wien, Mai 1985 Zur Geologie des Hochlantsch (Grazer Paläozoikum, Steiermark) Von JOHANN GOLLNER & CHRISTIAN ZIER*) Mit 9 Abbildungen, 2 Tabellen und 6 Tafeln Steiermark Grazer Paläozoikum Stratigraphie 6sterreichische Karte1: 50.000 Fazies Blatt 134 Tektonik Inhalt Zusammenfassung, Summary 43 1. 6i;~e~~~~O~~ik~~':::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 1.1. Die Hochlantschgruppe 44 1.1.1. Dolomitsandsteinfolge 46 1.1.2. "Gesteine des Breitalmkreuz" 47 1.1.3. Barrandeischichten " 47 1.1.4. Tyrnauer Alm-Formation 48 1.1.5. Zachenspitzformation 50 1.1.6. Steinbergkalk 51 1.1.7. Hochlantschkalk 51 1.1.8. Mixnitzer Karbon 52 1.2. Laufnitzdorfer Gruppe 52 1.3. "Kalkschieferfolge" 53 1.3.1. Tektonische Position der "Kalkschieferfolge" 53 1.3:2. "Gschwendtformation", "Heubergformation" , "Koglerformation", "Höllgrabeneinheit" 53 1.3.3. Größkogelgruppe 54 2. Postpaläozoische Ablagerungen 55 2.1. Gams/Bärenschützkonglomerat 55 2.2. Tertiärkonglomerat 55 2.3. Burgstallbrekzie 55 2.4. Gehängebrekzien und Schuttbildungen 56 2.5. Quartäre Spalten 57 3. Tektonischer Bau 57 ~i~;r~tu'r' : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ~g Zusammenfassung campan) verglichen wird, tritt in unterschiedlichen Höhenni- Der Hochlantsch als nördlicher Eckpfeiler des Grazer Paläo- veaus im Hangenden des Hochlantschkalks (Hochlantschgrup- zoikums ist -
Seminum 2017 Tisk
FRONT COVER: Campanula cochleariifolia Lam. SK-0-PLZEN-4260-98-20 (No. 75) Slovakia, Nízké Tatry Mts., Demänovská dolina, near hotel Repiská, calcareous rocks Photo: Jaroslav Vogeltanz INDEX SEMINUM 2017 PLZE Ň 2017 1 ZOOLOGICAL AND BOTANICAL GARDEN OF THE CITY PLZEN Pod Vinicemi 9, 301 00 Plzen Czech Republic Telephone: +420/378038301 Fax: +420/378038302 E-mail: [email protected] Area: 21,5 ha Geographical location: Latitude: 49 o 44’ N Longitude: 13 o23’ E Altitude: 330 m Annual average temperature: 7,4 oC Highest annual temperature: 40 o C Lowest annual temperature: - 27 oC Annual rainfall: 512 mm Director: Ing. Ji ří Trávní ček Curator of Botany: Ing. Tomáš Peš Seed collectors: Mgr. Václava Pešková, Radka Matulová, Petra Vonášková, Lenka Richterová, Hana Janouškovcová 2 Please notice: Complying with article 15 of the Convention on Biological Diversity (CBD, 1992), the Zoological and Botanical Garden of Plzen provides seeds and any other plant material only for botanical gardens and other scientific institutions using this materiál according to the CBD. We are part of the IPEN network (International Plant Exchange Network) and can exchange material with other IPEN-members without further bi-lateral agreements.For a list of gardens currently registered with IPEN and for additional information, please refer to the BGCI website. Non IPEN-members have to return the Agreement on the supply of living plant material for non-commercial purposes leaving the International Plant Exchange Network , which must be signed by authorized staff. The IPEN number given with the seed material consists of four elements: 1. The first two characters are the international iso 3166-1-alpha-2-code of the country of origin ("XX" for unknown origin) 2. -
Young Uplift in the Non-Glaciated Parts of the Eastern Alps, Earth Planet
THOMAS WAGNER YOUNG UPLIFT IN THE NON -GLACIATED PARTS OF THE EASTERN ALPS GEOMORPHOLOGICAL AND GEOCHRONOLOGICAL CONSTRAINTS A dissertation submitted to the Faculty of Natural Science Karl-Franzens University of Graz Austria for the Degree of Doctor of Science September 2010 “Only those who will risk going too far can possibly find out how far one can go.” T.S. Eliot PREAMBLE The study of the growth of mountains and the evolution of their landforms is a subject at the heart of Earth sciences. However, only newly available geochronological methods allow to constrain the timing of formation of landforms in more detail. In particular the evolution of landforms in Pliocene to Pleistocene times is much debated, because of a worldwide increase in sedimentation rates observed at the same time. Climate changes and tectonic processes are possible candidates to explain this increase. The research effort presented in this thesis fills the gap of knowledge concerning the topographic evolution of the last few million years to today’s face of a region along the eastern margin of the Alps: the Styrian Block. This block includes the Styrian Basin and its surrounding basement. New time constraints from various cave, stream and fault deposits are reported and are interpreted in terms of river incision rates, aggradation and re-excavation events. Uplift rates of the region are estimated. DEM data are used to identify the geomorphic disequilibrium of the whole Alps. The results support the notion that tectonically driven deformation and responding erosion is taking place to an increased level over the last 5-6 Ma. -
Characterizing the Spatiotemporal Variability of Groundwater
Characterizing the spatiotemporal variability of groundwater levels of alluvial aquifers in different settings using drought indices Johannes Christoph Haas1, 2 and Steffen Birk1, 2 1Institute of Earth Sciences, NAWI Graz Geocenter, University of Graz, Austria 2FWF-DK Climate Change, University of Graz, Austria Correspondence to: Johannes Christoph Haas ([email protected]) Abstract. To improve the understanding of how aquifers in different alluvial settings respond to extreme events in a changing environment, we analyze standardized time series of groundwater levels (Standardized Groundwater level Index - SGI), pre- cipitation (Standardized Precipitation Index - SPI), and river stages of three subregions within the catchment of the river Mur (Austria). Using correlation matrices, differences and similarities between the subregions, ranging from the Alpine upstream 5 part of the catchment to its shallow foreland basin, are identified and visualized. Generally, river stages exhibit the highest correlations with groundwater levels, frequently affecting not only the wells closest to the river, but also more distant parts of the alluvial aquifer. As a result, human impacts on the river are transferred to the aquifer, thus affecting the behavior of groundwater levels. Hence, to avoid misinterpretation of groundwater levels in this type of setting, it is important to account for the river and human impacts on it. 10 While the river is a controlling factor in all of the subregions, an influence of precipitation is evident too. Except for deep wells found in an upstream Alpine basin, groundwater levels show the highest correlation with a precipitation accumulation period of six months (SPI6). The correlation in the foreland is generally higher than that in the Alpine subregions, thus corre- sponding to a trend from deeper wells in the Alpine parts of the catchment towards more shallow wells in the foreland. -
Seminum 2018
FRONT COVER: Fibigia clypeata (L.) Medik. TR-0-M-2010/2484 (No. 62) BG München/ Turkey, Bolkar Dag Photo: Jaroslav Vogeltanz INDEX SEMINUM 2018 PLZE Ň 2018 1 ZOOLOGICAL AND BOTANICAL GARDEN OF THE CITY PLZEN Pod Vinicemi 9, 301 00 Plzen Czech Republic Telephone: +420/378038301 Fax: +420/378038302 E-mail: [email protected] Area: 21,5 ha Geographical location: Latitude: 49 o 44’ N Longitude: 13 o23’ E Altitude: 330 m Annual average temperature: 7,4 oC Highest annual temperature: 40 o C Lowest annual temperature: - 27 oC Annual rainfall: 512 mm Director: Ing. Ji ří Trávní ček Curator of Botany: Ing. Tomáš Peš Seed collectors: Mgr. Václava Pešková, Radka Matulová, Petra Vonášková, Lenka Richterová 2 Please notice: Complying with article 15 of the Convention on Biological Diversity (CBD, 1992), the Zoological and Botanical Garden of Plzen provides seeds and any other plant material only for botanical gardens and other scientific institutions using this material according to the CBD. We are part of the IPEN network (International Plant Exchange Network) and can exchange material with other IPEN-members without further bi-lateral agreements.For a list of gardens currently registered with IPEN and for additional information, please refer to the BGCI website. Non IPEN-members have to return the Agreement on the supply of living plant material for non-commercial purposes leaving the International Plant Exchange Network , which must be signed by authorized staff. The IPEN number given with the seed material consists of four elements: 1. The first two characters are the international iso 3166-1-alpha-2-code of the country of origin ("XX" for unknown origin) 2. -
Index Seminum 2019
FRONT COVER: Anthericum liliago L. CZ-0-PLZEN-1613-12-20 (No. 41) Czech Republic, C Bohemia, N of Beroun, Trubín Photo: Jaroslav Vogeltanz INDEX SEMINUM 2019 PLZEŇ 2019 1 ZOOLOGICAL AND BOTANICAL GARDEN OF THE CITY PLZEN Pod Vinicemi 9, 301 00 Plzen Czech Republic Telephone: +420/378038301 Fax: +420/378038302 E-mail: [email protected] Area: 21,5 ha Geographical location: Latitude: 49o 44’ N Longitude: 13o23’ E Altitude: 330 m Annual average temperature: 7,4 oC Highest annual temperature: 40 o C Lowest annual temperature: - 27 oC Annual rainfall: 512 mm Director: Ing. Jiří Trávníček Curator of Botany: Ing. Tomáš Peš Seed collectors: Mgr. Václava Pešková, Radka Matulová, Šárka Sýkorová, Petra Vonášková, Lenka Richterová, Michaela Sýkorová 2 Please notice: Complying with article 15 of the Convention on Biological Diversity (CBD, 1992), the Zoological and Botanical Garden of Plzen provides seeds and any other plant material only for botanical gardens and other scientific institutions using this material according to the CBD. We are part of the IPEN network (International Plant Exchange Network) and can exchange material with other IPEN-members without further bi-lateral agreements.For a list of gardens currently registered with IPEN and for additional information, please refer to the BGCI website. Non IPEN-members have to return the Agreement on the supply of living plant material for non-commercial purposes leaving the International Plant Exchange Network, which must be signed by authorized staff. The IPEN number given with the seed material consists of four elements: 1. The first two characters are the international iso 3166-1-alpha-2-code of the country of origin ("XX" for unknown origin) 2. -
ALPBIONET2030 Integrative Alpine Wildlife and Habitat Management for the Next Generation
ALPBIONET2030 Integrative Alpine wildlife and habitat management for the next generation Super Strategic Connectivity Areas in and around the Alps Integrative Alpine wildlife and habitat management for the next generation The ´Super-SACA´ approach – very important areas for [ecological] connectivity in the Alps 1) Strategic Alpine Connectivity Areas - a basis for the Super SACA identification The ALPBIONET2030 project tried to bring together, analyse and combine a series of different indicators influencing ecological connectivity at different levels in order to illustrate the current situation of connectivity in the alpine and EUSALP territory and to elaborate, through a collection of the maps, a concrete foundation for planning a sustainable strategy of land use in the Alpine Space. The project integrated essential factors of such a strategy by defining Strategic Alpine Connectivity Areas (SACA) with an especially dedicated tool (JECAMI 2.0), evaluating wildlife management and human-nature conflict management aspects and generating recommendations. The extent of the project encompassed, for the first time in this thematic field, the whole area of the European Strategy of the Alpine Region (EUSALP). Map1: Strategic Alpine Connectivity Areas in the Alps and EUSALP 2 Integrative Alpine wildlife and habitat management for the next generation Map N°1 displays all three of the different types of Strategic Alpine Connectivity Areas at once. The map clearly illustrates that the Ecological Intervention Areas (EIA) constitute the largest percentage of the Strategic Alpine Connectivity Areas. The EIA act as linkages between Ecological Conservation Areas (ECA) as well as buffer zones. Looking at the Alpine and EUSALP picture, it appears that the ECA, mostly located in the higher Alpine areas, are, to a large extent, already benefiting from an existing protection measure (some category of protected area) and therefore need commitment to long term preservation of this status without any degradation of ecological functioning. -
Geomorphology 134 (2011) 62–78
Geomorphology 134 (2011) 62–78 Contents lists available at ScienceDirect Geomorphology journal homepage: www.elsevier.com/locate/geomorph Correlations of cave levels, stream terraces and planation surfaces along the River Mur—Timing of landscape evolution along the eastern margin of the Alps Thomas Wagner a,⁎, Harald Fritz a, Kurt Stüwe a, Othmar Nestroy b, Helena Rodnight c, John Hellstrom d, Ralf Benischke e a Institute of Earth Sciences, University of Graz, Heinrichstraße 26, A-8010 Graz, Austria b Institute of Applied Geosciences, Graz University of Technology, Rechbauerstraße 12, A-8010 Graz, Austria c Institute of Geology and Paleontology, University of Innsbruck, Innrain 52, A-6020 Innsbruck, Austria d School of Earth Sciences, University of Melbourne, Parkville, Victoria 3010, Australia e Department of Water Resources Management, Institute for Water, Energy and Sustainability, Joanneum Research Forschungsgesellschaft mbH., Elisabethstraße 16, A-8010 Graz, Austria article info abstract Article history: The transition zone of the Eastern Alps to the Pannonian Basin provides one of the best sources of information Received 14 September 2010 on landscape evolution of the Eastern Alpine mountain range. The region was non-glaciated during the entire Received in revised form 16 March 2011 Pleistocene. Thus, direct influence of glacial carving as a landscape forming process can be excluded and relics Accepted 22 April 2011 of landforms are preserved that date back to at least the Late Neogene. In this study, we provide a correlation Available online 30 April 2011 between various planation surfaces across the orogen-basin transition. In particular, we use stream terraces, planation surfaces and cave levels that cover a vertical spread of some 700 m. -
Das Grazer Paläozoikum: Ein Überblick
©Institut f. Erdwissensch., Geol. u. Paläont., Karl-Franzens-Universität Graz; download www.biologiezentrum.at I Ber. lnst. Geol. Paläont. K.-F.-Univ. Graz, ISSN 1608-81 66, Band 3, Graz 2001 Grazer Paläozoikum I Das Grazer Paläozoikum: Ein Überblick Fritz EBNER, 1 Harald FRITZ2 & Bernhard HUBMANN2 Montanuniversität Leoben, Institut für Geowissenschaften, A-8700 Leoben, Österreich, Fax: +43/3842-402-9902 2 Karl-Franzens-Universität Graz, Institut für Geologie und Paläontologie, A-8010 Graz, Heinrichstraße 26, Österreich, Fax. +43/316-380-9871 Einleitung Die letzte monographische Darstellung des Grazer Paläozoikums wurde von FLüGEL (1975) verfasst. Seither erschienen mehrere Einzeldarstellungen, darunter auch synoptische Arbeiten einzelner tektonischer Teilbereiche (zuletzt: EBNER et al. 2000). Mit FLüGEL (2000) liegt eine lithostratigraphische Neubenennung des Gesamtraumes vor. Im folgenden wird versucht, einen vereinfachten aktuellen Überblick über die Entwicklung des Grazer Paläozoikums zu geben. 1. Der geologische Bau des Grazer Paläozoikums Das Grazer Paläozoikum umfaßt ein ca. 1250 km2 großes Gebiet, welches nord(westlich) und westlich vom mittelostalpinen Gleinalm- (Muriden) bzw. Koralmkristallin (Koriden) und im Osten vom Kristallin von St. Radegund (Mittelostalpin) und vom Raabalpenkristallin (Unterostalpin) begrenzt wird. Nach NEUBAUER (1981) wird das vormals dem Mittelostalpin zugeordnete Angerkristallin im östlichen Grenzbereich des Grazer Paläozoikums auf Grund gradueller metamorpher Übergänge dem letzteren zugerechnet. Gegen -
Correlations of Cave Levels, Stream Terraces and Planation Surfaces Along the River Mur—Timing of Landscape Evolution Along the Eastern Margin of the Alps
Geomorphology 134 (2011) 62–78 Contents lists available at ScienceDirect Geomorphology journal homepage: www.elsevier.com/locate/geomorph Correlations of cave levels, stream terraces and planation surfaces along the River Mur—Timing of landscape evolution along the eastern margin of the Alps Thomas Wagner a,⁎, Harald Fritz a, Kurt Stüwe a, Othmar Nestroy b, Helena Rodnight c, John Hellstrom d, Ralf Benischke e a Institute of Earth Sciences, University of Graz, Heinrichstraße 26, A-8010 Graz, Austria b Institute of Applied Geosciences, Graz University of Technology, Rechbauerstraße 12, A-8010 Graz, Austria c Institute of Geology and Paleontology, University of Innsbruck, Innrain 52, A-6020 Innsbruck, Austria d School of Earth Sciences, University of Melbourne, Parkville, Victoria 3010, Australia e Department of Water Resources Management, Institute for Water, Energy and Sustainability, Joanneum Research Forschungsgesellschaft mbH., Elisabethstraße 16, A-8010 Graz, Austria article i nfo abstract Article history: The transition zone of the Eastern Alps to the Pannonian Basin provides one of the best sources of information Received 14 September 2010 on landscape evolution of the Eastern Alpine mountain range. The region was non-glaciated during the entire Received in revised form 16 March 2011 Pleistocene. Thus, direct influence of glacial carving as a landscape forming process can be excluded and relics Accepted 22 April 2011 of landforms are preserved that date back to at least the Late Neogene. In this study, we provide a correlation Available online 30 April 2011 between various planation surfaces across the orogen-basin transition. In particular, we use stream terraces, planation surfaces and cave levels that cover a vertical spread of some 700 m.