Zur Geologie Des Hochlantsch (Grazer Paläozoikum, Steiermark)

Total Page:16

File Type:pdf, Size:1020Kb

Zur Geologie Des Hochlantsch (Grazer Paläozoikum, Steiermark) Jb. Geol. B.-A. ISSN 0016-7800 Band 128 S.43-73 Wien, Mai 1985 Zur Geologie des Hochlantsch (Grazer Paläozoikum, Steiermark) Von JOHANN GOLLNER & CHRISTIAN ZIER*) Mit 9 Abbildungen, 2 Tabellen und 6 Tafeln Steiermark Grazer Paläozoikum Stratigraphie 6sterreichische Karte1: 50.000 Fazies Blatt 134 Tektonik Inhalt Zusammenfassung, Summary 43 1. 6i;~e~~~~O~~ik~~':::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 1.1. Die Hochlantschgruppe 44 1.1.1. Dolomitsandsteinfolge 46 1.1.2. "Gesteine des Breitalmkreuz" 47 1.1.3. Barrandeischichten " 47 1.1.4. Tyrnauer Alm-Formation 48 1.1.5. Zachenspitzformation 50 1.1.6. Steinbergkalk 51 1.1.7. Hochlantschkalk 51 1.1.8. Mixnitzer Karbon 52 1.2. Laufnitzdorfer Gruppe 52 1.3. "Kalkschieferfolge" 53 1.3.1. Tektonische Position der "Kalkschieferfolge" 53 1.3:2. "Gschwendtformation", "Heubergformation" , "Koglerformation", "Höllgrabeneinheit" 53 1.3.3. Größkogelgruppe 54 2. Postpaläozoische Ablagerungen 55 2.1. Gams/Bärenschützkonglomerat 55 2.2. Tertiärkonglomerat 55 2.3. Burgstallbrekzie 55 2.4. Gehängebrekzien und Schuttbildungen 56 2.5. Quartäre Spalten 57 3. Tektonischer Bau 57 ~i~;r~tu'r' : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ~g Zusammenfassung campan) verglichen wird, tritt in unterschiedlichen Höhenni- Der Hochlantsch als nördlicher Eckpfeiler des Grazer Paläo- veaus im Hangenden des Hochlantschkalks (Hochlantschgrup- zoikums ist gekennzeichnet durch einen Decken- und Schup- pe) auf. Am Hochlantsch sind seit dem höheren Neogen gebil- penbau. Diese können drei verschiedenen lithostratigraphi- dete Hangschuttbrekzien, Schuttfächer, Felssturzmassen etc. schen Einheiten zugeordnet werden: weit verbreitet. Die verschiedenen Möglichkeiten der Genese 1. Hochlantschgruppe (Unterdevon - Oberkarbon), der Burgstallbrekzie (Abb. 1) werden diskutiert. 2. Laufnitzdorfer Gruppe (Obersilur - Oberdevon), 3. "Kalkschieferfolge" (Unterdevon - Oberdevon). Summary Die Hochlantschgruppe als höchstes tektonisches Element ist in ihren stratigraphisch tieferen Anteilen und hinsichtlich ih- The Hochlantsch area is located in the northern part of the rer hohen Position mit der Rannachfazies des näheren Grazer Graz Paleozoic. The tectonic structure is characterised by Raumes vergleichbar. Vom höheren Mitteldevon bis ins Ober- nappes and wedges. These can be assigned to three lithostra- karbon sind jedoch bedeutende lithologische und fazielle Un- tigraphic units: terschiede erkennbar. Die pelagische Laufnitzdorfer Gruppe 1. Hochlantsch Group (Lower Devonian - Upper Carbonife- und die vermutlich flachmarine "Kalkschieferfolge" bilden ein rous), basales Decken- und Schuppenpaket, welches sowohl im Han- 2. Laufnitzdorf Group (Upper Silurian - Upper Devonian), genden (Hochlantschgruppe) wie auch im Liegenden (Glein- 3. "Kalkschiefer-Folge" (sensu Group) (Lower Devonian - almkristallin) diskordant begrenzt wird. Upper Devonian). Das Gams/Bärenschützkonglomerat, welches mit dem Ba- The Hochlantsch Group is comparable to the Rannach-Fa- siskonglomerat der Kainacher Gosau (Obersanton-Unter- zies (sensu Group), because both form the highest nappe in the Graz Paleozoic and consist of the same formations from lower Devonian to Eifelium. However from the Givetian to the *) Anschrift der Verfasser: Dr. JOHANNGOLLNER,Institut für upper Carboniferous there are significant differences. The ba- Geologie und Paläontologie der Universität Graz, Heinrich- sal nappe system with discordant thrust boundaries includes straße 26, A-8010 Graz; Dr. CHRISTIANZIER, Dorfstraße 15, the pelagic Laufnitzdorf Group and the "Kalkschiefer-Folge" A-8592 Salla. (presumably shallow marin). 43 The Hochlantsch Group is locally overlaid by deposits of the Neogen,Quartär (Hangschutt, mesozoic Gams/Bärenschütz-Konglomerat (comparable with Felssturzmassen etc.) the santonian to campanian Basiskonglomerat of the Kainach Gosau). In the Hochlantsch area talus deposits since upper Burgstallbrekzie (?) Neogene are widely distributed. Various possibilities of the ge- nesis of the Burgstall-Brekzie are discussed. Tertiärkonglomerat Gams/Bärenschützkonglomerat Einleitung (Gosau) Vorliegende Darstellung ist eine Zusammenfassung Hochlantschgruppe der stratigraphisch-tektonischen Ergebnisse einer Neu- ~ Mixnitzer Karbon (cu-co) kartierung des Hochlantschgebietes (GOLLNER, 1981, 1983, 1984, 1985; GOLLNER & ZIER, 1982; GOLLNER et Steinbergkalk (do) aI., 1982, 1983; ZIER, 1981, 1982, 1983). Ziele dieser 11IIII waren neben der Erstellung einer geologischen Karte Hochlantschkalk (dm-do) 1 : 10.000 eine biostratigraphische, fazielle und sedi- mentologische Bearbeitung, nachdem die letzte Unter- Zachenspitzformation (dm) suchung mehr als 50 Jahre zurückliegt. Diese von CLAR et al. (1929) vorgelegte geologische Karte mit Erläute- ~ östl. Member rungen sowie deren tektonisches Modell eines "Stock- .. westl. Member werkbaus" am Hochlantsch bildete auch die Basis für darauffolgende geologisch-tektonische Arbeiten (CLAR, ~ Tyrnauer-Alm-Formation (dm) 1935; BOIGK, 1951; FLÜGEL, 1975, u.a.). Während je- doch das höchste "Stockwerk" infolge seines Fossil- ~ Barrandeischichten (du-dm) reichtums seit langem Ziel stratigraphischer Untersu- chungen war (C. CLAR, 1871, 1874; PENECKE, 1889, ~-----IDolomitsandsteinfolge (du) 1894; HERITSCH, 1917, CLAR et aI., 1929; FLÜGEL & SCHIMUNEK, 1961; FLÜGEL, 1971, 1980), fehlen diese in I;:~::::';~~IGesteine des Breitalmkreuz den tieferen, makrofossilarmen "Stockwerken" weitge- (du?) hend. In diesen, aber auch im höchsten "Stockwerk" Laufnitzdorfer Gruppe . konnten v. a. mit Hilfe der Conodontenstratigraphie, we- sentliche Neuergebnisse gewonnen werden, wobei sich IA~ ~ r Harrbergerformation (du-do) die Bestimmung der Conodonten auf folgende Literatur stützt: Hackensteinerformation (so-du) BISCHOFF & ZIEGLER (1957), BULTYNK (1971), CARLS & GANDL (1969), EBNER (1977), GLENISTER & KLAPPER ~ oberes Member (1971), KLAPPER, PHILIP & JACKSON (1970), KLAPPER & ~ unteres Member JOHNSON (1975), KLAPPER, ZIEGLER & MASHKOVA (1978), KREBS (1959), KRYSTYN (1973, 1980), LANE & ORMISTON Kalkschieferfolge (1979), LANE, SANDBERG & ZIEGLER (1980), MORZADEC & WEYANT (1982), MOSHER (1968, 1970), ORCHARD Größkogelgruppe (dm-do) (1978), SCHÖNLAUB (1980), SCHULZE (1968), WALLISER ~ Gk-Fl.,erkalk (1964), WEDDIGE (1977), WIRTH (1967), WITTEKINDT Gk-Kalk (1966), ZIEGLER (1958, 1962, 1966, 1973, 1975, 1977), Gk-Dolomit ZIEGLER, KLAPPER & JOHNSON (1976). ~ Heubergformation (du?,dm) 1. Das Paläozoikum ~ Koglerformation (du,dm) Der Hochlantsch wird von drei paläozoischen Ent- ~ Höllgrabeneinheit (du) wicklungen aufgebaut, die (soweit nachweisbar) einen teilweise übereinstimmenden zeitlichen Umfang besit- ~ Gschwendtformation (du,dm) zen.Es sind dies die Hochlantschgruppe, die Laufnitzdorfer Gruppe und die "Kalkschiefer- r+++1 f 0 Ig e". Hierbei beschränkt sich die erstgenannte ~ Kristallin Gruppe auf die Hochlantschdecke (im Sinne von FLÜ- GEL & NEUBAUER, 1984), während die beiden anderen in -300 0 0 unterschiedlichen tektonischen Positionen auftreten -:-60 - 85 saiga invers ..L ..L (Kap. C, Abb. 1, 8, 9). -'- -+- -+ Störung, Uber- .........--..... ... schiebung 1.1. Die Hochlantschgruppe - (vermutet) Diese südlich des Mixnitzbaches bis zu 2000 m '" mächtige Gruppe umfaßt stratigraphisch Ems bis Na- Bergbau (stillgelegt) 44 GEOLOGISCHE KARTE DES HOCHLANSCH a 500 -= Graz o 5 10km Abb. 1: Verbreitung der lithostratigraphischen Einheiten am Hochlantsch. 45 c: jedoch lokal eine offenmarine Beeinflussung feststellbar 0 c , ';;: <- ::> - ist. Im dm/do Grenzbereich kommt es einerseits zur Cl> B t-- --- -'" E ----"--- 0 0 Entwicklung einer pelagischen, conodonten- und tenta- Z z A Mixni tz e r 0 c: kulitenreichen Stillwasserfazies, andererseits zeigen 0 cu III Karbon CD Cl> <Jl - 100m die zeitgleichen Hochlantschkalke (dol-doll/lll) mit Ko- er cu II <t ~--+ rallen und Stromatolithen Flachwasserbedingungen. 2! 0 c: 'v; '" ::> 'e; Nach einer Heraushebung, Deformation mit einer mög- E cu I licherweise durch Zerrungstektonik bewirkten Kluftbil- ::> ,:? dung, Erosion und Reliefbildung transgrediert im obe- do VI c: ren Tournais das Mixnitzer Karbon über einem Paläore- 0 do V 'e: , c: do IV lief des Hochlantschkalk, wobei infolge rascher Absen- <- Cl> Cl> E do III -'" 0 kung bis ins Namur B reichende pelagische Kalke ab- 0 u... do II Hochlantsch- -x-x- 7 Steinbergkalk gelagert werden (Abb. 3). Frasnian da I kalk max 15 m ca, 800 m -~----- ~~-""Z.... ">--~ ~ Zachenspitzformation NERITISCH PELAGISCH ~ m z c: - - -.2:_ ~3~m __ 0 ~- intertidal subtidal 0 :;: 0 Cl> > > > U Tyrnauer - Alm - Formation , i5 7 u.J 0; ----:- max, 500 m 0 ensensls I c L- 0 i: - Z "'--------- woO -- 00 L- 7 c: '-. .Q "'" Barra nd ei sc h ich t en o~ .~ 45 m W > Schichtlücke """<:-. , - - - - ('Ges,teine? d,- I c <- c: Dolomit 0 - ~reltalmkreuz" L- 0 2! 'v; c: Sandst ein folge mehr~ 10er f!! WoO ::> ...... L- ~ ca, 500 m C d ~ =>..:.:: Abb. 2: Stratigraphie und Mächtigkeit der Schichten in der C Hochlantschgruppe. o > W "0 L- mur B. Das Fehlen älterer Schichtglieder ist wahr- QJ 00 scheinlich auf eine diskordante Überschiebung mit ba- o saler Amputation zurückzuführen. Die stratigraphische Stellung und Mächtigkeit der einzelnen Formationen ist in Abb. 2 dargestellt. Die Hochlantschgruppe läßt sich vor allem aufgrund C Ty d ihrer tektonisch hohen Position und z. T. wegen ihrer Ii- ...... thofaziellen Entwicklung mit der Rannachfazies des nä- QJ > heren
Recommended publications
  • Geological Excursion BASE-Line Earth
    Geological Excursion BASE-LiNE Earth (Graz Paleozoic, Geopark Karavanke, Austria) 7.6. – 9.6. 2016 Route: 1. Day: Graz Paleozoic in the vicinity of Graz. Devonian Limestone with brachiopods. Bus transfer to Bad Eisenkappel. 2. Day: Visit of Geopark Center in Bad Eisenkappel. Walk on Hochobir (2.139 m) – Triassic carbonates. 3. Day: Bus transfer to Mezica (Slo) – visit of lead and zinc mine (Triassic carbonates). Transfer back to Graz. CONTENT Route: ................................................................................................................................... 1 Graz Paleozoic ...................................................................................................................... 2 Mesozoic of Northern Karavanke .......................................................................................... 6 Linking geology between the Geoparks Carnic and Karavanke Alps across the Periadriatic Line ....................................................................................................................................... 9 I: Introduction ..................................................................................................................... 9 II. Tectonic subdivision and correlation .............................................................................10 Geodynamic evolution ...................................................................................................16 Alpine history in eight steps ...........................................................................................17
    [Show full text]
  • Seminum 2017 Tisk
    FRONT COVER: Campanula cochleariifolia Lam. SK-0-PLZEN-4260-98-20 (No. 75) Slovakia, Nízké Tatry Mts., Demänovská dolina, near hotel Repiská, calcareous rocks Photo: Jaroslav Vogeltanz INDEX SEMINUM 2017 PLZE Ň 2017 1 ZOOLOGICAL AND BOTANICAL GARDEN OF THE CITY PLZEN Pod Vinicemi 9, 301 00 Plzen Czech Republic Telephone: +420/378038301 Fax: +420/378038302 E-mail: [email protected] Area: 21,5 ha Geographical location: Latitude: 49 o 44’ N Longitude: 13 o23’ E Altitude: 330 m Annual average temperature: 7,4 oC Highest annual temperature: 40 o C Lowest annual temperature: - 27 oC Annual rainfall: 512 mm Director: Ing. Ji ří Trávní ček Curator of Botany: Ing. Tomáš Peš Seed collectors: Mgr. Václava Pešková, Radka Matulová, Petra Vonášková, Lenka Richterová, Hana Janouškovcová 2 Please notice: Complying with article 15 of the Convention on Biological Diversity (CBD, 1992), the Zoological and Botanical Garden of Plzen provides seeds and any other plant material only for botanical gardens and other scientific institutions using this materiál according to the CBD. We are part of the IPEN network (International Plant Exchange Network) and can exchange material with other IPEN-members without further bi-lateral agreements.For a list of gardens currently registered with IPEN and for additional information, please refer to the BGCI website. Non IPEN-members have to return the Agreement on the supply of living plant material for non-commercial purposes leaving the International Plant Exchange Network , which must be signed by authorized staff. The IPEN number given with the seed material consists of four elements: 1. The first two characters are the international iso 3166-1-alpha-2-code of the country of origin ("XX" for unknown origin) 2.
    [Show full text]
  • Young Uplift in the Non-Glaciated Parts of the Eastern Alps, Earth Planet
    THOMAS WAGNER YOUNG UPLIFT IN THE NON -GLACIATED PARTS OF THE EASTERN ALPS GEOMORPHOLOGICAL AND GEOCHRONOLOGICAL CONSTRAINTS A dissertation submitted to the Faculty of Natural Science Karl-Franzens University of Graz Austria for the Degree of Doctor of Science September 2010 “Only those who will risk going too far can possibly find out how far one can go.” T.S. Eliot PREAMBLE The study of the growth of mountains and the evolution of their landforms is a subject at the heart of Earth sciences. However, only newly available geochronological methods allow to constrain the timing of formation of landforms in more detail. In particular the evolution of landforms in Pliocene to Pleistocene times is much debated, because of a worldwide increase in sedimentation rates observed at the same time. Climate changes and tectonic processes are possible candidates to explain this increase. The research effort presented in this thesis fills the gap of knowledge concerning the topographic evolution of the last few million years to today’s face of a region along the eastern margin of the Alps: the Styrian Block. This block includes the Styrian Basin and its surrounding basement. New time constraints from various cave, stream and fault deposits are reported and are interpreted in terms of river incision rates, aggradation and re-excavation events. Uplift rates of the region are estimated. DEM data are used to identify the geomorphic disequilibrium of the whole Alps. The results support the notion that tectonically driven deformation and responding erosion is taking place to an increased level over the last 5-6 Ma.
    [Show full text]
  • Characterizing the Spatiotemporal Variability of Groundwater
    Characterizing the spatiotemporal variability of groundwater levels of alluvial aquifers in different settings using drought indices Johannes Christoph Haas1, 2 and Steffen Birk1, 2 1Institute of Earth Sciences, NAWI Graz Geocenter, University of Graz, Austria 2FWF-DK Climate Change, University of Graz, Austria Correspondence to: Johannes Christoph Haas ([email protected]) Abstract. To improve the understanding of how aquifers in different alluvial settings respond to extreme events in a changing environment, we analyze standardized time series of groundwater levels (Standardized Groundwater level Index - SGI), pre- cipitation (Standardized Precipitation Index - SPI), and river stages of three subregions within the catchment of the river Mur (Austria). Using correlation matrices, differences and similarities between the subregions, ranging from the Alpine upstream 5 part of the catchment to its shallow foreland basin, are identified and visualized. Generally, river stages exhibit the highest correlations with groundwater levels, frequently affecting not only the wells closest to the river, but also more distant parts of the alluvial aquifer. As a result, human impacts on the river are transferred to the aquifer, thus affecting the behavior of groundwater levels. Hence, to avoid misinterpretation of groundwater levels in this type of setting, it is important to account for the river and human impacts on it. 10 While the river is a controlling factor in all of the subregions, an influence of precipitation is evident too. Except for deep wells found in an upstream Alpine basin, groundwater levels show the highest correlation with a precipitation accumulation period of six months (SPI6). The correlation in the foreland is generally higher than that in the Alpine subregions, thus corre- sponding to a trend from deeper wells in the Alpine parts of the catchment towards more shallow wells in the foreland.
    [Show full text]
  • Seminum 2018
    FRONT COVER: Fibigia clypeata (L.) Medik. TR-0-M-2010/2484 (No. 62) BG München/ Turkey, Bolkar Dag Photo: Jaroslav Vogeltanz INDEX SEMINUM 2018 PLZE Ň 2018 1 ZOOLOGICAL AND BOTANICAL GARDEN OF THE CITY PLZEN Pod Vinicemi 9, 301 00 Plzen Czech Republic Telephone: +420/378038301 Fax: +420/378038302 E-mail: [email protected] Area: 21,5 ha Geographical location: Latitude: 49 o 44’ N Longitude: 13 o23’ E Altitude: 330 m Annual average temperature: 7,4 oC Highest annual temperature: 40 o C Lowest annual temperature: - 27 oC Annual rainfall: 512 mm Director: Ing. Ji ří Trávní ček Curator of Botany: Ing. Tomáš Peš Seed collectors: Mgr. Václava Pešková, Radka Matulová, Petra Vonášková, Lenka Richterová 2 Please notice: Complying with article 15 of the Convention on Biological Diversity (CBD, 1992), the Zoological and Botanical Garden of Plzen provides seeds and any other plant material only for botanical gardens and other scientific institutions using this material according to the CBD. We are part of the IPEN network (International Plant Exchange Network) and can exchange material with other IPEN-members without further bi-lateral agreements.For a list of gardens currently registered with IPEN and for additional information, please refer to the BGCI website. Non IPEN-members have to return the Agreement on the supply of living plant material for non-commercial purposes leaving the International Plant Exchange Network , which must be signed by authorized staff. The IPEN number given with the seed material consists of four elements: 1. The first two characters are the international iso 3166-1-alpha-2-code of the country of origin ("XX" for unknown origin) 2.
    [Show full text]
  • AUSTRIAN JOURNAL of EARTH SCIENCES Volume 98 2005
    AUSTRIAN JOURNAL of EARTH SCIENCES [MITTEILUNGEN der ÖSTERREICHISCHEN GEOLOGISCHEN GESELLSCHAFT] an INTERNATIONAL JOURNAL of the AUSTRIAN GEOLOGICAL SOCIETY volume 98 2005 István DUNKL, Joachim KUHLEMANN, John REINECKER & Wolfgang FRISCH: Cenozoic relief evolution of the Eastern Alps – constraints from apatite fission track age-provenance of Neogene intramontane sediments__________________________________________________________________________ www.univie.ac.at/ajes EDITING: Grasemann Bernhard, Wagreich Michael PUBLISCHER: Österreichische Geologische Gesellschaft Rasumofskygasse 23, A-1031 Wien TYPESETTER: Irnberger Norbert, www.irnberger.net Copy-Shop Urban, Bahnstraße 26a, 2130 Mistelbach PRINTER: Holzhausen Druck & Medien GmbH Holzhausenplatz 1, 1140 Wien ISSN 0251-7493 Austrian Journal of Earth Sciences Volume 98 Vienna 2005 Cenozoic relief evolution of the Eastern Alps – con- straints from apatite fission track age-provenance of Neogene intramontane sediments István DUNKL1)*), Joachim KUHLEMANN2), John REINECKER2) & Wolfgang FRISCH2) KEYWORDS paleogeography fission track provenance 1) Sedimentology, Geoscience Center, University of Göttingen exhumation 2) Institute of Geosciences, University of Tübingen sediment relief *) Corresponding author, [email protected] Alps Abstract Fission track (FT) ages of detrital apatites from Middle Miocene sandstones of the intramontane basins of the Eastern Alps register the surface distribution of FT ages of the Alps in its former stage of evolution. We have used the apatite detrital
    [Show full text]
  • Index Seminum 2019
    FRONT COVER: Anthericum liliago L. CZ-0-PLZEN-1613-12-20 (No. 41) Czech Republic, C Bohemia, N of Beroun, Trubín Photo: Jaroslav Vogeltanz INDEX SEMINUM 2019 PLZEŇ 2019 1 ZOOLOGICAL AND BOTANICAL GARDEN OF THE CITY PLZEN Pod Vinicemi 9, 301 00 Plzen Czech Republic Telephone: +420/378038301 Fax: +420/378038302 E-mail: [email protected] Area: 21,5 ha Geographical location: Latitude: 49o 44’ N Longitude: 13o23’ E Altitude: 330 m Annual average temperature: 7,4 oC Highest annual temperature: 40 o C Lowest annual temperature: - 27 oC Annual rainfall: 512 mm Director: Ing. Jiří Trávníček Curator of Botany: Ing. Tomáš Peš Seed collectors: Mgr. Václava Pešková, Radka Matulová, Šárka Sýkorová, Petra Vonášková, Lenka Richterová, Michaela Sýkorová 2 Please notice: Complying with article 15 of the Convention on Biological Diversity (CBD, 1992), the Zoological and Botanical Garden of Plzen provides seeds and any other plant material only for botanical gardens and other scientific institutions using this material according to the CBD. We are part of the IPEN network (International Plant Exchange Network) and can exchange material with other IPEN-members without further bi-lateral agreements.For a list of gardens currently registered with IPEN and for additional information, please refer to the BGCI website. Non IPEN-members have to return the Agreement on the supply of living plant material for non-commercial purposes leaving the International Plant Exchange Network, which must be signed by authorized staff. The IPEN number given with the seed material consists of four elements: 1. The first two characters are the international iso 3166-1-alpha-2-code of the country of origin ("XX" for unknown origin) 2.
    [Show full text]
  • ALPBIONET2030 Integrative Alpine Wildlife and Habitat Management for the Next Generation
    ALPBIONET2030 Integrative Alpine wildlife and habitat management for the next generation Super Strategic Connectivity Areas in and around the Alps Integrative Alpine wildlife and habitat management for the next generation The ´Super-SACA´ approach – very important areas for [ecological] connectivity in the Alps 1) Strategic Alpine Connectivity Areas - a basis for the Super SACA identification The ALPBIONET2030 project tried to bring together, analyse and combine a series of different indicators influencing ecological connectivity at different levels in order to illustrate the current situation of connectivity in the alpine and EUSALP territory and to elaborate, through a collection of the maps, a concrete foundation for planning a sustainable strategy of land use in the Alpine Space. The project integrated essential factors of such a strategy by defining Strategic Alpine Connectivity Areas (SACA) with an especially dedicated tool (JECAMI 2.0), evaluating wildlife management and human-nature conflict management aspects and generating recommendations. The extent of the project encompassed, for the first time in this thematic field, the whole area of the European Strategy of the Alpine Region (EUSALP). Map1: Strategic Alpine Connectivity Areas in the Alps and EUSALP 2 Integrative Alpine wildlife and habitat management for the next generation Map N°1 displays all three of the different types of Strategic Alpine Connectivity Areas at once. The map clearly illustrates that the Ecological Intervention Areas (EIA) constitute the largest percentage of the Strategic Alpine Connectivity Areas. The EIA act as linkages between Ecological Conservation Areas (ECA) as well as buffer zones. Looking at the Alpine and EUSALP picture, it appears that the ECA, mostly located in the higher Alpine areas, are, to a large extent, already benefiting from an existing protection measure (some category of protected area) and therefore need commitment to long term preservation of this status without any degradation of ecological functioning.
    [Show full text]
  • Geomorphology 134 (2011) 62–78
    Geomorphology 134 (2011) 62–78 Contents lists available at ScienceDirect Geomorphology journal homepage: www.elsevier.com/locate/geomorph Correlations of cave levels, stream terraces and planation surfaces along the River Mur—Timing of landscape evolution along the eastern margin of the Alps Thomas Wagner a,⁎, Harald Fritz a, Kurt Stüwe a, Othmar Nestroy b, Helena Rodnight c, John Hellstrom d, Ralf Benischke e a Institute of Earth Sciences, University of Graz, Heinrichstraße 26, A-8010 Graz, Austria b Institute of Applied Geosciences, Graz University of Technology, Rechbauerstraße 12, A-8010 Graz, Austria c Institute of Geology and Paleontology, University of Innsbruck, Innrain 52, A-6020 Innsbruck, Austria d School of Earth Sciences, University of Melbourne, Parkville, Victoria 3010, Australia e Department of Water Resources Management, Institute for Water, Energy and Sustainability, Joanneum Research Forschungsgesellschaft mbH., Elisabethstraße 16, A-8010 Graz, Austria article info abstract Article history: The transition zone of the Eastern Alps to the Pannonian Basin provides one of the best sources of information Received 14 September 2010 on landscape evolution of the Eastern Alpine mountain range. The region was non-glaciated during the entire Received in revised form 16 March 2011 Pleistocene. Thus, direct influence of glacial carving as a landscape forming process can be excluded and relics Accepted 22 April 2011 of landforms are preserved that date back to at least the Late Neogene. In this study, we provide a correlation Available online 30 April 2011 between various planation surfaces across the orogen-basin transition. In particular, we use stream terraces, planation surfaces and cave levels that cover a vertical spread of some 700 m.
    [Show full text]
  • Das Grazer Paläozoikum: Ein Überblick
    ©Institut f. Erdwissensch., Geol. u. Paläont., Karl-Franzens-Universität Graz; download www.biologiezentrum.at I Ber. lnst. Geol. Paläont. K.-F.-Univ. Graz, ISSN 1608-81 66, Band 3, Graz 2001 Grazer Paläozoikum I Das Grazer Paläozoikum: Ein Überblick Fritz EBNER, 1 Harald FRITZ2 & Bernhard HUBMANN2 Montanuniversität Leoben, Institut für Geowissenschaften, A-8700 Leoben, Österreich, Fax: +43/3842-402-9902 2 Karl-Franzens-Universität Graz, Institut für Geologie und Paläontologie, A-8010 Graz, Heinrichstraße 26, Österreich, Fax. +43/316-380-9871 Einleitung Die letzte monographische Darstellung des Grazer Paläozoikums wurde von FLüGEL (1975) verfasst. Seither erschienen mehrere Einzeldarstellungen, darunter auch synoptische Arbeiten einzelner tektonischer Teilbereiche (zuletzt: EBNER et al. 2000). Mit FLüGEL (2000) liegt eine lithostratigraphische Neubenennung des Gesamtraumes vor. Im folgenden wird versucht, einen vereinfachten aktuellen Überblick über die Entwicklung des Grazer Paläozoikums zu geben. 1. Der geologische Bau des Grazer Paläozoikums Das Grazer Paläozoikum umfaßt ein ca. 1250 km2 großes Gebiet, welches nord(westlich) und westlich vom mittelostalpinen Gleinalm- (Muriden) bzw. Koralmkristallin (Koriden) und im Osten vom Kristallin von St. Radegund (Mittelostalpin) und vom Raabalpenkristallin (Unterostalpin) begrenzt wird. Nach NEUBAUER (1981) wird das vormals dem Mittelostalpin zugeordnete Angerkristallin im östlichen Grenzbereich des Grazer Paläozoikums auf Grund gradueller metamorpher Übergänge dem letzteren zugerechnet. Gegen
    [Show full text]
  • Correlations of Cave Levels, Stream Terraces and Planation Surfaces Along the River Mur—Timing of Landscape Evolution Along the Eastern Margin of the Alps
    Geomorphology 134 (2011) 62–78 Contents lists available at ScienceDirect Geomorphology journal homepage: www.elsevier.com/locate/geomorph Correlations of cave levels, stream terraces and planation surfaces along the River Mur—Timing of landscape evolution along the eastern margin of the Alps Thomas Wagner a,⁎, Harald Fritz a, Kurt Stüwe a, Othmar Nestroy b, Helena Rodnight c, John Hellstrom d, Ralf Benischke e a Institute of Earth Sciences, University of Graz, Heinrichstraße 26, A-8010 Graz, Austria b Institute of Applied Geosciences, Graz University of Technology, Rechbauerstraße 12, A-8010 Graz, Austria c Institute of Geology and Paleontology, University of Innsbruck, Innrain 52, A-6020 Innsbruck, Austria d School of Earth Sciences, University of Melbourne, Parkville, Victoria 3010, Australia e Department of Water Resources Management, Institute for Water, Energy and Sustainability, Joanneum Research Forschungsgesellschaft mbH., Elisabethstraße 16, A-8010 Graz, Austria article i nfo abstract Article history: The transition zone of the Eastern Alps to the Pannonian Basin provides one of the best sources of information Received 14 September 2010 on landscape evolution of the Eastern Alpine mountain range. The region was non-glaciated during the entire Received in revised form 16 March 2011 Pleistocene. Thus, direct influence of glacial carving as a landscape forming process can be excluded and relics Accepted 22 April 2011 of landforms are preserved that date back to at least the Late Neogene. In this study, we provide a correlation Available online 30 April 2011 between various planation surfaces across the orogen-basin transition. In particular, we use stream terraces, planation surfaces and cave levels that cover a vertical spread of some 700 m.
    [Show full text]