(Nypa Fruticans) Seedling
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ENVIRONMENTAL STUDIES Vol
PURARI RIVER (WABO) HYDROELECTRIC SCHEME ENVIRONMENTAL STUDIES Vol. 3 THE ECOLOGICA SIGNIFICANCE AND ECONOMIC IMPORTANCE OF THE MANGROVE ~AND ESTU.A.INE COMMUNITIES OF THE GULF PROVINCE, PAPUA NEW GUINEA Aby David S.Liem and Allan K. Haines .:N. IA 1-:" .": ". ' A, _"Gulf of Papua \-.. , . .. Office of Environment and Gonservatior, Central Government Offices, Waigani, Department o Minerals and Energy,and P.O. Box 2352, Kot.edobu !" " ' "car ' - ;' , ,-9"... 1977 "~ ~ u l -&,dJ&.3.,' -a,7- ..g=.<"- " - Papua New Guinea -.4- "-4-4 , ' -'., O~Cx c.A -6 Editor: Dr. T. Petr, Office of Environment and Conservation, Central Government Offices, Waigani, Papua New Guinea Authors: David S. Liem, Wildlife Division, Department of Natural Resources, Port Moresby, Papua New Guinea Allan K. Haines, Fisher;es Division, Department of Primary Industry, Konedobu, Papua New Guinea Reports p--blished in the series -ur'ri River (.:abo) Hyrcelectr.c S-hane: Environmental Studies Vol.l: Workshop 6 May 1977 (Ed.by T.Petr) (1977) Vol.2: Computer simulaticn of the impact of the Wabo hydroelectric scheme on the sediment balance of the Lower Purari (by G.Pickup) (1977) Vol.3: The ecological significance and economic importance of the mangrove and estuarine communities of the Gulf Province,Papua New Guinea (by D.S.Liem & A.K.Haines) (1977) Vol.4: The pawaia of the Upper Purari (Gulf Province,Papua New Guinea) (by C.Warrillow)( 1978) Vol.5: An archaeological and ethnographic survey of the Purari River (Wabo) dam site and reservoir (by S.J.Egloff & R.Kaiku) (1978) In -
First Record and Conservation Value of Periophthalmus Malaccensis Eggert from Borneo, with Ecological Notes on Other Mudskippers (Teleostei: Gobiidae) in Brunei
Biology Scientia Bruneiana Special Issue 2016 First record and conservation value of Periophthalmus malaccensis Eggert from Borneo, with ecological notes on other mudskippers (Teleostei: Gobiidae) in Brunei Gianluca Polgar* Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE 1410, Brunei Darussalam *corresponding author email: [email protected] Abstract The mudskipper Periophthalmus malaccensis is first reported from two mangrove areas of Brunei Darussalam, on the island of Borneo. This species has a relatively restricted geographic distribution and have been reported from Singapore, Philippines, Maluku Islands, western New Guinea, and northern Sulawesi. In Brunei, this species occurs at low population density in high intertidal habitats, which are highly impacted by anthropogenic destruction and fragmentation. For these reasons, the conservation status of this species should be evaluated. The distribution and habitat types of species belonging to Periophthalmus and Periophthalmodon in Brunei are also described. Index Terms: mudskippers, Brunei Bay, mangrove destruction, extinction risk 1. Introduction vulgaris Eggert (clade F in Polgar et al.6) and P. The genus Periophthalmus (Perciformes: argentilineatus Valenciénnes (clade K), occur Gobioidei: Gobiidae; ‘Periophthalmus lineage’1) sympatrically in Southeast Asia; P. sobrinus presently includes 18 species with amphibious Eggert (clade I) occurs in Eastern Africa, lifestyles, known as mudskippers.2,3 Four species Seychelles and Madagascar. A taxonomic were previously recorded from Borneo2: P. revision of P. argentilineatus is beyond the argentilineatus Valenciénnes, 1837 (Malaysia: scope of this contribution. Therefore, I will here Sarawak); P. gracilis Eggert, 1935 (Sarawak); P. record specimens of P. argentilineatus that are chrysospilos Bleeker, 1852 (Indonesia, morphologically similar to those in clade F6 as Kalimantan: Sebatic Island = Pulau Sebatik), and Periophthalmus cf. -
Nipah (Nypa Fruticans Wurmb.) Fruit As a Potential Natural Antioxidant Source
International Conference on Food and Bio-Industry 2019 IOP Publishing IOP Conf. Series: Earth and Environmental Science 443 (2020) 012096 doi:10.1088/1755-1315/443/1/012096 Nipah (Nypa fruticans Wurmb.) fruit as a potential natural antioxidant source H Hermanto1, R C Mukti2 and A D Pangawikan3 1 Department of Agricultural Technology, Universitas Sriwijaya 2 Department of Aquaculture, Faculty of Agriculture, Universitas Sriwijaya, Jl. Palembang Prabumulih KM.32 Ogan Ilir, Sumatera Selatan 3 Department of Agricultural Industry Technology, Faculty of Agricultural Industrial Technology, Universitas Padjajaran, Jatinangor, Sumedang, Jawa Barat Email: [email protected] Abstract. Nipah is one of mangrove plant that grows in coastal areas. South Sumatra province has a region with a watershed which is overgrown with nipah plants. Until now, nipah fruit has a low economic value because of the lacks of knowledge about the processing techniques of nipah fruit and the lacks of scientific attention which cover up the potential of nipah fruit as a functional food. This study aims to reveal the potential of nipah fruit, especially as natural antioxidants source. Total phenolics content (TPC) and antioxidant activities of Nypa fruticans fruit extracts (ripe and unripe) have been analyzed. Fruit extract from unripe nipah fruits (FEUN) got the highest phenolics content (121.3 ± 3.3 mg GAE/g). Radical scavenging activity of FEUN, assessed by 1,1–diphenyl–2 - picrylhydrazyl (DPPH) radicals showed inhibitory activity about 81 ± 3.1%RSA. Hopefully, this research could reveal the potential of nipah fruit as a potential source of natural antioxidant 1. Introduction Natural antioxidant used as an exogenous antioxidant in food system [1]. -
Species Composition and Diversity of Mangrove Swamp Forest in Southern Nigeria
International Journal of Avian & Wildlife Biology Research Article Open Access Species composition and diversity of mangrove swamp forest in southern Nigeria Abstract Volume 3 Issue 2 - 2018 The study was conducted to assess the species composition and diversity of Anantigha Sijeh Agbor Asuk, Eric Etim Offiong , Nzube Mangrove Swamp Forest in southern Nigeria. Systematic line transect technique was adopted for the study. From the total mangrove area of 47.5312 ha, four rectangular plots Michael Ifebueme, Emediong Okokon Akpaso of 10 by 1000m representing sampling intensity of 8.42 percent were demarcated. Total University of Calabar, Nigeria identification and inventory was conducted and data on plant species name, family and number of stands were collected and used to compute the species importance value and Correspondence: Sijeh Agbor Asuk, Department of Forestry and Wildlife Resources Management, University of Calabar, PMB family importance values. Simpson’s diversity index and richness as well as Shannon- 1115, Calabar, Nigeria, Email [email protected] Weiner index and evenness were used to assess the species diversity and richness of the forest. Results revealed that the forest was characterized by few families represented by few Received: October 23, 2017 | Published: April 13, 2018 species dominated by Rhizophora racemosa, Nypa fructicans, Avicennia germinans and Acrostichum aureum which were also most important in the study and a few other species. Furthermore, presence of Nypa palm (Nypa fructicans) as the second most abundant species in the study area was indicative of the adverse effect of human activities on the ecosystem. The Simpson’s diversity index and richness of 0.83 and 5.896, and Shannon- Weiner diversity and evenness of 2.054 and 0.801 respectively were low, compared to mangrove forests in similar locations thus, making these species prone to extinction and further colonization of Nypa fructicans in the forest. -
Phytochemical Screening and Antimicrobial Activity of Nypa Fruticans Harvested from Oporo River in the Niger Delta Region of Nigeria
International Journal of Innovation and Applied Studies ISSN 2028-9324 Vol. 10 No. 4 Mar. 2015, pp. 1120-1124 © 2015 Innovative Space of Scientific Research Journals http://www.ijias.issr-journals.org/ Phytochemical Screening and Antimicrobial Activity of Nypa fruticans Harvested from Oporo River in the Niger Delta Region of Nigeria R.U.B. Ebana1, C. A. Etok2, and U. O. Edet1 1Microbiology and Biotechnology Department, Obong University, Obong Ntak, Etim Ekpo, Akwa Ibom State, Nigeria 2Microbiology Department, University of Uyo, Uyo, Akwa Ibom State, Nigeria Copyright © 2015 ISSR Journals. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT: First introduced to check coastal erosion, Nypa fruticans has proven to be much more useful. Given the variety of potentials it possess, we decided to analyse the leaves, husks and midveins of this plant for phytochemical bases and also test the antimicrobial property of various extracts against Escherichia coli, Klebsiella pneumonia, Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa. Phytochemical screening revealed the presence of alkaloids and polyphenols, and absence of tannins and anthraquinones. Aqueous and ethanolic extracts of the midveins, leaves and husks showed good antimicrobial against all the test organisms. Varying concentrations of the ethanolic extract of the leaves revealed that at concentration of 5% and above gave absolute inhibition of E. coli. There is need to reconsider the re- utilization of Nypa Palm in Nigeria. KEYWORDS: Nypa Palm, Polyphenols, Tannins, phytochemicals, Oporo River, Niger Delta. INTRODUCTION Nypa palm (Nypa fruticans) is a prostrate-stemmed gregarious palm growing in estuarine conditions akin to mangroves and is sometimes referred to as a mangrove plant as it flourishes in mangrove environment ranging from Queensland to India. -
Diversity and Characteristics of Mangrove Vegetation in Pulau Rimau Protection Forest, Banyuasin District, South Sumatra, Indonesia
BIODIVERSITAS ISSN: 1412-033X Volume 20, Number 4, April 2019 E-ISSN: 2085-4722 Pages: 1215-1221 DOI: 10.13057/biodiv/d200438 Diversity and characteristics of mangrove vegetation in Pulau Rimau Protection Forest, Banyuasin District, South Sumatra, Indonesia ERNIK YULIANA1,♥, YUNI TRI HEWINDATI1, ADI WINATA1, WIBOWO A. DJATMIKO2, ATI RAHADIATI3 1Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Terbuka. Jl. Cabe Raya Pondok Cabe, Pamulang, Tangerang Selatan, Banten, Indonesia. Tel./fax.: +62-21-7490941, email: [email protected] 2The Indonesian Tropical Institute (LATIN). Jl Sutera No 1, Situgede, Bogor 16115, West Java, Indonesia 3The Indonesian Geospatial Information Agency. Jl. Raya Bogor Km 46, Nanggewer Mekar, Cibinong, Bogor 16911, West Java, Indonesia Manuscript received: 9 January 2019. Revision accepted: 30 March 2019. Abstract. Yuliana E, Hewindati YT, Winata A, Djatmiko WA, Rahadiati A. 2019. Diversity and characteristics of mangrove vegetation in Pulau Rimau Protection Forest, Banyuasin District, South Sumatra, Indonesia. Biodiversitas 20: 1215-1221. The purpose of the study was to analyze the flora diversity and characteristics of mangrove vegetation in Pulau Rimau Protection Forest, Banyuasin District, South Sumatra. Data collected were the number and girth diameter of mangrove tree species, and aquatic ecology parameters using transect method. The sample plots size were 2m×2 m; 5m×5 m; 10m×10 m; for seedling, sapling, and tree, respectively. The observation plots were arranged in a row of 120 m length on two sides of the forest edge, namely Calik Riverbank and Banyuasin Riverbank. Data were analyzed using importance value index (IVI), Simpson’s diversity index and Sørensen’s community similarity. -
Introduction to Biogeography and Tropical Biology
Alexey Shipunov Introduction to Biogeography and Tropical Biology Draft, version April 10, 2019 Shipunov, Alexey. Introduction to Biogeography and Tropical Biology. This at the mo- ment serves as a reference to major plants and animals groups (taxonomy) and de- scriptive biogeography (“what is where”), emphasizing tropics. April 10, 2019 version (draft). 101 pp. Title page image: Northern Great Plains, North America. Elaeagnus commutata (sil- verberry, Elaeagnaceae, Rosales) is in front. This work is dedicated to public domain. Contents What 6 Chapter 1. Diversity maps ............................. 7 Diversity atlas .................................. 16 Chapter 2. Vegetabilia ............................... 46 Bryophyta ..................................... 46 Pteridophyta ................................... 46 Spermatophyta .................................. 46 Chapter 3. Animalia ................................ 47 Arthropoda .................................... 47 Mollusca ..................................... 47 Chordata ..................................... 47 When 48 Chapter 4. The Really Short History of Life . 49 Origin of Life ................................... 51 Prokaryotic World ................................ 52 The Rise of Nonskeletal Fauna ......................... 53 Filling Marine Ecosystems ............................ 54 First Life on Land ................................. 56 Coal and Mud Forests .............................. 58 Pangea and Great Extinction .......................... 60 Renovation of the Terrestrial -
WRA Species Report
Family: Arecaceae Taxon: Nypa fruticans Synonym: Nipa fruticans Thunb. Common Name: Mangrove palm "Nypa arborescens Wurmb ex H. Wendl., nom Nipa palm palmier nipa Questionaire : current 20090513 Assessor: Chuck Chimera Designation: H(HPWRA) Status: Assessor Approved Data Entry Person: Chuck Chimera WRA Score 9 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? y=1, n=-1 103 Does the species have weedy races? y=1, n=-1 201 Species suited to tropical or subtropical climate(s) - If island is primarily wet habitat, then (0-low; 1-intermediate; 2- High substitute "wet tropical" for "tropical or subtropical" high) (See Appendix 2) 202 Quality of climate match data (0-low; 1-intermediate; 2- High high) (See Appendix 2) 203 Broad climate suitability (environmental versatility) y=1, n=0 n 204 Native or naturalized in regions with tropical or subtropical climates y=1, n=0 y 205 Does the species have a history of repeated introductions outside its natural range? y=-2, ?=-1, n=0 n 301 Naturalized beyond native range y = 1*multiplier (see y Appendix 2), n= question 205 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see n Appendix 2) 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see y Appendix 2) 304 Environmental weed n=0, y = 2*multiplier (see y Appendix 2) 305 Congeneric weed n=0, y = 1*multiplier (see n Appendix 2) 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic y=1, n=0 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals y=1, n=-1 n 405 -
Variability of Sap Yield in Kaong (Arenga Pinnata (Wurmb) Merr.)
Ecosystems & Development Journal 5(1): 23‐30 October 2014 ISSN 2012‐3612 ABSTRACT The study aimed to find the extent to which sap yield in kaong (Arenga pinnata (Wurmb) Merr.), a potential source of bioethanol and sugar with low glycemic index, varies from one tree to another within the same locality and from one locality to another. The study was carried out using randomly selected Variability of Sap Yield trees from six natural stands located in different parts of the Philippines: Makiling Forest, College, Laguna; Cavinti, in Kaong (Arenga pinnata Laguna; Santor, Tanauan, Batangas; Cavite State University, Indang, Cavite; Sigma, Capiz; and Binaton, Digos, Davao del (Wurmb) Merr.) Sur. One inflorescence was tapped from each of the trees used in the study. The results showed that within the same locality, in the Philippines significant tree to tree variations exist in terms of tapping duration (total number of days a tree exudes sap) and in terms of average daily sap yield. Significant differences were also observed between morning (AM) and afternoon (PM) sap yields. Celso B. Lanticana and b PM yields were consistently higher, presumably because Anders Haagen photosynthesis occurs at daytime. Trees differed widely in terms of tapping duration (range: 24 to 604 days; mean: 150 days). Average daily sap yield varied from one location to another. The highest yields were found for Mt. INTRODUCTION Makiling and Binaton. In all localities studied, tree to tree variation in sap yield was high. Yields of eight liters or more per day were recorded for some trees in Binaton, Indang, Sigma and The increasing demand for two types of products may have been Makiling. -
Conserving Wetlands on the Andaman Coast
Conserving wetlands on the Andaman coast phu villages. Its aim initially was to assist the victims of the tsunami and rehabilitate dam- aged mangrove areas. Since then, the net- work has operated continuously to conserve mangroves and other coastal resources with support from public and private organisations such as UNDP, IUCN, Farmers Federation Association for Development, Raks Thai Foundation, World Vision, Save the Anda- man Network, and the Thai government’s Mangrove Development Station 9. Target beneficiaries The main beneficiaries were 120 of the 829 households in the three core villages of the Kapoe Mangrove Rehabilitation Network. Conserving wetlands, Andaman coast, Thailand © S. Sereepaowong Thailand © S. Andaman coast, Conserving wetlands, Outputs Nine hectares of rehabilitated mangrove Objectives area added to the 256-hectare commu- This project aimed to ensure the sustainable nity protected area by planting N. fruti- use of mangroves, maintain biodiversity, and cans to provide raw material for income- generate supplementary income for local generating activities. 6.1Ú people, especially from the use of the palm Nypa fruticans. Its specific objectives were: Capacity built among community mem- THAILAND bers and youth groups through active to demonstrate how mangrove forest participation in conservation activities. rehabilitation supports community liveli- hoods; Conservation awareness of at least 60% of the targeted population enhanced LOCATION to provide communities with knowledge through active and more frequent assem- Koh Yai Rang mangrove area, and information on managing mangroves, bly for community activities. Kapoe, Ranong, Thailand and raise community awareness of natu- PRIORITY POWS ral resources conservation; and Adoption of community regulations for • Reef to Ridge the use of community forests. -
Running Head 'Biology of Mangroves'
BIOLOGY OF MANGROVES AND MANGROVE ECOSYSTEMS 1 Biology of Mangroves and Mangrove Ecosystems ADVANCES IN MARINE BIOLOGY VOL 40: 81-251 (2001) K. Kathiresan1 and B.L. Bingham2 1Centre of Advanced Study in Marine Biology, Annamalai University, Parangipettai 608 502, India 2Huxley College of Environmental Studies, Western Washington University, Bellingham, WA 98225, USA e-mail [email protected] (correponding author) 1. Introduction.............................................................................................. 4 1.1. Preface........................................................................................ 4 1.2. Definition ................................................................................... 5 1.3. Global distribution ..................................................................... 5 2. History and Evolution ............................................................................. 10 2.1. Historical background ................................................................ 10 2.2. Evolution.................................................................................... 11 3. Biology of mangroves 3.1. Taxonomy and genetics.............................................................. 12 3.2. Anatomy..................................................................................... 15 3.3. Physiology ................................................................................. 18 3.4. Biochemistry ............................................................................. 20 3.5. Pollination -
Evaluation of Bioactive Compounds in Mangroves: a Panacea Towards Exploiting and Optimizing Mangrove Resources
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by International Institute for Science, Technology and Education (IISTE): E-Journals Journal of Natural Sciences Research www.iiste.org ISSN 2224-3186 (Paper) ISSN 2225-0921 (Online) Vol.5, No.23, 2015 Evaluation of Bioactive Compounds in Mangroves: A Panacea towards Exploiting and Optimizing Mangrove Resources Edu, E. A. B. Department of Botany, University of Calabar, P.M.B 1115, Calabar, Nigeria Edwin-Wosu, N.L. Department of Plant Science and Biotechnology,University of Port Harcourt, Choba,P.M.B. 5030, Port Harcourt Udensi, O. U. Department of Genetic and Biotechnology, University of Calabar, P.M.B 1115, Calabar, Nigeria Abstract The tissues (leaves, barks and roots) of mangrove species ( Nypa fruticans, Rhizophora racemosa and Avicennia africana ) were screened qualitatively and quantitatively for phytochemicals (metabolites). Phytochemical analysis indicated presence of highly polar bioactive compounds (alkaloids, saponins tannins flavonoids and reducing sugar) in their tissues. The concentration of these compounds varied significantly (P<0.001). The highest concentrations of alkaloids and saponins were in A. africana, flavonoids and tannins in R. racemosa and reducing sugars in N. fruticans . The existence of these metabolites suggests the possible contributions and potentials of the mangroves to medicine and the environment. Keywords: Mangrove species, Metabolites, Polar bioactive compounds, Medicine. Introduction It has been observed that one of the biggest challenges of Africa as a continent is the obvious under exploitation and utilization of our forest resources (Ikpeme et al., 2012), including mangrove trees. According to FAO (2003), approximately 4 percent of Nigeria’s rain forest disappear everyday, which could have served as reservoirs for pharmaceutical/therapeutic precursors and industrial raw materials.