"True Mangroves" Plant Species Traits
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Comparison of the Water Quality Between the Mangrove Areas Mulyorejo and Wonorejo
MATEC Web of Conferences 177, 01014 (2018) https://doi.org/10.1051/matecconf/201817701014 ISOCEEN 2017 A comparison of the water quality between the mangrove areas Mulyorejo and Wonorejo Luc Kauhl1,3 , Kayleigh Lambregts1,3,* , and Suntoyo2 1Exchange student, Ocean Engineering Department, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember (ITS), Surabaya, Indonesia (60111) 2Associate Professor, Ocean Engineering Department, Faculty of Marine Technology, Institut Teknologi Sepuluh Nopember (ITS), Surabaya, Indonesia (60111) 3Student, Delta Acadamy, HZ University of Applied Sciences, Edisonweg 4, 4382 NW Vlissingen, The Netherlands Abstract. The East Coast of Surabaya consists of large mangrove and fish pond areas. These areas are crucial for the ecosystem and for providing food and shelter for the local community. If the water quality decreases the mangroves will not be able to provide these functions. The water quality of these areas can be measured in two ways: by looking at the physico-chemical parameters or by looking at the biological parameters. Both offer a very good view of what state the area is in. The purpose of this study is to find out what the differences are between the Mulyorejo and the Wonorejo areas to see what differences there are within the East Coast of Surabaya and what could be the main cause of these differences. The data shows that the physico- chemical data does not comply with the limitation factors. The main problem are the nutrients which will have to be lowered to preserve the ecosystem. In terms of the biological state of the mangrove, there are few problems found. It is, however, unclear why the tree density in one of the Wonorejo areas is declining and it should be determined what the reason for this is. -
Acrostichum Aureum Linn
International Journal of Pharmacy and Biological Sciences ISSN: 2321-3272 (Print), ISSN: 2230-7605 (Online) IJPBS | Volume 8 | Issue 2 | APR-JUN | 2018 | 452-456 Research Article | Biological Sciences | Open Access | MCI Approved| |UGC Approved Journal | A PHYLOGENETIC INSIGHT INTO THE FERN RHIZOSPHERE OF Acrostichum aureum Linn. *S Rahaman1, A R Bera1, V Vishal1, P K Singh2,4 and S Ganguli3 1Department of Botany, Bangabasi Evening College, Kolkata, India 2Computational Biology Unit, The Biome, Kolkata - 64, India 3Theoretical and Computational Biology Division, Amplicon-IIST, Palta, India 4Current Address: The Division of Plant Biology, Bose Institute, Kolkata *Corresponding Author Email: [email protected] ABSTRACT Abstract: Fern rhizosphere has not been explored in great detail due to the lack of proper definition of the rhizosphere of the mostly epiphytic group. This work uses metagenomic sequencing, for assessing the rhizosphere of the only reported terrestrial mangrove fern Acrostichum aureum Linn. from the Indian Sunderbans. Targeted sequencing of the V3 - V4 region using Illumina Hiseq was performed and the analyses of the sequenced files revealed the presence of a wide variety of microbial members with the highest belonging to Proteobacteria superphyla. We believe that this is the first phylogenetic assessment of the Fern rhizosphere and should provide us with valuable insights into the quality of microbial assemblage available in this particular niche. KEY WORDS Fern Metagenomics, Rhizosphere, Phylogenetic Analyses, KRAKEN. INTRODUCTION: for example - biofilm production, conjugation and The soil around the roots of plants was defined as the symbiosis and virulence (Miller and Bassler 2001) rhizosphere which has gained importance due to the Mangrove forests are classified into six distinct presence of both growth promoting and pathogenic categories. -
261 Comparative Morphology and Anatomy of Few Mangrove Species
261 International Journal of Bio-resource and Stress Management 2012, 3(1):001-017 Comparative Morphology and Anatomy of Few Mangrove Species in Sundarbans, West Bengal, India and its Adaptation to Saline Habitat Humberto Gonzalez Rodriguez1, Bholanath Mondal2, N. C. Sarkar3, A. Ramaswamy4, D. Rajkumar4 and R. K. Maiti4 1Facultad de Ciencias Forestales, Universidad Autonoma de Nuevo Leon, Carr. Nac. No. 85, Km 145, Linares, N.L. Mexico 2Department of Plant Protection, Palli Siksha Bhavana, Visva-Bharati, Sriniketan (731 236), West Bengal, India 3Department of Agronomy, SASRD, Nagaland University, Medziphema campus, Medziphema (PO), DImapur (797 106), India 4Vibha Seeds, Inspire, Plot#21, Sector 1, Huda Techno Enclave, High Tech City Road, Madhapur, Hyderabad, Andhra Pradesh (500 081), India Article History Abstract Manuscript No. 261 Mangroves cover large areas of shoreline in the tropics and subtropics where they Received in 30th January, 2012 are important components in the productivity and integrity of their ecosystems. High Received in revised form 9th February, 2012 variability is observed among the families of mangroves. Structural adaptations include Accepted in final form th4 March, 2012 pneumatophores, thick leaves, aerenhyma in root helps in surviving under flooded saline conditions. There is major inter- and intraspecific variability among mangroves. In this paper described morpho-anatomical characters helps in identification of family Correspondence to and genus and species of mangroves. Most of the genus have special type of roots which include Support roots of Rhizophora, Pnematophores of Avicennia, Sonneratia, Knee *E-mail: [email protected] roots of Bruguiera, Ceriops, Buttress roots of Xylocarpus. Morpho-anatomically the leaves show xerophytic characteristics. -
Excoecaria Agallocha L
ANNEE : 2015 THESES 2015/ TOU3/ 2020 THESE POUR LE DIPLOME D'ETAT DE DOCTEUR EN PHARMACIE Présentée et soutenue publiquement par ALBINET Lucile Excoecaria agallocha L. Le 16 Mars 2015 Directrice de thèse : VANSTEELANDT Marieke JURY Président : FABRE, Nicolas 1er assesseur : VANSTEELANDT, Marieke 2ème assesseur : AMOUROUX, Noël 1 REMERCIEMENTS Au Président du jury : Mr Fabre, Professeur des Universités à la Faculté des Sciences Pharmaceutiques de Toulouse, je vous remercie de votre disponibilité et d’avoir accepté la présidence de ce jury. Aux membres du jury : Mme Vansteelandt, Maître de Conférences des Universités, et directrice de cette thèse je vous remercie de m’avoir accompagnée dans ce travail et pour votre aide précieuse tout au long de cette thèse. Mr Amouroux, Pharmacien et intervenant à la Faculté de Pharmacie, je vous remercie d’avoir accepté avec spontanéité de faire parti du jury de cette thèse ainsi que pour votre pédagogie tout au long de nos études. A mes parents, qui m’ont toujours encouragée et soutenue. A ma sœur, mon frère, Clau et Jean–Christophe merci pour votre présence et votre soutien. Et comme on dit : « La famille, c’est important la famille ! » A mes amies, Philippine et Sandrine que j’ai eu l’honneur de rencontrer grace à nos études de pharmacie, et dont l’amitié durera encore pour longtemps. Et merci à tous mes amis qui m’accompagnent au quotidien. Enfin, MERCI Rémi pour ton amour et ta grande patience qui, face à cette thèse, ont été mis à rude épreuve mais qui ne t’a pas empêché de vouloir m’épouser ! De tout mon cœur merci. -
Diversity of Pteridophytes in Western Ghats
Plant Archives Volume 21, No 1, 2021 pp. 1115-1129 e-ISSN:2581-6063 (online), ISSN:0972-5210 Plant Archives Journal home page: www.plantarchives.org DOI Url: https://doi.org/10.51470/PLANTARCHIVES.2021.v21.no1.148 DIVERSITY OF PTERIDOPHYTES IN WESTERN GHATS- A REVIEW Athira Krishnan1 and Rekha K.2* 1Department of Botany, Sree Narayana College, Nattika, Thrissur, Kerala, India-680566 2Department of Botany, St. Mary’s College,Thrissur, Kerala, India- 680020. *E-mail: [email protected] (Date of Receiving-28-11-2020 ; Date of Acceptance-19-02-2021) Pteridophytes are vascular cryptogams that dominated the earth 250 million years ago. Currently, there are 13,600 species of pteridophytes around the world, and is the second most dominant plant group. In India, there are 1200 pteridophyte species with 70 families and 192 genera. The pteridophyte hotspots in India are the Himalayas, Western Ghats, Eastern Ghats, Central India, and Andaman and the Nicobar Islands. The Western Ghats occupies only 6% of the Indian landmass and still holds a pteridophyte diversity of 383 species. Fern and fern allies are highly sensitive to changes in their natural habitat, thus habitat ABSTRACT destruction, anthropogenic influences, climate change, etc., are causing a fast decline in their population. Epiphytic species are easily destroyed due to the felling of trees and because of this at present 41- 43% of epiphytic pteridophytes in India are reported to be threatened. It necessitates the frequent analysis of the pteridophyte flora of a region to ensure the existence of its species diversity. The potential of in-vitro and ex-situ conservation techniques can be explored for the conservation of threatened pteridophyte species. -
Colonization Success of Common Thai Mangrove Species As a Function of Shelter from Water Movement
MARINE ECOLOGY PROGRESS SERIES Vol. 237: 111–120, 2002 Published July 18 Mar Ecol Prog Ser Colonization success of common Thai mangrove species as a function of shelter from water movement Udomluck Thampanya1, Jan E. Vermaat2,*, Carlos M. Duarte3 1Coastal Resources Institute, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand 2International Institute for Infrastructural, Hydraulic and Environmental Engineering, Delft, The Netherlands 3IMEDEA (CSIC-UIB), Instituto Mediterráneo de Estudios Avanzados, CSIC-Universidad, Illes Balears, C/Miguel Margués 21, 07190 Esporles, Mallorca, Spain ABSTRACT: Seedling survival and growth of the 3 common SE Asian mangrove species Avicennia alba, Rhizophora mucronata and Sonneratia caseolaris were quantified experimentally along 2 spatial gradients of shelter: (1) between 2 stations, at the inner and outer end of the sheltered Pak Phanang Bay (SW Thailand); and (2) for each station, among plots across a gradient of vegetation density from the mangrove forest edge inwards. Exposure to water movement, quantified as gypsum clod card weight loss, was found to vary more than 5-fold between seasons, which contributed most of the variance accounted for (73%). Variation between plots was higher than that between the 2 sta- tions: clod card loss ranged between 3.0 and 4.6 g d–1 in the plots, whereas the grand means of the 2 stations were 3.4 and 3.7 g d–1, respectively. These differences between stations and plots were com- parable to the patterns found for mangrove seedling survival. Survival was high (80 to 93%) in most treatments in R. mucronata, with the exception of the most exposed plot (30%). -
Incorporating the Plant Phenological Trajectory Into Mangrove Species Mapping with Dense Time Series Sentinel-2 Imagery and the Google Earth Engine Platform
remote sensing Article Incorporating the Plant Phenological Trajectory into Mangrove Species Mapping with Dense Time Series Sentinel-2 Imagery and the Google Earth Engine Platform Huiying Li 1,2, Mingming Jia 1,3,4,* , Rong Zhang 1, Yongxing Ren 1,5 and Xin Wen 1,5 1 Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; [email protected] (H.L.); zrfi[email protected] (R.Z.); [email protected] (Y.R.); [email protected] (X.W.) 2 School of Management Engineering, Qingdao University of Technology, Qingdao 266520, China 3 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China 4 National Earth System Science Data Center, Beijing 100101, China 5 College of Earth Sciences, Jilin University, Changchun 130061, China * Correspondence: [email protected] Received: 12 September 2019; Accepted: 22 October 2019; Published: 24 October 2019 Abstract: Information on mangrove species composition and distribution is key to studying functions of mangrove ecosystems and securing sustainable mangrove conservation. Even though remote sensing technology is developing rapidly currently, mapping mangrove forests at the species level based on freely accessible images is still a great challenge. This study built a Sentinel-2 normalized difference vegetation index (NDVI) time series (from 2017-01-01 to 2018-12-31) to represent phenological trajectories of mangrove species and then demonstrated the feasibility of phenology-based mangrove species classification using the random forest algorithm in the Google Earth Engine platform. It was found that (i) in Zhangjiang estuary, the phenological trajectories (NDVI time series) of different mangrove species have great differences; (ii) the overall accuracy and Kappa confidence of the classification map is 84% and 0.84, respectively; and (iii) Months in late winter and early spring play critical roles in mangrove species mapping. -
Influence of Propagule Flotation Longevity and Light
Influence of Propagule Flotation Longevity and Light Availability on Establishment of Introduced Mangrove Species in Hawai‘i1 James A. Allen2,3 and Ken W. Krauss2,4,5 Abstract: Although no mangrove species are native to the Hawaiian Archipel- ago, both Rhizophora mangle and Bruguiera sexangula were introduced and have become naturalized. Rhizophora mangle has spread to almost every major Ha- waiian island, but B. sexangula has established only on O‘ahu, where it was inten- tionally introduced. To examine the possibility that differences in propagule characteristics maintain these patterns of distribution, we first reviewed the lit- erature on surface currents around the Hawaiian Islands, which suggest that propagules ought to disperse frequently from one island to another within 60 days. We then tested the ability of propagules of the two species to float for pe- riods of up to 63 days and to establish under two light intensities. On average, R. mangle propagules floated for longer periods than those of B. sexangula, but at least some propagules of both species floated for a full 60 days and then rooted and grew for 4 months under relatively dense shade. A large percentage (@83%) of R. mangle propagules would be expected to float beyond 60 days, and approx- imately 10% of B. sexangula propagules also would have remained afloat. There- fore, it seems likely that factors other than flotation ability are responsible for the failure of B. sexangula to become established on other Hawaiian islands. The Hawaiian Archipelago, located in Mangrove species were first introduced to the central Pacific Ocean between 18 and Hawai‘i in 1902, when Rhizophora mangle L. -
Leaflet No.25. Kyaw Win Maung.Pdf
1 Leaflet No. 25/2015 The Republic of the Union of Myanmar Ministry of Environmental Conservation and Forestry Forest Department Comparison on Morphological and Anatomical Characteristics of Byu Species Found in Bogalay Township, Ayeyawady Region Kyaw Win Maung, Assistant Research Officer Dr. Kyu Kyu Thin, Assistant lecturer University of Forestry December, 2015 2 ဧရာဝတီတိုင်းေဒသကီး၊ ဘိုကေလးမို ့နယ်နှင့် ပုသိမ်မို ့နယ်များတွင်ေပါက်ေရာက်ေသာြဗူးအုပ်စုဝင်အပင်များ၏ြပင်ပရုပ်သွင်နှင့်သစ်အဂါေဗဒ လက္ခဏာများအားနင်းယှဉ်ေလ့လာြခင်း ေကျာ်ဝင်းေမာင်၊ လက်ေထာက်သုေတသနအရာရှိ၊ သစ်ေတာသုေတသနဌာန ေဒါက်တာကူကူသင်း၊ လက်ေထာက်ကထိက၊ သစ်ေတာတက္ကသိုလ် စာတမ်းအကျဉ်း ဤစာတမ်းတွင်ြမန်မာအမည်ြဗူးြဖင့်စတင်ေသာအပင်(၅)ပင်၏ြပင်ပရုပ်သွင်နှင့်သစ်အဂါေဗဒ လက္ခဏာရပ်များကိုနင်းယှဉ်ေလ့လာထားပါသည်။၎င်းအပင်များမှာြဗူးအုပ်ေဆာင်း(Bruguieragym norhiza) ြဗူးေရဝါ( Bruguierasexangula) ြဗူးဘိုင်းေဒါင့် (Kandelia candle) ြဗူးေချေထာက်အဖို(Rhizophoraapiculata)နှင့် ြဗူးေချေထာက်အမ(Rhizophoramucronata) တို့ြဖစ်ပါသည်။ ၎င်းအပင်များကို အလွယ်တကူခွဲြခားနိုင်ေသာ အဓိကြပင်ပရုပ်သွင် လက္ခဏာများမှာ ေလရှူြမစ်အမျိုးအစား၊ အြမစ်ေလာင်း၏ အရွယ်အစားနှင့် ပုံသာန်တို့ြဖစ်ပါသည်။ ေလရှူြမစ်နှင့် ကိုင်းေထာက်ြမစ်များကို ြဗူးဘိုင်းေဒါင့်နှင့် ြဗူးေချေထာက်မျိုးစိတ်နှစ်ပင်တွင် ေတွ ့ရှိရပါသည်။ ဒူးပုံသာန်ေလရှူြမစ်နှင့် ပါးပျဉ်းြမစ်တို့ကို Bruguiera မျိုးစိတ်နှစ်ခုတွင် ေတွ ့ရှိရပါသည်။ Bruguiera မျိုးစိတ်နှစ်ခု၏ အြမစ်ေလာင်းများမှာ ေဆးေပါ့လိပ်ပုံေတွ ့ရပီး ကျန်အပင်များမှာ ရှည်လျားသည့် ဆလင်ဒါပုံကိုေတွ ့ရပါသည်။ Vessels ေခေရေကာဆဲလ်များ၏ perforation plate ေခထိပ်ဝအကန် ့နံရံများမှာ အပင်အားလုံးတွင် Scalariform ြဖစ်ပါသည်။ ေလ့လာခဲ့ေသာ အပင်အားလုံး၏ -
SHORT NOTES Status of Mangroves in Naawan, Misamis Oriental And
doi: 10.48031/msunjear.2015.03.10 SHORT NOTES Status of Mangroves in Naawan, Misamis Oriental and Prospects for Vegetative Expansion Jeanette J. Samson¹ and Ermelinda G. Tobias² ¹Instituteof Fisheries Research and Development MindanaoStateUniversity at Naawan, Naawan, Misamis Oriental, Philippines ²Department of Biological Sciences MindanaoStateUniversity – Iligan Institute of Technology, Iligan City, Philippines Email: [email protected] ABSTRACT An assessment of the plant community structure of mangroves in Naawan, Misamis Oriental was conducted to evaluate its status and potential for vegetative expansion. The survey was carried out in three coastal barangays, namely: Linangkayan, Poblacion, and Maputi using a transect-plot survey technique. Results show that the mangrove stands of Naawan are already degraded due to fishpond development, human settlement and other resource-use activities. A highly diverse mangrove vegetation still exists with 30 species identified belonging to 22 families. At least 11 species are true mangroves while the rest are associates. The dominant mangrove species are Nypa fruticans (Nipa), Avicennia rumphiana (Miyapi), and Lumnitzera racemosa (Kulasi). N. fruticans dominates in terms of stem density while A. rumphiana largely contributes to the total basal area (13.7 m2 ha-1) of measured woody plants. The Naawan mangroves have low regenerative capacity in terms of production of saplings and seedlings except for L. racemosa and A. rumphiana, thus, planting is needed to rehabilitate them. Three sites were identified with a potential area of 5.2 ha for vegetation expansion through multispecies reforestation. Keywords: mangroves, assessment, basal area, vegetative expansion, Naawan. INTRODUCTION Mangroves are a diverse group of woody plants that thrive between the terrestrial and tidal interspace in sheltered shores, estuaries, tidal creeks, lagoons, marshes and mud flats in tropical and sub-tropical regions of the world (Tomlinson, 1986; Field 1995). -
Species Composition and Zonal Distribution of Mangrove Plants in the Myeik Coastal Areas of Myanmar
Journal of Aquaculture & Marine Biology Research Article Open Access Species composition and zonal distribution of mangrove plants in the Myeik coastal areas of Myanmar Abstract Volume 9 Issue 2 - 2020 The species composition and zonal distribution of mangroves in five research sites viz., Tin-Zar-Ni-Win,1 U Soe-Win2 Kapa, Masanpa, Panadoung, Kywe Ka Yan and Kyauk Phyar from Myeik coastal areas 1Marine Biologist, Fauna & Flora International (FFI), Myanmar were studied from December 2017 to July 2018. Transect lines in landward, seaward 2Department of Marine Science, Mawlamyine University, and shoreline, and plots based on Point Center Quarter Method (PCQM) were used. Myanmar A total of 21 species of true mangrove were recorded. Rhizophora apiculata and R. Mucronata were the most dominant species in the study sites, especially in the seaward Correspondence: Tin-Zar-Ni-Win, Marine Biologist, Fauna & areas. Among the recorded species, Aegiceras corniculatum, Avicennia officinalis, R. Flora International (FFI), Myanmar apiculata, R. mucronata, Sonneratia alba and Nypa fruticans were distributed in all study Email sites. Bruguiera gymnorhiza and B.cylindrica, were recorded only in shoreline areas and Heritiera littoralisis was found only in landward areas in all study sites. Among the Received: April 07, 2020 | Published: April 28, 2020 study sites, Kapa has been designated as the highest species composition, representing 17 species, whereas Kyauk Phyar, representing 12 species as the lowest species composition. The environmental parameters of mangrove forests were also provided in all study sites. The various salinity and temperature ranges of seawater (25.0-30.0‰ and 28.0-32.0ºC) and soil (25.0-33.0‰ and 27.6-31.4ºC) significantly controlled the distribution of mangrove species of mangroves. -
Phytochemicals of Avicennia Species
Mondal et al RJLBPCS 2019 www.rjlbpcs.com Life Science Informatics Publications Original Research Article DOI:10.26479/2019.0501.71 PHYTOCHEMICALS OF AVICENNIA SPECIES: PREDICTION OF TOXICITY THROUGH QSAR MODELLING AND LEAD COMPOUND IDENTIFICATION ON TNF-α THROUGH MOLECULAR DOCKING Bani Mondal1, Arnab Kumar Manna1, Partha Talukdar2, Ipsita Ghosh2, Soumendra Nath Talapatra1* 1. Department of Biological Science, Seacom Skills University, Kendradangal, Shantiniketan, Birbhum, West Bengal, India. 2. Department of Botany, Serampore College, University of Calcutta, 8 William Carey Road, Serampore, West Bengal, India. ABSTRACT: The objective was to predict toxicity on daphnids, fish and rat oral exposure through quantitative structure activity relationship (QSAR) modelling as well as binding affinity and energy value of common phytochemicals present in Avecennia sp. compared to synthetic drug (Ibuprofen) on tumour necrosis factor-α (TNF-α) through molecular docking and interaction study. The QSAR modelling was done for toxicity evaluation by using T.E.S.T. (Version 4.1) and the virtual screening to know receptor-ligand binding affinity and energy value by using the software, PyRx (Version 0.8). The TNF-α (receptor) was obtained (PDB ID: 2az5) from the European Protein Data Bank (PDBe) and the information on selected fifteen ligands (phytochemicals) and one synthetic ligand (Ibuprofen) were taken from PubChem database. QSAR modelling resulted all the compounds showed toxic to D. magna and P. promelas but non-toxic to rat oral exposure. In the docking result, among established 15 phytocompounds, Lupeol (ligand) was observed favourable binding energy value (-10.7 Kcal/mol) on the TNF-α receptor followed by Taraxerone (-10.1 Kcal/mol) compared to Ibuprofen (-6.7 Kcal/mol).