Disjoint Spanning Trees 1 Forest Partitioning

Total Page:16

File Type:pdf, Size:1020Kb

Disjoint Spanning Trees 1 Forest Partitioning Disjoint Spanning Trees Luis Goddyn 1 Forest Partitioning A forest in a graph G is a set of edges which induces an acyclic subgraph of G. We say that a set J of Sk edges of a graph G is k-partitionable if J = i=1 Ji is the union of k forests Ji in G. (We may assume the forests to be disjoint, where convenient.) We consider the following question. Forest Partitioning Problem Given a graph G = (V; E), find a k-partitionable set J ⊆ E of maximum size, and provide a certificate that proves jJj is indeed maximum. For any edge set A ⊆ E of a graph G = (V; E), we define the rank of A, written r(A) to be the maximum size of a subforest of A. Thus r(A) is the number of vertices minus the number of connected components in the induced subgraph G[A] := (V; A). We now describe a barrier which prevents G from having a large k-partitionable set. Suppose that G contains a dense subgraph. In particular, suppose that A is a set of edges for which jAj is large but r(A) is Sk small. Then for any k-partitionable J = i=1 Ji, each set Ji \A is a subforest of A, whence jJi \Aj ≤ r(A). It follows that k X jJj = jJi \ Aj + jJ \ (E − A)j ≤ kr(A) + jE − Aj: (1) i=1 The surprising fact is that some such inequality is always tight. Theorem 1 For any graph G and positive integer k, maxfjJj : J ⊆ E is k-partitionableg = minfjE − Aj + kr(A): A ⊆ Eg: Before the proof, we give two applications. By setting J = E and solving for k we solve a forest covering problem. Corollary 2 The minimum number of forests needed to cover the edges of a graph G is maxfdjAj=r(A)e : A ⊆ Eg: Informally, the `forest covering number' of a graph is determined by its `densest' subgraph. Similarly, if G is connected we may equate jJj with kr(E) = k(jV j − 1) to solve a tree packing problem. Corollary 3 The maximum number of edge disjoint spanning trees which can be packed into a connected graph G is minfbjE − Aj=(jV j − 1 − r(A))c : A ⊆ Eg: This expression is best interpreted in terms of the graph G=A obtained by contracting the edges in A. It is easy to see that r(G=A) = jV (G=A)j − 1 = jV j − 1 − r(A), so the expression we are minimizing is bjE(G=A)j=r(G=A)c. Informally, the `tree packing number' is determined by the `least dense contraction'. In graphs the relevant subsets A arise from vertex partitions. For any partition π ` V , let θ(π)(δ(π)) denote the set of edges with its ends in the same (resp. different) parts. A set A ⊆ E is closed if every e 2 E belonging to some circuit C ⊆ A [ feg also belongs to A. Thus closed sets are precisely those of the form θ(π) for some π ` V . It is not hard to see that any set A achieving the minimum in Theorem 1 must be closed. For a given closed set A ⊆ E there is a unique most refined partition π = (πi) ` V satisfying θ(π) = A; namely π is the partition for which each induced subgraph G[πi] is connected. For such π we observe that r(θ(π)) = jV j − jπj and r(δ(π)) = jπj − 1. Thus we may replace the formulae in the above three results by the following expressions, respectively. kjV j + minfjδ(π)j − kjπj : π ` V g: maxfdjθ(π)j=(jV j − jπj)e : π ` V g: minfbjδ(π)j=(jπj − 1)c : π ` V g: 1 2 The Algorithm Proving Theorem 1 The proof of Theorem 1 consists of an algorithm (which happens to be polytime) which, when given G and a k-partition (Ji;:::;Jk) of J ⊆ E, produces either a k-partition of J + e for some e 2 E − J, or a set A ⊆ E satisfying jJj = jE − Aj + kr(A). Thus for a given G and k we may find a largest partitionable set and a suitable A ⊆ E by iterating this algorithm starting with Ji = ;, i = 1::k. Given G, k and (Ji) we set J = [Ji and construct an auxiliary arc-coloured digraph D = D(G; k; (Ji)) with vertex set fs; tg [ E(G) and three types of arcs. For every e; f 2 E and i 2 f1; : : : ; kg, D has 1. an arc (s; e) (having no colour), if e 2 E − J; 2. an arc (e; t) of colour i, if Ji + e is acyclic. 3. an arc (e; f) of colour i, if Ji + e − f is acyclic; Now we seek a shortest path P from s to t in D. If P does not exist, then we output the set A of vertices in V (D) − fsg which are reachable from s by some dipath in D. Since there are no arcs in δ+(fsg [ A) of types 1,2 or 3, we deduce the following facts respectively. 1. E − A ⊆ J 2. For any i 2 f1; : : : ; kg and e 2 A, Ji [ feg has a cycle. 3. For any i 2 f1; : : : ; kg and e 2 A and f 2 A, if f belongs to the cycle in Ji [ feg, then f 2 A. In other words, Ji \ A is a spanning forest of A whence jJi \ Aj = r(A). From facts 1. and 3., it we find that the inequality (1) is tight for the pair (A; (Ji)), so A proves that jJj is indeed maximum. If a shortest s; t-path P = (s; e1; e2; : : : ; es; t) does exist, then by the construction of D, we have e1 2 E − J. We shall the edges of P and their colours to guide an `augmenting sequence', which modify the sets (Ji) in such a way as to produce a k-partition of set J [ fe1g. Let i be the colour of the arc (e1; e2) (we allow here that e2 = t). We modify the forest Ji by adding e1 to it. If e2 = t, then (e1; t) is of type 2, and we output the resulting partition of J + e. Otherwise, 0 (e1; e2) is an arc of type 3. so Ji + e1 has a fundamental cycle which contains e2. Let i be the colour of (e2; e3) (again, we permit e3 = t). Then we then we modify both Ji and Ji0 by transfering e2 from Ji to Ji0 . This restores Ji to being acyclic, but now either we are done (if e3 = t) or Ji0 + e3 has a fundamental cycle containing e4. We continue modifying (Ji) in this manner until we have traversed P . Clearly J is now larger by one element, but it remains to prove that each modification to a forest Ji leaves it acyclic. This is fact not trivial, but is easier to prove by relying on the fact P was chosen to be a shortest path in D. Suppose for example exactly two arcs (ea; ea+1), (eb; eb+1) in P have label i, where a < b. The modification in step a leaves Ji acyclic by construction of D. However at the start of step b, it may no longer be true that Ji + eb − eb+1 is acyclic, since Ji has been changed in step a. This trouble can only have occurred if eb+1 also belonged to the fundamental cycle Ji + ea at the start of step a. This would imply that (ea; eb+1) is an arc of D, contradicting that P is a shortest path. Equivalently, we have argued that the set sp(J) of edges of G which have both endpoints in the same connected component of G[J] is equal to sp(J + eb − eb+1). If Ji has been modified more than twice we must argue more carefully. Suppose that label i occurs in steps a1; a2; : : : at in that order along P . For j = 0; : : : ; t − 1 we define (j) J = Ji + eat−j − eat−j +1 + eat−j+1 − eat−j+1+1 + ··· + eat − eat+1 Here we are adding and subtracting edges from J in `reverse order' to the way it was done in the (t) (0) algorithm, so J = Ji input at the start of the algorithm and J is the set after all modifications have been made. We now argue by induction on j that the set sp(J (j)) of edges spanned by each connected component of J (j) is the same as sp(J (0)). We leave out the details of this argument. In the end, we have (0) (t) (0) that sp(J ) = sp(J ) = sp(Ji), which implies J is acyclic, since it has the same cardinality as Ji. 2 3 Generalization to Matroids The above algorithm in fact works in a more general framework. Let M1, M2,...,Mk be a list of matroids all having the same set E for its elements. We say that J ⊆ E is partitionable (with respect to the list) S There exist subsets Ji, i = 1; =dots; k such that Each Ji is an independent set of Mi and J = Ji. An obvious modification of the above algorithm, and its proof of correctness solves the following problem. Matroid Partitioning Problem Given matroids M1,..., Mk on E, find a k-partitionable set J ⊆ E of maximum size, and provide a certificate that proves jJj is indeed maximum.
Recommended publications
  • Distributed Throughput Maximization in Wireless Mesh Networks Via Pre-Partitioning
    1 Distributed Throughput Maximization in Wireless Mesh Networks via Pre-Partitioning Andrew Brzezinski, Gil Zussman Senior Member, IEEE, and Eytan Modiano Senior Member, IEEE Abstract— This paper considers the interaction between chan- and scheduling but unlike most previous works, we do not nel assignment and distributed scheduling in multi-channel multi- assume that the traffic statistics are known. Alternatively, radio Wireless Mesh Networks (WMNs). Recently, a number we assume a stochastic arrival process and present a novel of distributed scheduling algorithms for wireless networks have emerged. Due to their distributed operation, these algorithms partitioning approach that enables throughput maximization can achieve only a fraction of the maximum possible throughput. in each partition by distributed scheduling algorithms. As an alternative to increasing the throughput fraction by Joint scheduling and routing in a slotted multihop wireless designing new algorithms, we present a novel approach that network with a stochastic packet arrival process was con- takes advantage of the inherent multi-radio capability of WMNs. sidered in the seminal paper by Tassiulas and Ephremides We show that this capability can enable partitioning of the network into subnetworks in which simple distributed scheduling [23]. In that paper they presented the first centralized policy algorithms can achieve 100% throughput. The partitioning is that is guaranteed to stabilize the network (i.e. provide 100% based on the notion of Local Pooling. Using this notion, we char- throughput) whenever the arrival rates are within the stability acterize topologies in which 100% throughput can be achieved region. The results of [23] have been extended to various distributedly. These topologies are used in order to develop a settings of wireless networks and input-queued switches (e.g.
    [Show full text]
  • Matroid Optimization and Algorithms Robert E. Bixby and William H
    Matroid Optimization and Algorithms Robert E. Bixby and William H. Cunningham June, 1990 TR90-15 MATROID OPTIMIZATION AND ALGORITHMS by Robert E. Bixby Rice University and William H. Cunningham Carleton University Contents 1. Introduction 2. Matroid Optimization 3. Applications of Matroid Intersection 4. Submodular Functions and Polymatroids 5. Submodular Flows and other General Models 6. Matroid Connectivity Algorithms 7. Recognition of Representability 8. Matroid Flows and Linear Programming 1 1. INTRODUCTION This chapter considers matroid theory from a constructive and algorithmic viewpoint. A substantial part of the developments in this direction have been motivated by opti­ mization. Matroid theory has led to a unification of fundamental ideas of combinatorial optimization as well as to the solution of significant open problems in the subject. In addition to its influence on this larger subject, matroid optimization is itself a beautiful part of matroid theory. The most basic optimizational property of matroids is that for any subset every max­ imal independent set contained in it is maximum. Alternatively, a trivial algorithm max­ imizes any {O, 1 }-valued weight function over the independent sets. Most of matroid op­ timization consists of attempts to solve successive generalizations of this problem. In one direction it is generalized to the problem of finding a largest common independent set of two matroids: the matroid intersection problem. This problem includes the matching problem for bipartite graphs, and several other combinatorial problems. In Edmonds' solu­ tion of it and the equivalent matroid partition problem, he introduced the notions of good characterization (intimately related to the NP class of problems) and matroid (oracle) algorithm.
    [Show full text]
  • Efficient Theoretic and Practical Algorithms for Linear Matroid
    Journal of Computer and System Sciences 1273 journal of computer and system sciences 53, 129147 (1996) article no. 0054 CORE Efficient Theoretic and Practical AlgorithmsMetadata, for citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Linear Matroid Intersection Problems Harold N. Gabow* and Ying Xu Department of Computer Science, University of Colorado at Boulder, Boulder, Colorado 80309 Received February 1, 1989 This paper presents efficient algorithms for a number Efficient algorithms for the matroid intersection problem, both car- of matroid intersection problems. The main algorithm is dinality and weighted versions, are presented. The algorithm for for weighted matroid intersection. It is based on cost weighted intersection works by scaling the weights. The cardinality scaling, generalizing recent work in matching [GaT87], algorithm is a special case, but takes advantage of greater structure. Efficiency of the algorithms is illustrated by several implementations on and network flow [GoT]. A special case is of this problem linear matroids. Consider a linear matroid with m elements and rank n. is cardinality matroid intersection, and several improve- Assume all element weights are integers of magnitude at most N. Our ments are given for this case. The efficiency of our fastest algorithms use time O(mn1.77 log(nN)) and O(mn1.62) for intersection algorithms is illustrated by implementa- weighted and unweighted intersection, respectively; this improves the tions on linear matroids. This is the broadest class of previous best bounds, O(mn2.4) and O(mn2 log n), respectively. Corresponding improvements are given for several applications of matroids with efficient representations. (Implementations of matroid intersection to numerical computation and dynamic systems.
    [Show full text]
  • 5 Fractional Arboricity and Matroid Methods
    5 Fractional Arboricity and Matroid Methods The material in this chapter is motivated by two notions of the density of a graph. The arboricity and the maximum average degree of a graph G measure the concentration of edges in the “thickest” part of the graph. 5.1 Arboricity and maximum average degree Suppose we wish to decompose the edges of a graph G into acyclic subsets, i.e., if G =(V,E) we want to find E1,E2,...,Ek ⊆ E so that (1) each of the subgraphs (V,Ei) is acyclic and (2) E = E1 ∪ E2 ∪···∪Ek. The smallest size of such a decomposition is called the arboricity (or edge- arboricity) ofG and is denoted Υ(G). If G is connected, the arboricity is also the minimum number of spanning trees of G that include all edges of G. One can think of arboricity as being a variant of the edge chromatic number. We are asked to paint the edges of G with as few colors as possible. In the case of edge chromatic number, we do not want to have two edges of the same color incident with a common vertex. In the case of arboricity, we do not want to have a monochromatic cycle. There is an obvious lower bound on Υ(G). Since G has ε(G) edges and each spanning acyclic subgraph has at most ν(G) − 1 edges we have Υ(G) ≥ ε(G)/(ν(G) − 1). Moreover, since Υ is an ε(G) integer, we have Υ(G) ≥ ν(G)−1 . This bound is not very& accurate' if the graph is highly “unbalanced”; for example, consider the graph G consisting of a K9 with a very long tail attached—say 100 additional vertices.
    [Show full text]
  • Optimal Matroid Partitioning Problems Where Thep Input Matroids Are Identical Partition Matroids
    Optimal Matroid Partitioning Problems Yasushi Kawase1, Kei Kimura2, Kazuhisa Makino3, and Hanna Sumita4 1Tokyo Institute of Technology, Japan. [email protected] 2Toyohashi University of Technology, Japan. [email protected] 3Kyoto University, Japan. [email protected] 4National Institute of Technology, Japan. [email protected] Abstract This paper studies optimal matroid partitioning problems for various objective functions. In the problem, we are given a finite set E and k weighted matroids (E, Ii,wi), i = 1,...,k, and our task is to find a minimum partition (I1,...,Ik) of E such that Ii ∈Ii for all i. For each objective function, we give a polynomial-time algorithm or prove NP-hardness. In particular, for the case when the given weighted matroids are identical and the objective function is the sum of the maximum weight in each k set (i.e., Pi=1 maxe∈Ii wi(e)), we show that the problem is strongly NP-hard but admits a PTAS. 1 Introduction The matroid partitioning problem is one of the most fundamental problems in combinatorial optimization. In this problem, we are given a finite set E and k matroids (E, Ii), i =1,...,k, and our task is to find a partition (I1,...,Ik) of E such that Ii ∈ Ii for all i. We say that such a partition (I1,...,Ik) of E is feasible. The matroid partitioning problem has been eagerly studied in a series of papers investigating structures of matroids. See e.g., [7, 8, 9, 15, 23] for details. In this paper, we study weighted versions of the matroid partitioning problem.
    [Show full text]
  • Fractional Graph Theory a Rational Approach to the Theory of Graphs
    Fractional Graph Theory A Rational Approach to the Theory of Graphs Edward R. Scheinerman The Johns Hopkins University Baltimore, Maryland Daniel H. Ullman The George Washington University Washington, DC With a Foreword by Claude Berge Centre National de la Recherche Scientifique Paris, France c 2008 by Edward R. Scheinerman and Daniel H. Ullman. This book was originally published by John Wiley & Sons. The copyright has reverted to the authors. Permission is hereby granted for readers to download, print, and copy this book for free so long as this copyright notice is retained. The PDF file for this book can be found here: http://www.ams.jhu.edu/~ers/fgt To Rachel, Sandy, Danny, Jessica, Naomi, Jonah, and Bobby Contents Foreword vii Preface viii 1 General Theory: Hypergraphs 1 1.1 Hypergraph covering and packing 1 1.2 Fractional covering and packing 2 1.3 Some consequences 4 1.4 A game-theoretic approach 5 1.5 Duality and duality 6 1.6 Asymptotic covering and packing 7 1.7 Exercises 12 1.8 Notes 13 2 Fractional Matching 14 2.1 Introduction 14 2.2 Results on maximum fractional matchings 17 2.3 Fractionally Hamiltonian graphs 21 2.4 Computational complexity 26 2.5 Exercises 27 2.6 Notes 28 3 Fractional Coloring 30 3.1 Definitions 30 3.2 Homomorphisms and the Kneser graphs 31 3.3 The duality gap 34 3.4 Graph products 38 3.5 The asymptotic chromatic and clique numbers 41 3.6 The fractional chromatic number of the plane 43 3.7 The Erd˝os-Faber-Lov´asz conjecture 49 3.8 List coloring 51 3.9 Computational complexity 53 3.10 Exercises 54 3.11 Notes
    [Show full text]
  • Random Sampling and Greedy Sparsi Cation for Matroid Optimization Problems. 1 Introduction
    Random Sampling and Greedy Sparsication for Matroid Optimization Problems David R Karger MIT Lab oratory for Computer Science kargerlcsmitedu Abstract Random sampling is a p owerful to ol for gathering information ab out a group by considering only a small part of it We discuss some broadly applicable paradigms for using random sampling in combinatorial optimization and demonstrate the eectiveness of these paradigms for two optimization problems on matroids nding an optimum matroid basis and packing disjoint matroid bases Applications of these ideas to the graphic matroid led to fast algorithms for minimum spanning trees and minimum cuts An optimum matroid basis is typically found by a greedy algorithm that grows an indep endent set into an the optimum basis one element at a time This continuous change in the indep endent set can make it hard to p erform the indep endence tests needed by the greedy algorithm We simplify matters by using sampling to reduce the problem of nding an optimum matroid basis to the problem of verifying that a given xed basis is optimum showing that the two problems can b e solved in roughly the same time Another application of sampling is to packing matroid bases also known as matroid par titioning Sampling reduces the numb er of bases that must b e packed We combine sampling with a greedy packing strategy that reduces the size of the matroid Together these techniques give accelerated packing algorithms We give particular attention to the problem of packing spanning trees in graphs which has applications in
    [Show full text]
  • CO450: Combinatorial Optimization
    CO450: Combinatorial Optimization Felix Zhou Fall 2020, University of Waterloo from Professor Ricardo Fukasawa’s Lectures 2 Contents I Minimum Spanning Trees 9 1 Minimum Spanning Trees 11 1.1 Spanning Trees . 11 1.2 Minimum Spanning Trees . 12 1.3 Kruskal’s Algorithm . 13 1.3.1 Pseudocode & Correctness . 13 1.3.2 Running Time . 14 1.4 Linear Programming Relaxation . 14 1.5 Greedy Algorithms . 16 1.5.1 Maximum Forest . 16 Minimum Spanning Tree Reduction . 16 Direct Approach . 18 1.5.2 Minimum Spanning Tree Reduction to Maximum Forest . 18 II Matroids 21 2 Matroids 23 2.1 Matroids . 23 3 2.1.1 Definitions . 23 2.1.2 Independence Systems . 24 2.2 Independent Set . 25 2.3 Alternative Characterizations . 27 2.3.1 Matroids . 27 2.3.2 Circuits & Bases . 28 3 Polymatroids 31 3.1 Motivation . 31 3.2 Submodular Functions . 32 3.3 Polymatroids . 33 3.4 Optimizing over Polymatroids . 33 3.4.1 Greedy Algorithm . 33 4 Matroid Construction 37 4.1 Matroid Construction . 37 4.1.1 Deletion . 37 4.1.2 Truncation . 37 4.1.3 Disjoint Union . 38 4.1.4 Contraction . 38 4.1.5 Duality . 39 5 Matroid Intersection 41 5.1 Matroid Intersection . 41 5.2 Matroid Intersection Algorithm . 43 4 5.2.1 Motivation . 43 5.2.2 Augmenting Paths . 44 5.3 Generalizations . 46 5.3.1 3-Way Intersection . 46 5.3.2 Matroid Partitioning . 46 III Matchings 49 6 Matchings 51 6.1 Matchings . 51 6.1.1 Augmenting Paths . 51 6.1.2 Alternating Trees .
    [Show full text]
  • Optimal Matroid Partitioning Problems∗
    Optimal Matroid Partitioning Problems∗ Yasushi Kawase†1, Kei Kimura‡2, Kazuhisa Makino§3, and Hanna Sumita¶4 1 Tokyo Institute of Technology, Tokyo, Japan [email protected] 2 Toyohashi University of Technology, Toyohashi, Japan [email protected] 3 Kyoto University, Kyoto, Japan [email protected] 4 National Institute of Informatics, Tokyo, Japan [email protected] Abstract This paper studies optimal matroid partitioning problems for various objective functions. In the problem, we are given a finite set E and k weighted matroids (E, Ii, wi), i = 1, . , k, and our task is to find a minimum partition (I1,...,Ik) of E such that Ii ∈ Ii for all i. For each objective function, we give a polynomial-time algorithm or prove NP-hardness. In particular, for the case when the given weighted matroids are identical and the objective function is the sum of Pk the maximum weight in each set (i.e., i=1 maxe∈Ii wi(e)), we show that the problem is strongly NP-hard but admits a PTAS. 1998 ACM Subject Classification G.2.1 Combinatorial algorithms Keywords and phrases Matroids, Partitioning problem, PTAS, NP-hardness Digital Object Identifier 10.4230/LIPIcs.ISAAC.2017.51 1 Introduction The matroid partitioning problem is one of the most fundamental problems in combinatorial optimization. In this problem, we are given a finite set E and k matroids (E, Ii), i = 1, . , k, and our task is to find a partition (I1,...,Ik) of E such that Ii ∈ Ii for all i. We say that such a partition (I1,...,Ik) of E is feasible.
    [Show full text]
  • Combinatorial Optimization: Networks and Matroids
    Combinatorial Optimization: Networks and Matroids EUGENE L. LAWLER University of California at Berkeley HOLT, RINEHART AND WINSTON New York Chicago San Francwo Atlanta Dallas Montreal Toronto London Sydney To my parents, and to my children, Stephen and Susan Copyright 0 1976 by Holt, Rinehart and Wins.on All rights reserved Library of Congress Cataloging in Publication Data Lawler, Eugene L Combinatorial optimization. Includes bibliographical references. 1. Mathematical optimization. 2. Matroids. 3. Network analysis (Planning). 4. Computalional complexity. 5. Algorithms. I. Title. QA402.5.L39 519.7 76-13516 ISBN 0 -03-084866-o Printed in the United States of America 8 9 038 98765432 Preface Combinatorial optimization problems arise everywhere, and certainly in all areas of technology and industrial management. A growing awareness of the importance of these problems has been accompanied by a combina- torial explosion In proposals for their solution. This, book is concerned with combinatorial optimization problems which can be formulated in terms of networks and algebraic structures known as matroids. My objective has been to present a unified and fairly comprehensive survey 01‘ solution techniques for these problems, with emphasis on “augmentation” algorithms. Chapters 3 through 5 comprise the material in one-term courses on network flow theory currently offered in many university departments of operations research and industrial engineering. In most cases, a course in linear programming is designated as a prerequisite. However, this is not essential. Chapter 2 contains necessary background material on linear programming, and graph theory as well. Chapters 6 through 9 are suitable for a second course, presumably at the graduate level.
    [Show full text]