Combinatorial Optimization: Networks and Matroids

Total Page:16

File Type:pdf, Size:1020Kb

Combinatorial Optimization: Networks and Matroids Combinatorial Optimization: Networks and Matroids EUGENE L. LAWLER University of California at Berkeley HOLT, RINEHART AND WINSTON New York Chicago San Francwo Atlanta Dallas Montreal Toronto London Sydney To my parents, and to my children, Stephen and Susan Copyright 0 1976 by Holt, Rinehart and Wins.on All rights reserved Library of Congress Cataloging in Publication Data Lawler, Eugene L Combinatorial optimization. Includes bibliographical references. 1. Mathematical optimization. 2. Matroids. 3. Network analysis (Planning). 4. Computalional complexity. 5. Algorithms. I. Title. QA402.5.L39 519.7 76-13516 ISBN 0 -03-084866-o Printed in the United States of America 8 9 038 98765432 Preface Combinatorial optimization problems arise everywhere, and certainly in all areas of technology and industrial management. A growing awareness of the importance of these problems has been accompanied by a combina- torial explosion In proposals for their solution. This, book is concerned with combinatorial optimization problems which can be formulated in terms of networks and algebraic structures known as matroids. My objective has been to present a unified and fairly comprehensive survey 01‘ solution techniques for these problems, with emphasis on “augmentation” algorithms. Chapters 3 through 5 comprise the material in one-term courses on network flow theory currently offered in many university departments of operations research and industrial engineering. In most cases, a course in linear programming is designated as a prerequisite. However, this is not essential. Chapter 2 contains necessary background material on linear programming, and graph theory as well. Chapters 6 through 9 are suitable for a second course, presumably at the graduate level. The instructor may wish to omit certain sections, depending upon the orientation of the students, as indicated below. The book is also suitable as a text, or as a reference, for (courses on combinatorial computing and concrete computational complexity in de- partments (of computer science and mathematics. Any computer scientist intending to do serious research on combinatorial algorithrns should have a working knowledge of the material in this book. The reader should be aware that certain algorithms are easy to explain, to understand, and to implement, even though a proof of their validity may be quite difficult. A good example is the “primal” matroid intersection algorithm presented in Section 10 of Chapter 8. I can well imagine situations in which an instructor might legitimately choose to present this algorithm and its applications, without discussiqg its theoretical justification in Section 9. 111 Conversely, there are algorithms whose theoretical justification is not too hard to understand, in principle, but whose detailed implementa- tion is quite complex. An instructor might well (choose to discuss the duality theory underlying the weighted non bipartite matching algorithm, going as far as Section 9 of Chapter 6 and skipping the material in Sections 10 and 11. I might mention, incidentally, that the algorithm in Section 11 is the one instance in which I have had cause to regret using a simple iterative description of the algorithms in this book. In this case, a few simple pro- cedure declarations would have simplified matters substantially. I began work on this book in the fall of 1968. In my innocence, I contemplated a two-year project. I did not know that, after many inter- ruptions, I would still be laboring on the book more than seven years later. Needless to say, there was much progress in the technical area during this seven-year period. I managed to make a few contributions myself, including the development of matroid intersection algorithms and an O(n3) implementation of Edmonds’ algorithm for weighted nonbipartite matching. Naturally, these are in the book. There are some results which I did not put into the book, and possibly should have. These include the O(n5’* ) algorithm for unweighted bipartite matching of Dinic and of Hopcroft and Karp, and its recent generalization to the nonbipartite case by Even and Kariv. These must await a second edition, if there is to be one. Because the writing of this book extended over such a considerable period, I have had the opportunity to recelive advice, assistance, and en- couragement from a large number of people. A special word is necessary for some of them. Ray Fulkerson was very kind in giving me advice in the early stages of writing. I am most fortunate to have received his counsel. His untimely death in January 1976 was a blow to all of us who k.new him, as a scholar and as a friend. The last half of this book exists only because of the pioneering insights of Jack Edmonds. He originated the key ideas for nonbipartite matching, matroid optimization, and much, much more. I am happy to acknowledge my personal debt to his creative and fertile mind. Victor Klee, as consulting editor, was extremely helpful. His crit- icisms, based on classroom use of the manuscript, were particularly useful in revising Chapter 4. Harold Gabow helped me avoid a number of blunders in Chapter 6. (I, of course, retain sole proprietorship over the errors which remain, as elsewhere in the book.) Stein Krogdahl, whose name is seen in many lemmas in Chapter 8, provided may definitions and proofs where mine were either incorrect or incomprehensible. Donald Knuth somehow found time to communicate many useful suggestions and provided much appreciated encouragement. The Air Force Office of Scientific Research provided support which contributed to the writing of this book. I am indebted to that office and to Captain Richard Rush. I am also indebted to Nicos Christofides, Stuart Dreyfus, Alan Frieze, Dan Gussfield, T.C. Hu, Richard Karp, Sukhamay Kundu. Ben Lageweg, Howard Landeman. Jan Karel Lenstra, Francesco Maffioli, Colin McDiarmid, George Minty, Katta Murty, Alexander Rinnooy Kan, Arnon Rosenthal, Phil Spria, John Suraballe, Robert Tarjan, Roger Tobin, Klaus Truemper, Robert Urquhart, Dominic Welsh, Lee White, and Norman Zadeh. The manuscript was typed and retyped by Sharon Bauerle, Doris Simpson, Ruth Suzuki, and many others. I thank them all. Rocquencourt, France E.L.L. July 1976 V Contents PYefim 111 Chapter 1 INTRODUCTION I 1. What is Combinatorial Optimization? 1 2. Some Representarive Optimization Problems 2 3. When is a Problem Solved? 4 4. The Criterion qf’Pol~womiu1 Boundedness 5 5. Some Appurentl?) Nonpolynomial-Bounded Problems 8 6. Methods qf’Solutr’on 10 Comments and Rt@rences 12 Chapter 2 MATHEMATICAL PREL.IMINARIES 1.5 1. Muthemuticul Prerequisites 1.5 2. Sets und Relations 16 3. Gruphs and Digraphs 20 4. Subgraphs, Cliques, Multigraphs 24 5. Connectivity in Gruphs 26 6. Connectkitg in Digraphs 28 7. Coc:ycles and Directed Cocycles 31 8. Planarity and Duality 32 9. Euleriun and Hamiltonian Graphs 36 10. Linear Programming Problems 39 Il. The Sim,plex Method 43 12. Geometric Interpretation 48 13. Duality Theory 53 Comments and References 58 vii Chapter 3 SHORTEST PATHS 59 I. Introduction 59 2. Some Problem Formulations 61 3. Bellman’s Equations 65 4. Acyclic Networks 68 5. Networks with Positive Arcs: Dijksfra’s Method 70 6. Solution by Successive Appro.ximations: Bellman-Ford Method Method 74 7. Improvements in EfJiciency : Yen ‘s Modifications 76 8. Linear Programming Interpretation and Relaxation Procedures 77 9. Shortest Paths between all Pairs oj Nodes: .iMatrix Multiplication 82 10. Floyd- Warshall Method 86 Il. Detection of’ Negative C.ycles 90 12. Networks with Transit Times 92 13. The Minimal Cost-to-time Ratio Cycle Problem 94 14. A4 Shortest Paths: Dreyfus Method 98 15. M Shortest Paths without Re>aeated Nodes 100 Comments and Rejerences 104 Chapter 4 NETWORK FLOWS 109 1. Introduction 109 2. Maximal Flows 110 3. Maximal Flow Algorithm 114 4. Ejficiency ojthe Maximal Fl(ow Algorithm 116 5. Combinatorial Implications of Max-Flow Akin-Cut Theorem 120 6. Linear Programming Interpretation oj Max-Flow Mm-Cut Theorem 123 7. Minimum Cost Flows 129 c3 Networks with Losses and Gains 134 9. Lower Bounds and Circulations 138 10. The Out-oj:Kilter Method 142 11. Theoretical Improvement in Eficiency ojOOut-qf:Kilter Method 157 12. Integrality qf’Flows and the iUnimodular Property 160 13. Application to Project Scheduling 16.5 14. Transhipment and Transpormtion Problems 169 Vlll 15. Multitejrminal and Multicommodity Flows 173 Comments and References 177 Chapter 5 BIPARTITE: MATCHING 182 1. Introduiuction 182 2. Problem Reduct&!ms and Equivalences 184 3. Counterparts of’lVetwork Flow Theorems 188 4. Mendelsohn-Dulmage Theorem 191 5. Cardinality Matching Algorithm 193 6. A Special Case: Convex Graphs 196 7. Max-Min Matching 197 8. The Hungarian Methodjor Weighted Matching 201 9. A Special Case: Gilmore-Gomory Matching 207 10. A Novel Optimiz.ation Criterion : Gale-Shapley Matching 211 Comments and References 214 Chapter 6 NONBIPARTITE. MATCHING 217 1. Introduction 217 2. Problem Formuk~tions 218 3. Bidirected Flows 223 4. Augmenting Puths 226 5. Trees and Blossoms 229 6. Cardinulity Matching Algorithm 233 7. Duality Theory 239 8. Linear Programming Formulation of’ Weighted Matching Problem 242 9. An O(n”) Weighted Matching Algorithm 247 10. An O(n3) Weighted Matching Algorithm 252 11. The Chinese Postman’s Problem 259 Comments and References 261 Chapter 7 MATROIDS AND THE GREEDY ALGORITHM 264 1. Introduction 264 2. Three Apparently Unrelated Optimization Problems 265 3. Matroid Definitions 268 4. Matching, Transversal, and Partition Mutroids 271 iX 5. Mutroid Axiomatics 273 6. The Matroid Greedy Algorithm 275 7. Applications of the Greedy Algorithm 278 8. Matroid Duality 280 9. Variations oj’ the Greedy Algorithm 283 10. Prim Spanning Tree Algorithm 285 11. An Application: Flow Network Synthesis 286 12. The Steiner Problem and Other Dilemmas 290 Comments and Rejerences 296 Chapter 8 MATROID INTERSECTIONS 300 1. Introduction 300 2. Problem Formulations 301 3. Augmenting Sequences and Border Graphs 306 4.
Recommended publications
  • Distributed Throughput Maximization in Wireless Mesh Networks Via Pre-Partitioning
    1 Distributed Throughput Maximization in Wireless Mesh Networks via Pre-Partitioning Andrew Brzezinski, Gil Zussman Senior Member, IEEE, and Eytan Modiano Senior Member, IEEE Abstract— This paper considers the interaction between chan- and scheduling but unlike most previous works, we do not nel assignment and distributed scheduling in multi-channel multi- assume that the traffic statistics are known. Alternatively, radio Wireless Mesh Networks (WMNs). Recently, a number we assume a stochastic arrival process and present a novel of distributed scheduling algorithms for wireless networks have emerged. Due to their distributed operation, these algorithms partitioning approach that enables throughput maximization can achieve only a fraction of the maximum possible throughput. in each partition by distributed scheduling algorithms. As an alternative to increasing the throughput fraction by Joint scheduling and routing in a slotted multihop wireless designing new algorithms, we present a novel approach that network with a stochastic packet arrival process was con- takes advantage of the inherent multi-radio capability of WMNs. sidered in the seminal paper by Tassiulas and Ephremides We show that this capability can enable partitioning of the network into subnetworks in which simple distributed scheduling [23]. In that paper they presented the first centralized policy algorithms can achieve 100% throughput. The partitioning is that is guaranteed to stabilize the network (i.e. provide 100% based on the notion of Local Pooling. Using this notion, we char- throughput) whenever the arrival rates are within the stability acterize topologies in which 100% throughput can be achieved region. The results of [23] have been extended to various distributedly. These topologies are used in order to develop a settings of wireless networks and input-queued switches (e.g.
    [Show full text]
  • Matroid Optimization and Algorithms Robert E. Bixby and William H
    Matroid Optimization and Algorithms Robert E. Bixby and William H. Cunningham June, 1990 TR90-15 MATROID OPTIMIZATION AND ALGORITHMS by Robert E. Bixby Rice University and William H. Cunningham Carleton University Contents 1. Introduction 2. Matroid Optimization 3. Applications of Matroid Intersection 4. Submodular Functions and Polymatroids 5. Submodular Flows and other General Models 6. Matroid Connectivity Algorithms 7. Recognition of Representability 8. Matroid Flows and Linear Programming 1 1. INTRODUCTION This chapter considers matroid theory from a constructive and algorithmic viewpoint. A substantial part of the developments in this direction have been motivated by opti­ mization. Matroid theory has led to a unification of fundamental ideas of combinatorial optimization as well as to the solution of significant open problems in the subject. In addition to its influence on this larger subject, matroid optimization is itself a beautiful part of matroid theory. The most basic optimizational property of matroids is that for any subset every max­ imal independent set contained in it is maximum. Alternatively, a trivial algorithm max­ imizes any {O, 1 }-valued weight function over the independent sets. Most of matroid op­ timization consists of attempts to solve successive generalizations of this problem. In one direction it is generalized to the problem of finding a largest common independent set of two matroids: the matroid intersection problem. This problem includes the matching problem for bipartite graphs, and several other combinatorial problems. In Edmonds' solu­ tion of it and the equivalent matroid partition problem, he introduced the notions of good characterization (intimately related to the NP class of problems) and matroid (oracle) algorithm.
    [Show full text]
  • Efficient Theoretic and Practical Algorithms for Linear Matroid
    Journal of Computer and System Sciences 1273 journal of computer and system sciences 53, 129147 (1996) article no. 0054 CORE Efficient Theoretic and Practical AlgorithmsMetadata, for citation and similar papers at core.ac.uk Provided by Elsevier - Publisher Connector Linear Matroid Intersection Problems Harold N. Gabow* and Ying Xu Department of Computer Science, University of Colorado at Boulder, Boulder, Colorado 80309 Received February 1, 1989 This paper presents efficient algorithms for a number Efficient algorithms for the matroid intersection problem, both car- of matroid intersection problems. The main algorithm is dinality and weighted versions, are presented. The algorithm for for weighted matroid intersection. It is based on cost weighted intersection works by scaling the weights. The cardinality scaling, generalizing recent work in matching [GaT87], algorithm is a special case, but takes advantage of greater structure. Efficiency of the algorithms is illustrated by several implementations on and network flow [GoT]. A special case is of this problem linear matroids. Consider a linear matroid with m elements and rank n. is cardinality matroid intersection, and several improve- Assume all element weights are integers of magnitude at most N. Our ments are given for this case. The efficiency of our fastest algorithms use time O(mn1.77 log(nN)) and O(mn1.62) for intersection algorithms is illustrated by implementa- weighted and unweighted intersection, respectively; this improves the tions on linear matroids. This is the broadest class of previous best bounds, O(mn2.4) and O(mn2 log n), respectively. Corresponding improvements are given for several applications of matroids with efficient representations. (Implementations of matroid intersection to numerical computation and dynamic systems.
    [Show full text]
  • 5 Fractional Arboricity and Matroid Methods
    5 Fractional Arboricity and Matroid Methods The material in this chapter is motivated by two notions of the density of a graph. The arboricity and the maximum average degree of a graph G measure the concentration of edges in the “thickest” part of the graph. 5.1 Arboricity and maximum average degree Suppose we wish to decompose the edges of a graph G into acyclic subsets, i.e., if G =(V,E) we want to find E1,E2,...,Ek ⊆ E so that (1) each of the subgraphs (V,Ei) is acyclic and (2) E = E1 ∪ E2 ∪···∪Ek. The smallest size of such a decomposition is called the arboricity (or edge- arboricity) ofG and is denoted Υ(G). If G is connected, the arboricity is also the minimum number of spanning trees of G that include all edges of G. One can think of arboricity as being a variant of the edge chromatic number. We are asked to paint the edges of G with as few colors as possible. In the case of edge chromatic number, we do not want to have two edges of the same color incident with a common vertex. In the case of arboricity, we do not want to have a monochromatic cycle. There is an obvious lower bound on Υ(G). Since G has ε(G) edges and each spanning acyclic subgraph has at most ν(G) − 1 edges we have Υ(G) ≥ ε(G)/(ν(G) − 1). Moreover, since Υ is an ε(G) integer, we have Υ(G) ≥ ν(G)−1 . This bound is not very& accurate' if the graph is highly “unbalanced”; for example, consider the graph G consisting of a K9 with a very long tail attached—say 100 additional vertices.
    [Show full text]
  • Optimal Matroid Partitioning Problems Where Thep Input Matroids Are Identical Partition Matroids
    Optimal Matroid Partitioning Problems Yasushi Kawase1, Kei Kimura2, Kazuhisa Makino3, and Hanna Sumita4 1Tokyo Institute of Technology, Japan. [email protected] 2Toyohashi University of Technology, Japan. [email protected] 3Kyoto University, Japan. [email protected] 4National Institute of Technology, Japan. [email protected] Abstract This paper studies optimal matroid partitioning problems for various objective functions. In the problem, we are given a finite set E and k weighted matroids (E, Ii,wi), i = 1,...,k, and our task is to find a minimum partition (I1,...,Ik) of E such that Ii ∈Ii for all i. For each objective function, we give a polynomial-time algorithm or prove NP-hardness. In particular, for the case when the given weighted matroids are identical and the objective function is the sum of the maximum weight in each k set (i.e., Pi=1 maxe∈Ii wi(e)), we show that the problem is strongly NP-hard but admits a PTAS. 1 Introduction The matroid partitioning problem is one of the most fundamental problems in combinatorial optimization. In this problem, we are given a finite set E and k matroids (E, Ii), i =1,...,k, and our task is to find a partition (I1,...,Ik) of E such that Ii ∈ Ii for all i. We say that such a partition (I1,...,Ik) of E is feasible. The matroid partitioning problem has been eagerly studied in a series of papers investigating structures of matroids. See e.g., [7, 8, 9, 15, 23] for details. In this paper, we study weighted versions of the matroid partitioning problem.
    [Show full text]
  • Fractional Graph Theory a Rational Approach to the Theory of Graphs
    Fractional Graph Theory A Rational Approach to the Theory of Graphs Edward R. Scheinerman The Johns Hopkins University Baltimore, Maryland Daniel H. Ullman The George Washington University Washington, DC With a Foreword by Claude Berge Centre National de la Recherche Scientifique Paris, France c 2008 by Edward R. Scheinerman and Daniel H. Ullman. This book was originally published by John Wiley & Sons. The copyright has reverted to the authors. Permission is hereby granted for readers to download, print, and copy this book for free so long as this copyright notice is retained. The PDF file for this book can be found here: http://www.ams.jhu.edu/~ers/fgt To Rachel, Sandy, Danny, Jessica, Naomi, Jonah, and Bobby Contents Foreword vii Preface viii 1 General Theory: Hypergraphs 1 1.1 Hypergraph covering and packing 1 1.2 Fractional covering and packing 2 1.3 Some consequences 4 1.4 A game-theoretic approach 5 1.5 Duality and duality 6 1.6 Asymptotic covering and packing 7 1.7 Exercises 12 1.8 Notes 13 2 Fractional Matching 14 2.1 Introduction 14 2.2 Results on maximum fractional matchings 17 2.3 Fractionally Hamiltonian graphs 21 2.4 Computational complexity 26 2.5 Exercises 27 2.6 Notes 28 3 Fractional Coloring 30 3.1 Definitions 30 3.2 Homomorphisms and the Kneser graphs 31 3.3 The duality gap 34 3.4 Graph products 38 3.5 The asymptotic chromatic and clique numbers 41 3.6 The fractional chromatic number of the plane 43 3.7 The Erd˝os-Faber-Lov´asz conjecture 49 3.8 List coloring 51 3.9 Computational complexity 53 3.10 Exercises 54 3.11 Notes
    [Show full text]
  • Random Sampling and Greedy Sparsi Cation for Matroid Optimization Problems. 1 Introduction
    Random Sampling and Greedy Sparsication for Matroid Optimization Problems David R Karger MIT Lab oratory for Computer Science kargerlcsmitedu Abstract Random sampling is a p owerful to ol for gathering information ab out a group by considering only a small part of it We discuss some broadly applicable paradigms for using random sampling in combinatorial optimization and demonstrate the eectiveness of these paradigms for two optimization problems on matroids nding an optimum matroid basis and packing disjoint matroid bases Applications of these ideas to the graphic matroid led to fast algorithms for minimum spanning trees and minimum cuts An optimum matroid basis is typically found by a greedy algorithm that grows an indep endent set into an the optimum basis one element at a time This continuous change in the indep endent set can make it hard to p erform the indep endence tests needed by the greedy algorithm We simplify matters by using sampling to reduce the problem of nding an optimum matroid basis to the problem of verifying that a given xed basis is optimum showing that the two problems can b e solved in roughly the same time Another application of sampling is to packing matroid bases also known as matroid par titioning Sampling reduces the numb er of bases that must b e packed We combine sampling with a greedy packing strategy that reduces the size of the matroid Together these techniques give accelerated packing algorithms We give particular attention to the problem of packing spanning trees in graphs which has applications in
    [Show full text]
  • Disjoint Spanning Trees 1 Forest Partitioning
    Disjoint Spanning Trees Luis Goddyn 1 Forest Partitioning A forest in a graph G is a set of edges which induces an acyclic subgraph of G. We say that a set J of Sk edges of a graph G is k-partitionable if J = i=1 Ji is the union of k forests Ji in G. (We may assume the forests to be disjoint, where convenient.) We consider the following question. Forest Partitioning Problem Given a graph G = (V; E), find a k-partitionable set J ⊆ E of maximum size, and provide a certificate that proves jJj is indeed maximum. For any edge set A ⊆ E of a graph G = (V; E), we define the rank of A, written r(A) to be the maximum size of a subforest of A. Thus r(A) is the number of vertices minus the number of connected components in the induced subgraph G[A] := (V; A). We now describe a barrier which prevents G from having a large k-partitionable set. Suppose that G contains a dense subgraph. In particular, suppose that A is a set of edges for which jAj is large but r(A) is Sk small. Then for any k-partitionable J = i=1 Ji, each set Ji \A is a subforest of A, whence jJi \Aj ≤ r(A). It follows that k X jJj = jJi \ Aj + jJ \ (E − A)j ≤ kr(A) + jE − Aj: (1) i=1 The surprising fact is that some such inequality is always tight. Theorem 1 For any graph G and positive integer k, maxfjJj : J ⊆ E is k-partitionableg = minfjE − Aj + kr(A): A ⊆ Eg: Before the proof, we give two applications.
    [Show full text]
  • CO450: Combinatorial Optimization
    CO450: Combinatorial Optimization Felix Zhou Fall 2020, University of Waterloo from Professor Ricardo Fukasawa’s Lectures 2 Contents I Minimum Spanning Trees 9 1 Minimum Spanning Trees 11 1.1 Spanning Trees . 11 1.2 Minimum Spanning Trees . 12 1.3 Kruskal’s Algorithm . 13 1.3.1 Pseudocode & Correctness . 13 1.3.2 Running Time . 14 1.4 Linear Programming Relaxation . 14 1.5 Greedy Algorithms . 16 1.5.1 Maximum Forest . 16 Minimum Spanning Tree Reduction . 16 Direct Approach . 18 1.5.2 Minimum Spanning Tree Reduction to Maximum Forest . 18 II Matroids 21 2 Matroids 23 2.1 Matroids . 23 3 2.1.1 Definitions . 23 2.1.2 Independence Systems . 24 2.2 Independent Set . 25 2.3 Alternative Characterizations . 27 2.3.1 Matroids . 27 2.3.2 Circuits & Bases . 28 3 Polymatroids 31 3.1 Motivation . 31 3.2 Submodular Functions . 32 3.3 Polymatroids . 33 3.4 Optimizing over Polymatroids . 33 3.4.1 Greedy Algorithm . 33 4 Matroid Construction 37 4.1 Matroid Construction . 37 4.1.1 Deletion . 37 4.1.2 Truncation . 37 4.1.3 Disjoint Union . 38 4.1.4 Contraction . 38 4.1.5 Duality . 39 5 Matroid Intersection 41 5.1 Matroid Intersection . 41 5.2 Matroid Intersection Algorithm . 43 4 5.2.1 Motivation . 43 5.2.2 Augmenting Paths . 44 5.3 Generalizations . 46 5.3.1 3-Way Intersection . 46 5.3.2 Matroid Partitioning . 46 III Matchings 49 6 Matchings 51 6.1 Matchings . 51 6.1.1 Augmenting Paths . 51 6.1.2 Alternating Trees .
    [Show full text]
  • Optimal Matroid Partitioning Problems∗
    Optimal Matroid Partitioning Problems∗ Yasushi Kawase†1, Kei Kimura‡2, Kazuhisa Makino§3, and Hanna Sumita¶4 1 Tokyo Institute of Technology, Tokyo, Japan [email protected] 2 Toyohashi University of Technology, Toyohashi, Japan [email protected] 3 Kyoto University, Kyoto, Japan [email protected] 4 National Institute of Informatics, Tokyo, Japan [email protected] Abstract This paper studies optimal matroid partitioning problems for various objective functions. In the problem, we are given a finite set E and k weighted matroids (E, Ii, wi), i = 1, . , k, and our task is to find a minimum partition (I1,...,Ik) of E such that Ii ∈ Ii for all i. For each objective function, we give a polynomial-time algorithm or prove NP-hardness. In particular, for the case when the given weighted matroids are identical and the objective function is the sum of Pk the maximum weight in each set (i.e., i=1 maxe∈Ii wi(e)), we show that the problem is strongly NP-hard but admits a PTAS. 1998 ACM Subject Classification G.2.1 Combinatorial algorithms Keywords and phrases Matroids, Partitioning problem, PTAS, NP-hardness Digital Object Identifier 10.4230/LIPIcs.ISAAC.2017.51 1 Introduction The matroid partitioning problem is one of the most fundamental problems in combinatorial optimization. In this problem, we are given a finite set E and k matroids (E, Ii), i = 1, . , k, and our task is to find a partition (I1,...,Ik) of E such that Ii ∈ Ii for all i. We say that such a partition (I1,...,Ik) of E is feasible.
    [Show full text]