Acetabular Dysplasia in the Reduced Or Subluxated Hip
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Minimally Invasive Surgical Treatment Using 'Iliac Pillar' Screw for Isolated
European Journal of Trauma and Emergency Surgery (2019) 45:213–219 https://doi.org/10.1007/s00068-018-1046-0 ORIGINAL ARTICLE Minimally invasive surgical treatment using ‘iliac pillar’ screw for isolated iliac wing fractures in geriatric patients: a new challenge Weon‑Yoo Kim1,2 · Se‑Won Lee1,3 · Ki‑Won Kim1,3 · Soon‑Yong Kwon1,4 · Yeon‑Ho Choi5 Received: 1 May 2018 / Accepted: 29 October 2018 / Published online: 1 November 2018 © Springer-Verlag GmbH Germany, part of Springer Nature 2018 Abstract Purpose There have been no prior case series of isolated iliac wing fracture (IIWF) due to low-energy trauma in geriatric patients in the literature. The aim of this study was to describe the characteristics of IIWF in geriatric patients, and to pre- sent a case series of IIWF in geriatric patients who underwent our minimally invasive screw fixation technique named ‘iliac pillar screw fixation’. Materials and methods We retrospectively reviewed six geriatric patients over 65 years old who had isolated iliac wing fracture treated with minimally invasive screw fixation technique between January 2006 and April 2016. Results Six geriatric patients received iliac pillar screw fixation for acute IIWFs. The incidence of IIWFs was approximately 3.5% of geriatric patients with any pelvic bone fractures. The main fracture line exists in common; it extends from a point between the anterosuperior iliac spine and the anteroinferior iliac spine to a point located at the dorsal 1/3 of the iliac crest whether fracture was comminuted or not. Regarding the Koval walking ability, patients who underwent iliac pillar screw fixation technique tended to regain their pre-injury walking including one patient in a previously bedridden state. -
Turnedhead Adductedhip Truncal Curvature Syndrome
Archives ofDisease in Childhood 1994; 70: 515-519 515 Turned head adducted hip truncal curvature syndrome Arch Dis Child: first published as 10.1136/adc.70.6.515 on 1 June 1994. Downloaded from Chiaki Hamanishi, Seisuke Tanaka Abstract curvature. An epidemiological analysis was One hundred and eight neonates and carried out to determine whether the intra- infants who showed the clinical triad of a uterine environment of these asymmetrically head turned to one side, adduction con- deformed babies had been restricted. The tracture of the hip joint on the occipital clinical course of each feature of the clinical side of the turned head, and truncal cur- triad was also analysed to determine whether vature, which we named TAC syndrome, TAC syndrome is aetiologically related to any were studied. These cases included seven subsequent paediatric disorders. with congenital and five with late infantile dislocations of the hip joint and 14 who developed muscular torticollis. Forty one Patients and methods were among 7103 neonates examined by We studied a total of 108 cases with TAC one of the authors. An epidemiological syndrome. Of them, 41 were among a total analysis confirmed the aetiology of the number of 7103 neonates personally examined syndrome to be environmental. The side by one of the authors (CH) at newborn exami- to which the head was turned and that of nations conducted at hospitals in four cities the adducted hip contracture showed a since 1981. Thirteen were referred neonates. high correlation with the side of the The remaining 54 were among infants aged maternal spine on which the fetus had from 10 days to 3 months who were referred to been lying. -
Genu Varum and Genu Valgum Genu Varum and Genu Valgum
Common Pediatric Lower Limb Disorders Dr.Kholoud Al-Zain Assistant Professor Consultant, Pediatric Orthopedic Surgeon Nov- 2018 Acknowledgement: Dr.Abdalmonem Alsiddiky Dr.Khalid Bakarman Prof. M. Zamzam Topics to Cover 1. In-toeing 2. Genu (varus & valgus), & proximal tibia vara 3. Club foot 4. L.L deformities in C.P patients 5. Limping & leg length inequality 6. Leg aches 1) Intoeing Intoeing- Evaluation • Detailed history – Onset, who noticed it, progression – Fall a lot – How sits on the ground • Screening examination (head to toe) • Pathology at the level of: – Femoral anteversion – Tibial torsion – Forefoot adduction – Wandering big toe Intoeing- Asses rotational profile Pathology Level Special Test • Femoral anteversion • Hips rotational profile: – Supine – Prone • Tibial torsion • Inter-malleolus axis: – Supine – Prone • Foot thigh axis • Forefoot adduction • Heel bisector line • Wandering big toe Intoeing- Special Test Foot Propagation Angle → normal is (-10°) to (+15°) Intoeing- Femoral Anteversion Hips rotational profile, supine → IR/ER normal = 40-45/45-50° Intoeing- Tibial Torsion Inter-malleolus axis Supine position Sitting position Intoeing- Tibial Torsion Foot Thigh Axis → normal (0°) to (-10°) Intoeing- Forefoot Adduction Heel bisector line → normal along 2 toe Intoeing- Adducted Big Toe Intoeing- Treatment • Establish correct diagnosis • Parents education • Annual clinic F/U → asses degree of deformity • Femoral anti-version → sit cross legged • Tibial torsion → spontaneous improvement • Forefoot adduction → anti-version -
Canine Hip Dysplasia - by Patricia Long October, 2001
Canine Hip Dysplasia - by Patricia Long October, 2001 Edited by Melissa Zebley, DVM Contributions by: Sue Bacig, Brenda Briggs, Sue Brightman, Cathy Burlile, Janice Cagwin, Steve Dudley, Lisa Ebnet, Sue German, Kathy Maher, Ruth Reynolds, Rose Tierney, Sue Sanvido, Doug Smith Much has been written on hip dysplasia (HD), and this article is simply an attempt to summarize much of that information. For a more in-depth examination of HD, I urge you to read the articles by Susan Thorpe-Vargas and John Cargill which can be found on http://workingdogs.com/ Prevention - the ounce worth more than a pound Breeders have several methods of trying to minimize the risk of HD: OFA, GDC, PennHIP. But these registries are only able to identify some dogs that may have HD. They are not able to identify the dogs that carry the genes for HD. It is important to understand that no matter how many generations there are in the pedigree with hips rated clear, all this can do is to minimize the risk of HD - it can't eliminate it. HD is a polygenetic multifactorial condition, which means that we still don't know exactly what causes it. But without the genes for it, a dog won't get it without some other event such as an injury. What is HD? The hip joint is a clever device, the classic ball and socket joint. Properly constructed, the top of the thigh bone, or femoral head, is the ball that fits into the socket, or acetabulum, in the pelvis. But in dogs, as in humans, this joint does not always develop properly. -
Pelvic Anatomyanatomy
PelvicPelvic AnatomyAnatomy RobertRobert E.E. Gutman,Gutman, MDMD ObjectivesObjectives UnderstandUnderstand pelvicpelvic anatomyanatomy Organs and structures of the female pelvis Vascular Supply Neurologic supply Pelvic and retroperitoneal contents and spaces Bony structures Connective tissue (fascia, ligaments) Pelvic floor and abdominal musculature DescribeDescribe functionalfunctional anatomyanatomy andand relevantrelevant pathophysiologypathophysiology Pelvic support Urinary continence Fecal continence AbdominalAbdominal WallWall RectusRectus FasciaFascia LayersLayers WhatWhat areare thethe layerslayers ofof thethe rectusrectus fasciafascia AboveAbove thethe arcuatearcuate line?line? BelowBelow thethe arcuatearcuate line?line? MedianMedial umbilicalumbilical fold Lateralligaments umbilical & folds folds BonyBony AnatomyAnatomy andand LigamentsLigaments BonyBony PelvisPelvis TheThe bonybony pelvispelvis isis comprisedcomprised ofof 22 innominateinnominate bones,bones, thethe sacrum,sacrum, andand thethe coccyx.coccyx. WhatWhat 33 piecespieces fusefuse toto makemake thethe InnominateInnominate bone?bone? PubisPubis IschiumIschium IliumIlium ClinicalClinical PelvimetryPelvimetry WhichWhich measurementsmeasurements thatthat cancan bebe mademade onon exam?exam? InletInlet DiagonalDiagonal ConjugateConjugate MidplaneMidplane InterspinousInterspinous diameterdiameter OutletOutlet TransverseTransverse diameterdiameter ((intertuberousintertuberous)) andand APAP diameterdiameter ((symphysissymphysis toto coccyx)coccyx) -
Gluteal Region-II
Gluteal Region-II Dr Garima Sehgal Associate Professor King George’s Medical University UP, Lucknow Structures in the Gluteal region • Bones & joints • Ligaments Thickest muscle • Muscles • Vessels • Nerves Thickest nerve • Bursae Learning Objectives By the end of this teaching session Gluteal region –II all the MBBS 1st year students must be able to: • Enumerate the nerves of gluteal region • Write a short note on nerves of gluteal region • Describe the location & relations of sciatic nerve in gluteal region • Enumerate the arteries of gluteal region • Write a short note on arteries of gluteal region • Enumerate the arteries taking part in trochanteric and cruciate anastomosis • Write a short note on trochanteric and cruciate anastomosis • Enumerate the structures passing through greater sciatic foramen • Enumerate the structures passing through lesser sciatic foramen • Enumerate the bursae in relation to gluteus maximus • Enumerate the structures deep to gluteus maximus • Discuss applied anatomy Nerves of Gluteal region (all nerves in gluteal region are branches of sacral plexus) Superior gluteal nerve (L4,L5, S1) Inferior gluteal nerve (L5, S1, S2) FROM DORSAL DIVISIONS Perforating cutaneous nerve (S2,S3) Nerve to quadratus femoris (L4,L5, S1) Nerve to obturator internus (L5, S1, S2) FROM VENTRAL DIVISIONS Pudendal nerve (S2,S3,S4) Sciatic nerve (L4,L5,S1,S2,S3) Posterior cutaneous nerve of thigh FROM BOTH DORSAL &VENTRAL (S1,S2) & (S2,S3) DIVISIONS 1. Superior Gluteal nerve (L4,L5,S1- dorsal division) 1 • Enters through the greater 3 sciatic foramen • Above piriformis 2 • Runs forwards between gluteus medius & gluteus minimus • SUPPLIES: 1. Gluteus medius 2. Gluteus minimus 3. Tensor fasciae latae 2. -
British Veterinary Association / Kennel Club Hip Dysplasia Scheme
British Veterinary Association / Kennel Club Hip Dysplasia Scheme Breed Specific Statistics – 1 January 2001 to 31 December 2016 Hip scores should be considered along with other criteria as part of a responsible breeding programme, and it is recommended that breeders choose breeding stock with hip scores around and ideally below the breed median score, depending on the level of HD in the breed. HD status of parents, siblings and progeny for Kennel Club registered dogs should also be considered, and these together with a three generation Health Test Pedigree may be downloaded via the Health Test Results Finder, available on the Kennel Club’s online health tool Mate Select (www.mateselect.org.uk). In addition, estimated breeding values (EBVs) are available for breeds in which a significant number of dogs have been graded, via the same link. For further advice on the interpretation and use of hip scores see www.bva.co.uk/chs The breed median score is the score of the ‘average’ dog in that breed (i.e. an equal number of dogs in that breed have better and worse scores). No. 15 year No. 15 year 5 year 5 year Breed score in Breed score in Range Median Median Range Median Median 15 years 15 years Affenpinscher 40 8 – 90 13 14 Beagle 62 8 - 71 16 17 Afghan Hound 18 0 – 73 8.5 27 Bearded Collie 1511 0 – 70 9 9 Airedale Terrier 933 4 – 72 11 10 Beauceron 42 2 – 23 10 10 Akita 1029 0 – 91 7 7 Belgian Shepherd 249 0 – 37 8 8 Dog (Groenendael) Alaskan Malamute 1248 0 – 78 10 10 Belgian Shepherd 16 5 - 16 10 14 Dog (Laekenois) Anatolian 63 3 – 67 9 -
Development of the Endochondral Skeleton
Downloaded from http://cshperspectives.cshlp.org/ on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press Development of the Endochondral Skeleton Fanxin Long1,2 and David M. Ornitz2 1Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110 2Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110 Correspondence: fl[email protected] SUMMARY Much of the mammalian skeleton is composed of bones that originate from cartilage templates through endochondral ossification. Elucidating the mechanisms that control endochondral bone development is critical for understanding human skeletal diseases, injury response, and aging. Mouse genetic studies in the past 15 years have provided unprecedented insights about molecules regulating chondrocyte formation, chondrocyte maturation, and osteoblast differ- entiation, all key processes of endochondral bone development. These include the roles of the secreted proteins IHH, PTHrP, BMPs, WNTs, and FGFs, their receptors, and transcription factors such as SOX9, RUNX2, and OSX, in regulating chondrocyte and osteoblast biology. This review aims to integrate the known functions of extracellular signals and transcription factors that regulate development of the endochondral skeleton. Outline 1 Introduction 5 Osteoblastogenesis 2 Mesenchymal condensation 6 Closing remarks 3 Chondrocyte differentiation References 4 Growth plate development Editors: Patrick P.L. Tam, W. James Nelson, and Janet Rossant Additional Perspectives on Mammalian Development available at www.cshperspectives.org Copyright # 2013 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a008334 Cite this article as Cold Spring Harb Perspect Biol 2013;5:a008334 1 Downloaded from http://cshperspectives.cshlp.org/ on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press F. -
Femur Pelvis HIP JOINT Femoral Head in Acetabulum Acetabular
Anatomy of the Hip Joint Overview The hip joint is one of the largest weight-bearing HIP JOINT joints in the body. This ball-and-socket joint allows the leg to move and rotate while keeping the body Femoral head in stable and balanced. Let's take a closer look at the acetabulum main parts of the hip joint's anatomy. Pelvis Bones Two bones meet at the hip joint, the femur and the pelvis. The femur, commonly called the "thighbone," is the longest and heaviest bone of the body. At the top of the femur, positioned on the femoral neck, is the femoral head. This is the "ball" of the hip joint. The other part of the joint – the Femur "socket" – is found in the pelvis. The pelvis is a bone made of three sections: the ilium, the ischium and the pubis. The socket is located where these three sections fuse. The proper name of the socket is the "acetabulum." The head of the femur fits tightly into this cup-shaped cavity. Articular Cartilage The femoral head and the acetabulum are covered Acetabular with a layer of articular cartilage. This tough, smooth tissue protects the bones. It allows them to labrum glide smoothly against each other as the ball moves in the socket. Soft Tissues Several soft tissue structures work together to hold the femoral head securely in place. The acetabulum is surrounded by a ring of cartilage called the "acetabular labrum." This deepens the socket and helps keep the ball from slipping out of alignment. It also acts as a shock absorber. -
Sciatica and Chronic Pain
Sciatica and Chronic Pain Past, Present and Future Robert W. Baloh 123 Sciatica and Chronic Pain Robert W. Baloh Sciatica and Chronic Pain Past, Present and Future Robert W. Baloh, MD Department of Neurology University of California, Los Angeles Los Angeles, CA, USA ISBN 978-3-319-93903-2 ISBN 978-3-319-93904-9 (eBook) https://doi.org/10.1007/978-3-319-93904-9 Library of Congress Control Number: 2018952076 © Springer International Publishing AG, part of Springer Nature 2019 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. -
Orthopedic-Conditions-Treated.Pdf
Orthopedic and Orthopedic Surgery Conditions Treated Accessory navicular bone Achondroplasia ACL injury Acromioclavicular (AC) joint Acromioclavicular (AC) joint Adamantinoma arthritis sprain Aneurysmal bone cyst Angiosarcoma Ankle arthritis Apophysitis Arthrogryposis Aseptic necrosis Askin tumor Avascular necrosis Benign bone tumor Biceps tear Biceps tendinitis Blount’s disease Bone cancer Bone metastasis Bowlegged deformity Brachial plexus injury Brittle bone disease Broken ankle/broken foot Broken arm Broken collarbone Broken leg Broken wrist/broken hand Bunions Carpal tunnel syndrome Cavovarus foot deformity Cavus foot Cerebral palsy Cervical myelopathy Cervical radiculopathy Charcot-Marie-Tooth disease Chondrosarcoma Chordoma Chronic regional multifocal osteomyelitis Clubfoot Congenital hand deformities Congenital myasthenic syndromes Congenital pseudoarthrosis Contractures Desmoid tumors Discoid meniscus Dislocated elbow Dislocated shoulder Dislocation Dislocation – hip Dislocation – knee Dupuytren's contracture Early-onset scoliosis Ehlers-Danlos syndrome Elbow fracture Elbow impingement Elbow instability Elbow loose body Eosinophilic granuloma Epiphyseal dysplasia Ewing sarcoma Extra finger/toes Failed total hip replacement Failed total knee replacement Femoral nonunion Fibrosarcoma Fibrous dysplasia Fibular hemimelia Flatfeet Foot deformities Foot injuries Ganglion cyst Genu valgum Genu varum Giant cell tumor Golfer's elbow Gorham’s disease Growth plate arrest Growth plate fractures Hammertoe and mallet toe Heel cord contracture -
Hyperplasia (Growth Factors
Adaptations Robbins Basic Pathology Robbins Basic Pathology Robbins Basic Pathology Coagulation Robbins Basic Pathology Robbins Basic Pathology Homeostasis • Maintenance of a steady state Adaptations • Reversible functional and structural responses to physiologic stress and some pathogenic stimuli • New altered “steady state” is achieved Adaptive responses • Hypertrophy • Altered demand (muscle . hyper = above, more activity) . trophe = nourishment, food • Altered stimulation • Hyperplasia (growth factors, . plastein = (v.) to form, to shape; hormones) (n.) growth, development • Altered nutrition • Dysplasia (including gas exchange) . dys = bad or disordered • Metaplasia . meta = change or beyond • Hypoplasia . hypo = below, less • Atrophy, Aplasia, Agenesis . a = without . nourishment, form, begining Robbins Basic Pathology Cell death, the end result of progressive cell injury, is one of the most crucial events in the evolution of disease in any tissue or organ. It results from diverse causes, including ischemia (reduced blood flow), infection, and toxins. Cell death is also a normal and essential process in embryogenesis, the development of organs, and the maintenance of homeostasis. Two principal pathways of cell death, necrosis and apoptosis. Nutrient deprivation triggers an adaptive cellular response called autophagy that may also culminate in cell death. Adaptations • Hypertrophy • Hyperplasia • Atrophy • Metaplasia HYPERTROPHY Hypertrophy refers to an increase in the size of cells, resulting in an increase in the size of the organ No new cells, just larger cells. The increased size of the cells is due to the synthesis of more structural components of the cells usually proteins. Cells capable of division may respond to stress by undergoing both hyperrtophy and hyperplasia Non-dividing cell increased tissue mass is due to hypertrophy.