Ocimene, a Key Floral and Foliar Volatile Involved in Multiple Interactions Between Plants and Other Organisms

Total Page:16

File Type:pdf, Size:1020Kb

Ocimene, a Key Floral and Foliar Volatile Involved in Multiple Interactions Between Plants and Other Organisms molecules Review β-Ocimene, a Key Floral and Foliar Volatile Involved in Multiple Interactions between Plants and Other Organisms Gerard Farré-Armengol 1,2,3,* , Iolanda Filella 1,2, Joan Llusià 1,2 and Josep Peñuelas 1,2 1 CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain; [email protected] (I.F.); [email protected] (J.L.); [email protected] (J.P.) 2 CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia, Spain 3 Department of Ecology and Evolution, University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria * Correspondence: [email protected] or [email protected]; Tel.: +43-662-8044-5517 Received: 18 April 2017; Accepted: 3 July 2017; Published: 13 July 2017 Abstract: β-Ocimene is a very common plant volatile released in important amounts from the leaves and flowers of many plant species. This acyclic monoterpene can play several biological functions in plants, by potentially affecting floral visitors and also by mediating defensive responses to herbivory. The ubiquity and high relative abundance of β-ocimene in the floral scents of species from most plant families and from different pollination syndromes (ranging from generalism to specialism) strongly suggest that this terpenoid may play an important role in the attraction of pollinators to flowers. We compiled abundant evidence from published studies that supports β-ocimene as a generalist attractant of a wide spectrum of pollinators. We found no studies testing behavioural responses of pollinators to β-ocimene, that could directly demonstrate or deny the function of β-ocimene in pollinator attraction; but several case studies support that the emissions of β-ocimene in flowers of different species follow marked temporal and spatial patterns of emission, which are typical from floral volatile organic compound (VOC) emissions that are involved in pollinator attraction. Furthermore, important β-ocimene emissions are induced from vegetative plant tissues after herbivory in many species, which have relevant functions in the establishment of tritrophic interactions. We thus conclude that β-ocimene is a key plant volatile with multiple relevant functions in plants, depending on the organ and the time of emission. Experimental behavioural studies on pure β-ocimene conducted with pollinating insects will be necessary to prove the assumptions made here. Keywords: trans-β-ocimene; (E)-β-ocimene; floral scent; dominant VOCs 1. Introduction More than 1700 volatile organic compounds (VOCs) have been identified in the floral scents of flowering plants [1]. The richness of VOCs emitted by flowers is certainly very high. Floral VOCs, however, are not equally distributed across the phylogeny of flowering plants, so that the commonness and predominance of these compounds in floral scents varies widely among species. Common floral VOCs have a widespread phylogenetic distribution, which means that they are present in the floral scents of many species from different plant families. Plants generally synthesize and emit species-specific floral VOC mixtures to attract pollinators by mixing several of these common VOCs [2]. These specific floral VOC mixtures attract specialist pollinators that have evolved an innate preference for them [3] but also provide generalist pollinators with a reliable signal to effectively forage on their floral resources [4]. Some less common floral VOCs are only present in plants that are pollinated by specific pollinator groups with specific innate preferences for those VOCs [5–7]. Some of the Molecules 2017, 22, 1148; doi:10.3390/molecules22071148 www.mdpi.com/journal/molecules Molecules 2017, 22, 1148 2 of 9 Molecules 2017, 22, 1148 2 of 9 rarestcommunication floral VOCs channels can constitute between very specialist specific andpollinat reliableors communicationand their host plants, channels even between when specialistthey are pollinatorsemitted within and a their mixture host that plants, includes even more when common they are VOCs emitted [3,8]. within a mixture that includes more commonMost VOCs floral [ 3VOCs,8]. range from being relatively common to rare, but some are very common in the floralMost scents floral VOCsof species range from from all being plant relatively families. common These volatiles, to rare, butwhich some are are essentially very common obligate in thecomponents floral scents of any of speciesfloral scent, from have all plantgreat families.potential for These attracting volatiles, pollinators. which are The essentially commonest obligate floral componentsVOCs, namely of anybenzaldehyde, floral scent, limonene, have great β-ocimene potential forand attracting linalool, are pollinators. not only Thevery commonest common but floral are VOCs,also predominant namely benzaldehyde, components limonene, of the floralβ-ocimene scents of and many linalool, species are [9]. not They only belong very common to the two but most are alsoprominent predominant chemical components groups of plant of the VOCs, floral scentsthe terpenoids of many and species the benzenoids [9]. They belong [10,11]. to the two most prominentHere we chemical review groups the current of plant info VOCs,rmation the terpenoidson the importance and the benzenoidsof β-ocimene [10 ,in11 ].plants, focusing especiallyHere weon reviewits biological the current functions information and its onubiquitous the importance presence of βin-ocimene floral scents. in plants, We compiled focusing especiallyabundant onevidence its biological from functionspublished and studies its ubiquitous supporting presence that inβ-ocimene floral scents. may We play compiled a very abundant relevant evidencefunction as from a general published pollinator studies supportingattractant. We that furtherβ-ocimene emphasize may play that a veryβ-ocimene relevant may function not only as amediate general pollinator pollinator attraction attractant. to We flowers further but emphasize plays several that β biological-ocimene mayfunctions not only in plants, mediate which pollinator vary attractiondepending to on flowers the organ but and plays the several time of biological emission. functions in plants, which vary depending on the organ and the time of emission. 2. Biosynthesis of β-Ocimene 2. Biosynthesis of β-Ocimene β-Ocimene (3,7-dimethyl-1,3,6-octatriene) is a monoterpenoid with the chemical formula β C10H16-Ocimene. It has two (3,7-dimethyl-1,3,6-octatriene) stereoisomers, cis- and trans is a- monoterpenoidβ-ocimene (or with(Z)- and the chemical (E)-β-ocimene, formula respectively), C10H16. It has twowhich stereoisomers, are the cis cisand- and transtrans forms-β-ocimene of the (orcentral (Z)-and double (E)-β bond-ocimene, (Figure respectively), 1). The trans which isomer are the iscis moreand transcommonforms and of the more central abundantly double bond emitted (Figure in1 floral). The scentstrans isomer than the is more cis isomer common [1,9]. and It more is synthesized abundantly emittedfrom the in precursors floral scents isopentenyl than the cis pyrophosphateisomer [1,9]. It (IPP) is synthesized and dimethylallyl from the pyrophosphate precursors isopentenyl (DMAPP) pyrophosphatevia the methyl-erythritol-phosphate (IPP) and dimethylallyl pyrophosphate(MEP) pathway. (DMAPP) Monoterpenes via the methyl-erythritol-phosphate are obtained by the (MEP)transformation pathway. of Monoterpenes DMAPP and areIPP obtainedinto geranyl by the diphosphate transformation (GPP) of inside DMAPP the andchloroplasts, IPP into geranyland the diphosphatelater synthesis (GPP) of terpene inside compounds the chloroplasts, from andGPP the by later enzymes synthesis called of terpene terpene synthases compounds (TPS), from which GPP byare enzymes very diversified called terpene across the synthases phylogeny (TPS), of the which plant are kingdom very diversified [10,12–15]. across β-Ocimene the phylogeny is synthesized of the plantby the kingdom enzyme [10 ,12(E–)-15β].-ocimeneβ-Ocimene synthase is synthesized (with bythe the enzymesystematic (E)- βname-ocimene geranyl-diphosphate synthase (with the systematicdiphosphate-lyase name geranyl-diphosphate ((E)-β-ocimene-forming)), diphosphate-lyase which transforms ((E)-β-ocimene-forming)), GPP into trans which-β-ocimene transforms and GPPdiphosphate. into trans -β(E-ocimene)-β-Ocimene and diphosphate.synthase produces (E)-β-Ocimene mostly synthase trans-β produces-ocimene mostly(94–97%),trans -βbut-ocimene other (94–97%),monoterpenes but other such monoterpenes as cis-β-ocimene such or as myrcenecis-β-ocimene are produced or myrcene in low are proportions produced in (2–4% low proportions and 1–2%, (2–4%respectively) and 1–2%, [16–19]. respectively) Cis-β-ocimene [16–19 is]. thusCis -lessβ-ocimene common is than thus trans less- commonβ-ocimene than in floraltrans -scents;β-ocimene it is inproduced floral scents; and emitted it is produced in small and but emitted detectable in small amounts but detectableonly in species amounts where only trans in species-β-ocimene where is transproduced-β-ocimene in moderately is produced high in amounts. moderately high amounts. FigureFigure 1. Chemical structurestructure ofofthe the two twoβ β-ocimene-ocimene stereoisomers, stereoisomers,cis cis- and- andtrans trans-β-ocimene-β-ocimene (also (also referred referred to asto (asZ)- (Z and)- and (E)- β(E-ocimene,)-β-ocimene, respectively). respectively). 3.3. Functions of β-Ocimene in Flowers OcimeneOcimene isis likely likely to playto play major major ecological ecological roles inroles flowers in flowers due to its due commonness to its commonness
Recommended publications
  • Retention Indices for Frequently Reported Compounds of Plant Essential Oils
    Retention Indices for Frequently Reported Compounds of Plant Essential Oils V. I. Babushok,a) P. J. Linstrom, and I. G. Zenkevichb) National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA (Received 1 August 2011; accepted 27 September 2011; published online 29 November 2011) Gas chromatographic retention indices were evaluated for 505 frequently reported plant essential oil components using a large retention index database. Retention data are presented for three types of commonly used stationary phases: dimethyl silicone (nonpolar), dimethyl sili- cone with 5% phenyl groups (slightly polar), and polyethylene glycol (polar) stationary phases. The evaluations are based on the treatment of multiple measurements with the number of data records ranging from about 5 to 800 per compound. Data analysis was limited to temperature programmed conditions. The data reported include the average and median values of retention index with standard deviations and confidence intervals. VC 2011 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved. [doi:10.1063/1.3653552] Key words: essential oils; gas chromatography; Kova´ts indices; linear indices; retention indices; identification; flavor; olfaction. CONTENTS 1. Introduction The practical applications of plant essential oils are very 1. Introduction................................ 1 diverse. They are used for the production of food, drugs, per- fumes, aromatherapy, and many other applications.1–4 The 2. Retention Indices ........................... 2 need for identification of essential oil components ranges 3. Retention Data Presentation and Discussion . 2 from product quality control to basic research. The identifi- 4. Summary.................................. 45 cation of unknown compounds remains a complex problem, in spite of great progress made in analytical techniques over 5.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2016/0279073 A1 Donsky Et Al
    US 20160279073A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0279073 A1 Donsky et al. (43) Pub. Date: Sep. 29, 2016 (54) TERPENE AND CANNABINOID Publication Classification FORMULATIONS (51) Int. Cl. A63L/01 (2006.01) (71) Applicant: FULL SPECTRUM A63L/05 (2006.01) LABORATORIES, LTD., Dublin 2 A636/85 (2006.01) (IE) A63L/352 (2006.01) A63L/05 (2006.01) (72) Inventors: Marc Donsky, Denver, CO (US); A6II 47/36 (2006.01) Robert Winnicki, Denver, CO (US) A 6LX 9/27 (2006.01) A63L/045 (2006.01) (21) Appl. No.: 15/033,023 (52) U.S. Cl. CPC ............... A6 IK3I/01 (2013.01); A61K 9/127 (22) PCT Fed: Oct. 31, 2014 (2013.01); A61 K3I/015 (2013.01); A61 K 31/045 (2013.01); A61K 31/352 (2013.01); (86) PCT No.: PCT/B2O14/OO3156 A61 K3I/05 (2013.01); A61K 47/36 (2013.01); A61K 36/185 (2013.01) S 371 (c)(1), (2) Date: Apr. 28, 2016 (57) ABSTRACT The present invention provides stable, fast-acting liposome and micelle formulations of terpenes, hemp oil, cannabi Related U.S. Application Data noids, or mixtures of a cannabinoid and terpenes or hemp oil and cannabinoids that are Suitable for pharmaceutical and (60) Provisional application No. 61/898,024, filed on Oct. nutraceutical applications. Also provided are methods for 31, 2013. the manufacture of micelle and liposomal formulations. US 2016/0279.073 A1 Sep. 29, 2016 TERPENE AND CANNABINOID medical conditions, including glaucoma, AIDS wasting, FORMULATIONS neuropathic pain, treatment of spasticity associated with multiple Sclerosis, fibromyalgia and chemotherapy-induced PRIORAPPLICATION INFORMATION nausea.
    [Show full text]
  • Vape Cart Disclosure (Verified® Cartridges) This Product
    Vape Cart Disclosure (Verified® Cartridges) This product was produced using terpenes derived from sources other than cannabis. This product has been tested for contaminants, including Vitamin E Acetate, with no adverse findings. WARNING: Vaporizer Products may contain ingredients harmful to health when inhaled. The cartridge holding the vape concentrate is manufactured by Verified® and comprised of the following components: glass fluid holder; glass mouthpiece; SnCo-plated brass atomizer shell, base and airway tube; nichrome heating element; ceramic wick; cellulose atomizer retaining wrap; and silicone seals. If you wish to inspect a copy of the associated testing results of this vape cart at Triple M’s dispensary, please let your dispensary agent know and they will be happy to review them with you. Triple M does not use any Polyethlyne glycol (PEG) or medium chain triglycerides (MCT) in producing its vape carts. If you wish to inspect a copy of the associated testing results of the product you are purchasing, please let your Triple M dispensary agent know and they will be happy to review them with you. Charlottes Web Vape Cart Ingredients: Cannabis distillate oil (.475g/95%) and botanically derived Charlottes Web terpene blend manufactured by True Terpenes (0.025g/5%), comprised of the following terpenes: Ingredient MG Per Cart % Of Total Myrcene 11.075 2.22% α-Pinene 5.1 1.02% β-Caryophyllene 2.125 0.43% β-Pinene 1.55 0.31% Limonene 1.1 0.22% α-Bisabolol 1.025 0.21% Guaiol 0.975 0.20% Humulene 0.675 0.14% Linalool 0.275 0.06% Fenchol
    [Show full text]
  • Predicting Sorbent-Air Partition Coefficients for Terpenoids at Multiple Temperatures
    Ind. Eng. Chem. Res. 2020, 59, 37, 16473–16482 Predicting Sorbent-Air Partition Coefficients for Terpenoids at Multiple Temperatures Kavita M. Jeerage* and Elijah N. Holland Applied Chemicals and Materials Division, Material Measurement Laboratory, National Institute of Standards and Technology (NIST) 325 Broadway, Boulder, CO 80305 *[email protected] Abstract Partition coefficients describe the relative concentration of a chemical equilibrated between two phases. In the design of air samplers, the sorbent-air partition coefficient is a critical parameter, as is the ability to extrapolate or predict partitioning at a variety of temperatures. Our specific interest is the partitioning of plant-derived terpenes (hydrocarbons formed from isoprene building blocks) and terpenoids (with oxygen-containing functional groups) in polydimethylsiloxane (PDMS) sorbents. To predict 퐾푃퐷푀푆⁄퐴퐼푅 as a function of temperature for compounds containing carbon, hydrogen, and oxygen, we developed a group contribution model that explicitly incorporates the van’t Hoff equation. For the 360 training compounds, predicted 퐾푃퐷푀푆⁄퐴퐼푅 values strongly 2 correlate (R > 0.987) with 퐾푃퐷푀푆⁄퐴퐼푅 values measured at temperatures from 60 °C to 200 °C. To validate the model with available literature data, we compared predictions for 50 additional C10 compounds, including 6 terpenes and 22 terpenoids, with 퐾푃퐷푀푆⁄퐴퐼푅 values measured at 100 °C and determined an average relative error of 3.1 %. We also compared predictions with 퐾푃퐷푀푆⁄퐴퐼푅 values measured at 25 °C. The modeling approach developed here is advantageous for properties with limited experimental values at a single temperature. Introduction Passive air sampling is an important technique for characterizing exposure to hazardous chemicals in indoor and outdoor environments.1-3 Commercially-available personal exposure badges utilize activated carbon sorbents and are generally intended to capture industrial chemicals such as benzene, toluene, ethylbenzene, and xylenes (BTEX).
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2009/0285919 A1 Alberte Et Al
    US 20090285919A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0285919 A1 Alberte et al. (43) Pub. Date: Nov. 19, 2009 (54) RCE BRAN EXTRACTS FOR filed on Sep. 30, 2008, provisional application No. NFLAMMATION AND METHODS OF USE 61/147,305, filed on Jan. 26, 2009. THEREOF Publication Classification (76) Inventors: Randall S. Alberte, Estero, FL (51) Int. Cl. (US); William P. Roschek, JR., A 6LX 36/899 (2006.01) Naples, FL (US) A2.3L I/28 (2006.01) Correspondence Address: A6IP 29/00 (2006.01) FOLEY HOAG, LLP A6IP 25/00 (2006.01) PATENT GROUP, WORLD TRADE CENTER A6IP35/00 (2006.01) WEST (52) U.S. Cl. ......................................... 424/750; 426/655 155 SEAPORT BLVD BOSTON, MA 02110 (US) (57) ABSTRACT The present invention relates in part to stabilized rice bran (21) Appl. No.: 12/467,835 extracts enriched in compounds that have inhibitory activity against certain anti-inflammatory therapeutic endpoints, such (22) Filed: May 18, 2009 as the COX-1, COX-2 and 5-LOX enzymes. Another aspect of the invention relates to pharmaceutical compositions com Related U.S. Application Data prising the extracts and to methods of treating inflammatory (60) Provisional application No. 61/054,151, filed on May diseases comprising administering the aforementioned 18, 2008, provisional application No. 61/101.475, eXtractS. Patent Application Publication Nov. 19, 2009 Sheet 1 of 6 US 2009/0285919 A1 Figure l Arachidonic Acid NSAIDs inhibition Prostaglandins PRO-NFLAMMATORY Arthritis (OA & RA) Patent Application Publication Nov. 19, 2009 Sheet 2 of 6 US 2009/0285919 A1 S.---------------Sssssssssss &s asy xxx s -Yvxxxxxxxxxxxxxxxxxxxx xxxx-xxxxxxxxxx:x O SSSSS i Patent Application Publication Nov.
    [Show full text]
  • Biosynthesis of the Phenolic Monoterpenes, Thymol and Carvacrol, by Terpene Synthases and Cytochrome P450s in Oregano and Thyme
    Biosynthesis of the phenolic monoterpenes, thymol and carvacrol, by terpene synthases and cytochrome P450s in oregano and thyme Dissertation Zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) vorgelegt dem Rat der Biologisch-Pharmazeutischen Fakultät der Friedrich-Schiller-Universität Jena von Diplom-Biologe Christoph Crocoll geboren am 11. Februar 1977 in Kassel Gutachter: 1. Prof. Dr. Jonathan Gershenzon, Max-Planck-Institut für chemische Ökologie, Jena 2. Prof. Dr. Christian Hertweck, Hans-Knöll-Institut, Jena 3. Prof. Dr. Harro Bouwmeester, Wageningen University, Wageningen Tag der öffentlichen Verteidigung: 11.02.2011 Biosynthesis of the phenolic monoterpenes, thymol and carvacrol, by terpene synthases and cytochrome P450s in oregano and thyme Christoph Crocoll - Max-Planck-Institut für chemische Ökologie - 2010 Contents 1 General introduction ................................................................................................. 1 2 Chapter I ................................................................................................................... 13 Terpene synthases of oregano (Origanum vulgare L.) and their roles in the pathway and regulation of terpene biosynthesis 2.1 Abstract ............................................................................................................................ 13 2.2 Introduction ...................................................................................................................... 14 2.3 Materials and Methods ....................................................................................................
    [Show full text]
  • Ocimum Gratissimum : the Brine Shrimps Lethality of a New Chemotype Grown in South Western Nigeria by Owokotomo I
    Global Journal of Science Frontier Research Chemistry Volume 12 Issue 6 Version 1.0 Year 2012 Type : Double Blind Peer Reviewed International Research Journal Publisher: Global Journals Inc. (USA) Online ISSN: 2249-4626 & Print ISSN: 0975-5896 Ocimum Gratissimum : the Brine Shrimps Lethality of a New Chemotype Grown in South Western Nigeria By Owokotomo I. A, Ekundayo, O & Dina, O Federal University of Technology Akure, Nigeria Abstract - Hydro-distilled volatile oils of leaves and seeds of Ocimum gratissimum L. (Lamiaceae) were investigated for chemical constituents and brine shrimp lethality activity. The essential oil of the leaves of O. gratissimum consisted of γ- terpinene (52.86%), Z-tert-butyl-4- hydroxy anisole (13.93%), caryophyllene (10.37%) and p-cymenene (7.16%) as the major compounds while the essential oils of the seeds yielded α- pinene (48.19%), caryophyllene (10.71%), and 3-tert-butyl-4- hydroxyanisole (11.14%) as the major compounds. The volatile oils showed significant toxicity against brine shrimps, Artemia salina, as 100% mortality was recorded at 1000 ppm for the different essential oils. Keywords : Essential oil, Hydro-distillation, Ocimum gratissimum, Artemia salina, toxicity. GJSFR-B Classification: FOR Code: 030699 Ocimum Gratissimum the Brine Shrimps Lethality of a New Chemotype Grown in South Western Nigeria Strictly as per the compliance and regulations of : © 2012. Owokotomo I. A, Ekundayo, O & Dina, O. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
    [Show full text]
  • Alpha-Terpineol Production from an Engineered Saccharomyces
    Zhang et al. Microb Cell Fact (2019) 18:160 https://doi.org/10.1186/s12934-019-1211-0 Microbial Cell Factories RESEARCH Open Access Alpha-Terpineol production from an engineered Saccharomyces cerevisiae cell factory Chuanbo Zhang1, Man Li1, Guang‑Rong Zhao1,2,3 and Wenyu Lu1,2,3* Abstract Background: Alpha‑Terpineol (α‑Terpineol), a C10 monoterpenoid alcohol, is widely used in the cosmetic and pharmaceutical industries. Construction Saccharomyces cerevisiae cell factories for producing monoterpenes ofers a promising means to substitute chemical synthesis or phytoextraction. Results: α‑Terpineol was produced by expressing the truncated α‑Terpineol synthase (tVvTS) from Vitis vinifera in S. cerevisiae. The α‑Terpineol titer was increased to 0.83 mg/L with overexpression of the rate‑limiting genes tHMG1, IDI1 and ERG20F96W-N127W. A GSGSGSGSGS linker was applied to fuse ERG20F96W‑N127W with tVvTS, and expressing the fusion protein increased the α‑Terpineol production by 2.87‑fold to 2.39 mg/L when compared with the parental strain. In addition, we found that farnesyl diphosphate (FPP) accumulation by down‑regulation of ERG9 expression and deletion of LPP1 and DPP1 did not improve α‑Terpineol production. Therefore, ERG9 was overexpressed and the α‑Terpineol titer was further increased to 3.32 mg/L. The best α‑Terpineol producing strain LCB08 was then used for batch and fed‑batch fermentation in a 5 L bioreactor, and the production of α‑Terpineol was ultimately improved to 21.88 mg/L. Conclusions: An efcient α‑Terpineol production cell factory was constructed by engineering the S. cerevisiae meva‑ lonate pathway, and the metabolic engineering strategies could also be applied to produce other valuable monoter‑ pene compounds in yeast.
    [Show full text]
  • Isolation and Structure Elucidation of Natural Products from Plants
    Isolation and Structure Elucidation of Natural Products from Plants DISSERTATION In Fulfillment of the Requirements for the Doctorate Degree at the Institute of Organic Chemistry University of Hamburg By Hailemichael Tesso (from Alemaya University, Ethiopia) ___________________________________________________________________________ University of Hamburg Institute of Organic Chemistry Hamburg, March 2005 1. Gutachter: Prof. Dr. Dr. h.c. W. Francke Institut für Organische Chemie 2. Gutachter: Prof. Dr. J. Voss Institut für Organische Chemie 1. Prüfer: Prof. Dr. Dr. h.c. W. Francke Institut für Organische Chemie 2. Prüferin: Prof. Dr. E. Stahl-Biskup Institut für Pharmazie 3. Prüfer: Dr. S. Franke Institut für Organische Chemie The present work was carried out between April 2002 and January 2005 under the supervision of the late Prof. Dr. W.A. Koenig. The work was done at the Institute of Organic Chemistry, University of Hamburg. Part I: Table of contents Content Page Acknowledgements ....................................................................................................................5 List of Abbreviations ..................................................................................................................6 ABSTRACT...............................................................................................................................8 1. Introduction............................................................................................................................9 2. Terpenes ...............................................................................................................................10
    [Show full text]
  • Exploring the Biochemical and Evolutionary Diversity of Terpene Biosynthetic Enzymes in Plants
    University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2008 EXPLORING THE BIOCHEMICAL AND EVOLUTIONARY DIVERSITY OF TERPENE BIOSYNTHETIC ENZYMES IN PLANTS Sungbeom Lee University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Lee, Sungbeom, "EXPLORING THE BIOCHEMICAL AND EVOLUTIONARY DIVERSITY OF TERPENE BIOSYNTHETIC ENZYMES IN PLANTS" (2008). University of Kentucky Doctoral Dissertations. 587. https://uknowledge.uky.edu/gradschool_diss/587 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Sungbeom Lee The Graduate School University of Kentucky 2008 EXPLORING THE BIOCHEMICAL AND EVOLUTIONARY DIVERSITY OF TERPENE BIOSYNTHETIC ENZYMES IN PLANTS ABSTRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Plant and Soil Sciences at the University of Kentucky By Sungbeom Lee Lexington, Kentucky Director: Dr. Joseph Chappell, Professor Lexington, Kentucky 2008 Copyright © Sungbeom Lee 2008 ABSTRACT OF DISSERTATION EXPLORING THE BIOCHEMICAL AND EVOLUTIONARY DIVERSITY OF TERPENE BIOSYNTHETIC ENZYMES IN PLANTS Southern Magnolia (Magnolia grandiflora) is a primitive tree species that has attracted attention because of its horticultural distinctiveness, the wealth of natural products associated with it, and its evolutionary position as a basal angiosperm. Terpenoid constituents were determined from Magnolia leaves and flowers. Magnolia leaves constitutively produced two major terpenoids, β-cubebene and germacrene A.
    [Show full text]
  • Cannabinoids and Terpenes As Chemotaxonomic Markers in Cannabis
    s Chemis ct try u d & o r R P e s l e a r a Elzinga et al., Nat Prod Chem Res 2015, 3:4 r u t c h a N Natural Products Chemistry & Research DOI: 10.4172/2329-6836.1000181 ISSN: 2329-6836 Research Article Open Access Cannabinoids and Terpenes as Chemotaxonomic Markers in Cannabis Elzinga S1, Fischedick J2, Podkolinski R1 and Raber JC1* 1The Werc Shop, LLC, Pasadena, CA 91107, USA 2Excelsior Analytical Lab, Inc., Union City, CA 94587, USA Abstract In this paper, we present principal component analysis (PCA) results from a dataset containing 494 cannabis flower samples and 170 concentrate samples analyzed for 31 compounds. A continuum of chemical composition amongst cannabis strains was found instead of distinct chemotypes. Our data shows that some strains are much more reproducible in chemical composition than others. Strains labeled as indica were compared with those labeled as sativa and no evidence was found that these two cultivars are distinctly different chemotypes. PCA of “OG” and “Kush” type strains found that “OG” strains have relatively higher levels of α-terpineol, fenchol, limonene, camphene, terpinolene and linalool where “Kush” samples are characterized mainly by the compounds trans-ocimene, guaiol, β-eudesmol, myrcene and α-pinene. The composition of concentrates and flowers were compared as well. Although the absolute concentration of compounds in concentrates is much higher, the relative composition of compounds between flowers and concentrates is similar. Keywords: Cannabis; Tetrahydrocannabinol; Cannabidiol; have looked at cannabis from a chemotaxonomic perspective as well. Marijuana; Terpenoids; Terpenes; Strains; Taxonomy Small and Beckstead split C.
    [Show full text]
  • Dr. Duke's Phytochemical and Ethnobotanical Databases Chemicals Found in Carica Papaya
    Dr. Duke's Phytochemical and Ethnobotanical Databases Chemicals found in Carica papaya Activities Count Chemical Plant Part Low PPM High PPM StdDev Refernce Citation 0 (E)-BETA-OCIMENE Fruit -- 0 (Z)-BETA-OCIMENE Fruit -- 0 2,6-DIMETHYL-OCT-7-ENE- Fruit Essent. Oil Jim Duke's personal files. 2,3,6-TRIOL 0 2,6-DIMETHYL-OCTA-1,7- Fruit Essent. Oil Jim Duke's personal files. DIENE-3,6-DIOL 0 2,6-DIMETHYL-OCTA-3,7- Fruit Essent. Oil Jim Duke's personal files. DIENE-2,6-DIOL 0 2,6-DIMETHYL-OCTA-CIS- Fruit Essent. Oil Jim Duke's personal files. 2,7-DIENE-1,6-DIOL 0 2,6-DIMETHYL-OCTA- Fruit Essent. Oil Jim Duke's personal files. TRANS-2,7-DIENE-1,6-DIOL 0 2-METHYL-BUTAN-1-AL Fruit 0.006 Jim Duke's personal files. 0 24-METHYLENE- Seed Oil Jim Duke's personal files. CYCLOARTENOL 0 3-METHYL-BUTYL- Fruit -- BENZOATE 0 4-HYDROXY-4-METHYL- Fruit -- PENTAN-2-ONE 8 4-TERPINEOL Fruit -- 0 5,6-MONOEPOXI-BETA- Fruit List, P.H. and Horhammer, L., CAROTENE Hager's Handbuch der Pharmazeutischen Praxis, Vols. 2-6, Springer-Verlag, Berlin, 1969-1979. 0 5-DEHYDRO- Seed Oil Jim Duke's personal files. AVENASTEROL 15 5-HYDROXYTRYPTAMINE Plant Jim Duke's personal files. 0 6,7-EPOXY-LINALOOL Fruit Essent. Oil Jim Duke's personal files. 0 6-METHYLKEPT-5-EN-2- Fruit -- ONE 0 7-DEHYDRO- Seed Oil Jim Duke's personal files. AVENASTEROL 3 ALANINE Fruit 140.0 1253.0 -0.9646875161658541 USDA's Ag Handbook 8 and sequelae) 0 ALKALOIDS Leaf 1300.0 1500.0 -0.5088573165279121 -- 15 ALPHA-LINOLENIC-ACID Fruit 250.0 2238.0 -0.1389637310912248 USDA's Ag Handbook 8 and sequelae) 11 ALPHA-PHELLANDRENE Fruit -- 13 ALPHA-TERPINENE Fruit -- Activities Count Chemical Plant Part Low PPM High PPM StdDev Refernce Citation 32 ALPHA-TOCOPHEROL Leaf Jim Duke's personal files.
    [Show full text]