Exploring the Biochemical and Evolutionary Diversity of Terpene Biosynthetic Enzymes in Plants
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Retention Indices for Frequently Reported Compounds of Plant Essential Oils
Retention Indices for Frequently Reported Compounds of Plant Essential Oils V. I. Babushok,a) P. J. Linstrom, and I. G. Zenkevichb) National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA (Received 1 August 2011; accepted 27 September 2011; published online 29 November 2011) Gas chromatographic retention indices were evaluated for 505 frequently reported plant essential oil components using a large retention index database. Retention data are presented for three types of commonly used stationary phases: dimethyl silicone (nonpolar), dimethyl sili- cone with 5% phenyl groups (slightly polar), and polyethylene glycol (polar) stationary phases. The evaluations are based on the treatment of multiple measurements with the number of data records ranging from about 5 to 800 per compound. Data analysis was limited to temperature programmed conditions. The data reported include the average and median values of retention index with standard deviations and confidence intervals. VC 2011 by the U.S. Secretary of Commerce on behalf of the United States. All rights reserved. [doi:10.1063/1.3653552] Key words: essential oils; gas chromatography; Kova´ts indices; linear indices; retention indices; identification; flavor; olfaction. CONTENTS 1. Introduction The practical applications of plant essential oils are very 1. Introduction................................ 1 diverse. They are used for the production of food, drugs, per- fumes, aromatherapy, and many other applications.1–4 The 2. Retention Indices ........................... 2 need for identification of essential oil components ranges 3. Retention Data Presentation and Discussion . 2 from product quality control to basic research. The identifi- 4. Summary.................................. 45 cation of unknown compounds remains a complex problem, in spite of great progress made in analytical techniques over 5. -
(12) Patent Application Publication (10) Pub. No.: US 2016/0279073 A1 Donsky Et Al
US 20160279073A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0279073 A1 Donsky et al. (43) Pub. Date: Sep. 29, 2016 (54) TERPENE AND CANNABINOID Publication Classification FORMULATIONS (51) Int. Cl. A63L/01 (2006.01) (71) Applicant: FULL SPECTRUM A63L/05 (2006.01) LABORATORIES, LTD., Dublin 2 A636/85 (2006.01) (IE) A63L/352 (2006.01) A63L/05 (2006.01) (72) Inventors: Marc Donsky, Denver, CO (US); A6II 47/36 (2006.01) Robert Winnicki, Denver, CO (US) A 6LX 9/27 (2006.01) A63L/045 (2006.01) (21) Appl. No.: 15/033,023 (52) U.S. Cl. CPC ............... A6 IK3I/01 (2013.01); A61K 9/127 (22) PCT Fed: Oct. 31, 2014 (2013.01); A61 K3I/015 (2013.01); A61 K 31/045 (2013.01); A61K 31/352 (2013.01); (86) PCT No.: PCT/B2O14/OO3156 A61 K3I/05 (2013.01); A61K 47/36 (2013.01); A61K 36/185 (2013.01) S 371 (c)(1), (2) Date: Apr. 28, 2016 (57) ABSTRACT The present invention provides stable, fast-acting liposome and micelle formulations of terpenes, hemp oil, cannabi Related U.S. Application Data noids, or mixtures of a cannabinoid and terpenes or hemp oil and cannabinoids that are Suitable for pharmaceutical and (60) Provisional application No. 61/898,024, filed on Oct. nutraceutical applications. Also provided are methods for 31, 2013. the manufacture of micelle and liposomal formulations. US 2016/0279.073 A1 Sep. 29, 2016 TERPENE AND CANNABINOID medical conditions, including glaucoma, AIDS wasting, FORMULATIONS neuropathic pain, treatment of spasticity associated with multiple Sclerosis, fibromyalgia and chemotherapy-induced PRIORAPPLICATION INFORMATION nausea. -
Biosynthesis of New Alpha-Bisabolol Derivatives Through a Synthetic Biology Approach Arthur Sarrade-Loucheur
Biosynthesis of new alpha-bisabolol derivatives through a synthetic biology approach Arthur Sarrade-Loucheur To cite this version: Arthur Sarrade-Loucheur. Biosynthesis of new alpha-bisabolol derivatives through a synthetic biology approach. Biochemistry, Molecular Biology. INSA de Toulouse, 2020. English. NNT : 2020ISAT0003. tel-02976811 HAL Id: tel-02976811 https://tel.archives-ouvertes.fr/tel-02976811 Submitted on 23 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE En vue de l’obtention du DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE Délivré par l'Institut National des Sciences Appliquées de Toulouse Présentée et soutenue par Arthur SARRADE-LOUCHEUR Le 30 juin 2020 Biosynthèse de nouveaux dérivés de l'α-bisabolol par une approche de biologie synthèse Ecole doctorale : SEVAB - Sciences Ecologiques, Vétérinaires, Agronomiques et Bioingenieries Spécialité : Ingénieries microbienne et enzymatique Unité de recherche : TBI - Toulouse Biotechnology Institute, Bio & Chemical Engineering Thèse dirigée par Gilles TRUAN et Magali REMAUD-SIMEON Jury -
Isolation, Identification and Characterization of Allelochemicals/Natural Products
Isolation, Identification and Characterization of Allelochemicals/Natural Products Isolation, Identification and Characterization of Allelochemicals/Natural Products Editors DIEGO A. SAMPIETRO Instituto de Estudios Vegetales “Dr. A. R. Sampietro” Universidad Nacional de Tucumán, Tucumán Argentina CESAR A. N. CATALAN Instituto de Química Orgánica Universidad Nacional de Tucumán, Tucumán Argentina MARTA A. VATTUONE Instituto de Estudios Vegetales “Dr. A. R. Sampietro” Universidad Nacional de Tucumán, Tucumán Argentina Series Editor S. S. NARWAL Haryana Agricultural University Hisar, India Science Publishers Enfield (NH) Jersey Plymouth Science Publishers www.scipub.net 234 May Street Post Office Box 699 Enfield, New Hampshire 03748 United States of America General enquiries : [email protected] Editorial enquiries : [email protected] Sales enquiries : [email protected] Published by Science Publishers, Enfield, NH, USA An imprint of Edenbridge Ltd., British Channel Islands Printed in India © 2009 reserved ISBN: 978-1-57808-577-4 Library of Congress Cataloging-in-Publication Data Isolation, identification and characterization of allelo- chemicals/natural products/editors, Diego A. Sampietro, Cesar A. N. Catalan, Marta A. Vattuone. p. cm. Includes bibliographical references and index. ISBN 978-1-57808-577-4 (hardcover) 1. Allelochemicals. 2. Natural products. I. Sampietro, Diego A. II. Catalan, Cesar A. N. III. Vattuone, Marta A. QK898.A43I86 2009 571.9’2--dc22 2008048397 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the publisher, in writing. The exception to this is when a reasonable part of the text is quoted for purpose of book review, abstracting etc. -
Vape Cart Disclosure (Verified® Cartridges) This Product
Vape Cart Disclosure (Verified® Cartridges) This product was produced using terpenes derived from sources other than cannabis. This product has been tested for contaminants, including Vitamin E Acetate, with no adverse findings. WARNING: Vaporizer Products may contain ingredients harmful to health when inhaled. The cartridge holding the vape concentrate is manufactured by Verified® and comprised of the following components: glass fluid holder; glass mouthpiece; SnCo-plated brass atomizer shell, base and airway tube; nichrome heating element; ceramic wick; cellulose atomizer retaining wrap; and silicone seals. If you wish to inspect a copy of the associated testing results of this vape cart at Triple M’s dispensary, please let your dispensary agent know and they will be happy to review them with you. Triple M does not use any Polyethlyne glycol (PEG) or medium chain triglycerides (MCT) in producing its vape carts. If you wish to inspect a copy of the associated testing results of the product you are purchasing, please let your Triple M dispensary agent know and they will be happy to review them with you. Charlottes Web Vape Cart Ingredients: Cannabis distillate oil (.475g/95%) and botanically derived Charlottes Web terpene blend manufactured by True Terpenes (0.025g/5%), comprised of the following terpenes: Ingredient MG Per Cart % Of Total Myrcene 11.075 2.22% α-Pinene 5.1 1.02% β-Caryophyllene 2.125 0.43% β-Pinene 1.55 0.31% Limonene 1.1 0.22% α-Bisabolol 1.025 0.21% Guaiol 0.975 0.20% Humulene 0.675 0.14% Linalool 0.275 0.06% Fenchol -
The Biosynthesis of Sesquiterpene Lactones in Chicory (Cichorium Intybus L.) Roots Promotor Prof
The Biosynthesis of Sesquiterpene Lactones in Chicory (Cichorium intybus L.) Roots Promotor Prof. dr. Æ. de Groot, hoogleraar in de bio-organische chemie, Wageningen Universiteit Co-promotoren Dr. M.C.R. Franssen, universitair hoofddocent, Laboratorium voor Organische Chemie, Wageningen Universiteit Dr. ir. H.J. Bouwmeester, senior onderzoeker, Business Unit Celcybernetica, Plant Research International Promotiecommissie Prof. dr. J. Gershenzon (Max Planck Institute for Chemical Ecology, Germany) Prof. dr. L.H.W. van der Plas (Wageningen Universiteit) Prof. dr. ir. I.M.C.M. Rietjens (Wageningen Universiteit) Prof. dr. E.J.R. Sudhölter (Wageningen Universiteit) Jan-Willem de Kraker The Biosynthesis of Sesquiterpene Lactones in Chicory (Cichorium intybus L.) Roots Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit prof. dr. ir. L. Speelman in het openbaar te verdedigen op woensdag 9 januari 2002 des namiddags te vier uur in de Aula de Kraker, J.-W. The Biosynthesis of Sesquiterpene Lactones in Chicory (Cichorium intybus L.) Roots Thesis Wageningen University – with summaries in English and Dutch ISBN 90-5808-531-7 Voorwoord — Preface De afgelopen vijf jaar was het voor mij witlof, dag in dag uit. Waarschijnlijk is dit ook de reden dat ik al ruim 3 jaar geen witlof meer kan ruiken, laat staan eet. Als je dan ongeacht waar je in Europa bent overal in de wegberm uitsluitend blauwe bloemen ziet opduiken, is het wel goed en verstandig er eens een punt achter te zetten. Hoewel het eind van dit promotie- onderzoek door al het ‘wachtgeldgedoe’ en bijbehorende ‘dode mussen’ wel erg abrupt en weinig chique kwam, kan ik me nu met goed gevoel weer eens op wat anders storten. -
Predicting Sorbent-Air Partition Coefficients for Terpenoids at Multiple Temperatures
Ind. Eng. Chem. Res. 2020, 59, 37, 16473–16482 Predicting Sorbent-Air Partition Coefficients for Terpenoids at Multiple Temperatures Kavita M. Jeerage* and Elijah N. Holland Applied Chemicals and Materials Division, Material Measurement Laboratory, National Institute of Standards and Technology (NIST) 325 Broadway, Boulder, CO 80305 *[email protected] Abstract Partition coefficients describe the relative concentration of a chemical equilibrated between two phases. In the design of air samplers, the sorbent-air partition coefficient is a critical parameter, as is the ability to extrapolate or predict partitioning at a variety of temperatures. Our specific interest is the partitioning of plant-derived terpenes (hydrocarbons formed from isoprene building blocks) and terpenoids (with oxygen-containing functional groups) in polydimethylsiloxane (PDMS) sorbents. To predict 퐾푃퐷푀푆⁄퐴퐼푅 as a function of temperature for compounds containing carbon, hydrogen, and oxygen, we developed a group contribution model that explicitly incorporates the van’t Hoff equation. For the 360 training compounds, predicted 퐾푃퐷푀푆⁄퐴퐼푅 values strongly 2 correlate (R > 0.987) with 퐾푃퐷푀푆⁄퐴퐼푅 values measured at temperatures from 60 °C to 200 °C. To validate the model with available literature data, we compared predictions for 50 additional C10 compounds, including 6 terpenes and 22 terpenoids, with 퐾푃퐷푀푆⁄퐴퐼푅 values measured at 100 °C and determined an average relative error of 3.1 %. We also compared predictions with 퐾푃퐷푀푆⁄퐴퐼푅 values measured at 25 °C. The modeling approach developed here is advantageous for properties with limited experimental values at a single temperature. Introduction Passive air sampling is an important technique for characterizing exposure to hazardous chemicals in indoor and outdoor environments.1-3 Commercially-available personal exposure badges utilize activated carbon sorbents and are generally intended to capture industrial chemicals such as benzene, toluene, ethylbenzene, and xylenes (BTEX). -
(12) Patent Application Publication (10) Pub. No.: US 2009/0285919 A1 Alberte Et Al
US 20090285919A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0285919 A1 Alberte et al. (43) Pub. Date: Nov. 19, 2009 (54) RCE BRAN EXTRACTS FOR filed on Sep. 30, 2008, provisional application No. NFLAMMATION AND METHODS OF USE 61/147,305, filed on Jan. 26, 2009. THEREOF Publication Classification (76) Inventors: Randall S. Alberte, Estero, FL (51) Int. Cl. (US); William P. Roschek, JR., A 6LX 36/899 (2006.01) Naples, FL (US) A2.3L I/28 (2006.01) Correspondence Address: A6IP 29/00 (2006.01) FOLEY HOAG, LLP A6IP 25/00 (2006.01) PATENT GROUP, WORLD TRADE CENTER A6IP35/00 (2006.01) WEST (52) U.S. Cl. ......................................... 424/750; 426/655 155 SEAPORT BLVD BOSTON, MA 02110 (US) (57) ABSTRACT The present invention relates in part to stabilized rice bran (21) Appl. No.: 12/467,835 extracts enriched in compounds that have inhibitory activity against certain anti-inflammatory therapeutic endpoints, such (22) Filed: May 18, 2009 as the COX-1, COX-2 and 5-LOX enzymes. Another aspect of the invention relates to pharmaceutical compositions com Related U.S. Application Data prising the extracts and to methods of treating inflammatory (60) Provisional application No. 61/054,151, filed on May diseases comprising administering the aforementioned 18, 2008, provisional application No. 61/101.475, eXtractS. Patent Application Publication Nov. 19, 2009 Sheet 1 of 6 US 2009/0285919 A1 Figure l Arachidonic Acid NSAIDs inhibition Prostaglandins PRO-NFLAMMATORY Arthritis (OA & RA) Patent Application Publication Nov. 19, 2009 Sheet 2 of 6 US 2009/0285919 A1 S.---------------Sssssssssss &s asy xxx s -Yvxxxxxxxxxxxxxxxxxxxx xxxx-xxxxxxxxxx:x O SSSSS i Patent Application Publication Nov. -
(12) United States Patent (10) Patent No.: US 7,214.507 B2 Bouwmeester Et Al
US007214507B2 (12) United States Patent (10) Patent No.: US 7,214.507 B2 BOuWmeester et al. (45) Date of Patent: May 8, 2007 (54) PLANT ENZYMES FOR BIOCONVERSION (56) References Cited (75) Inventors: Hendrik Jan Bouwmeester, Renkum U.S. PATENT DOCUMENTS (NL); Jan-Willem de Kraker, Jena 6,200,786 B1* 3/2001 Huang et al. ............... 435,132 (DE); Marloes Schurink, Ede (NL); 6,451,576 B1* 9/2002 Croteau et al. ............. 435/232 Raoul John Bino, Wageningen (NL); Aede de Groot, Wageningen (NL); OTHER PUBLICATIONS Maurice Charles R. Franssen, Dedeyan B et al. 2000. Appl Env Microbiol 66: 925-929.* Wageningen (NL) Yoder OC et al. 2001. Curr Opin Plant Biol 4: 315-321.* Nielsen KAetal. 2005. Cytochrome P450s in plants. In Cytochrome (73) Assignee: Plant Research International B.V., P450: structure, mechanism, and biochemistry, 3' ed., Ortiz de Wageningen (NL) Montellano, ed., p. 553.* Bohlmann, Jorg, et al., “Plant terpenoid synthases: Molecular (*) Notice: Subject to any disclaimer, the term of this biology and phylogenetic analysis”. Proc. Natl. Acad. Sci. 1998, patent is extended or adjusted under 35 95:4126-4133. de Kraker, Jan-Willem, et al., “Biosynthesis of Germacrene A U.S.C. 154(b) by 0 days. Carboxylic Acid in Chicory Roots. Demonstration of a Cytochrome P450 (+)-Germacrene A Hydroxylase and NADP-Dependent (21) Appl. No.: 10/489,762 Sesquiterpenoid Dehydrogenase(s) Involved in Sesquiterpene Lactone Biosynthesis”. Plant Physiology 2001, 125:1930-1940. (22) PCT Filed: Sep. 17, 2002 de Kraker, Jan-Willem, et al., “Germacrenes from fresh costus roots”, Phytochemistry 2001, 58:481-487. (86). PCT No.: PCT/NLO2/OO591 de Kraker, Jan-Willem, et al., “(+)-Germacrene A Biosynthesis'. -
Costunolide—A Bioactive Sesquiterpene Lactone with Diverse Therapeutic Potential
Review Costunolide—A Bioactive Sesquiterpene Lactone with Diverse Therapeutic Potential Dae Yong Kim 1 and Bu Young Choi 2,* 1 Department of Biology Education, Seowon University, Cheongju, Chungbuk 361-742, So Korea; [email protected] 2 Department of Pharmaceutical Science & Engineering, Seowon University, Cheongju, Chungbuk 361-742, South Korea * Correspondance: [email protected]; Tel.: +82-043-299-8411 Received: 23 April 2019; Accepted: 12 June 2019; Published: 14 June 2019 Abstract: Sesquiterpene lactones constitute a major class of bioactive natural products. One of the naturally occurring sesquiterpene lactones is costunolide, which has been extensively investigated for a wide range of biological activities. Multiple lines of preclinical studies have reported that the compound possesses antioxidative, anti-inflammatory, antiallergic, bone remodeling, neuroprotective, hair growth promoting, anticancer, and antidiabetic properties. Many of these bioactivities are supported by mechanistic details, such as the modulation of various intracellular signaling pathways involved in precipitating tissue inflammation, tumor growth and progression, bone loss, and neurodegeneration. The key molecular targets of costunolide include, but are not limited to, intracellular kinases, such as mitogen-activated protein kinases, Akt kinase, telomerase, cyclins and cyclin-dependent kinases, and redox-regulated transcription factors, such as nuclear factor-kappaB, signal transducer and activator of transcription, activator protein-1. The compound also diminished the production and/expression of proinflammatory mediators, such as cyclooxygenase-2, inducible nitric oxide synthase, nitric oxide, prostaglandins, and cytokines. This review provides an overview of the therapeutic potential of costunolide in the management of various diseases and their underlying mechanisms. Keywords: costunolide; antioxidants; anti-inflammatory; anti-allergic; bone regenerating; neuroprotective; antimicrobial; hair growth promoting; anticancer; antidiabetic properties 1. -
Isolation and Characterization of Two Germacrene a Synthase Cdna Clones from Chicory1
Isolation and Characterization of Two Germacrene A Synthase cDNA Clones from Chicory1 Harro J. Bouwmeester*, Jan Kodde, Francel W.A. Verstappen, Iris G. Altug, Jan-Willem de Kraker, and T. Eelco Wallaart2 Plant Research International, Business Unit Cell Cybernetics, P.O. Box 16, 6700 AA Wageningen, The Netherlands (H.J.B., J.K., F.W.A.V.); Department of Organic Chemistry, Hamburg University, D–20146 Hamburg, Germany (I.G.A.); Department of Organic Chemistry, Wageningen Agricultural University, Dreijenplein 8, 6703 HB Wageningen, The Netherlands (J.-W.d.K.); and University Centre for Pharmacy, Department of Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands (T.E.W.) Chicory (Cichorium intybus) sesquiterpene lactones were recently shown to be derived from a common sesquiterpene intermediate, (ϩ)-germacrene A. Germacrene A is of interest because of its key role in sesquiterpene lactone biosynthesis and because it is an enzyme-bound intermediate in the biosynthesis of a number of phytoalexins. Using polymerase chain reaction with degenerate primers, we have isolated two sesquiterpene synthases from chicory that exhibited 72% amino acid identity. Heterologous expression of the genes in Escherichia coli has shown that they both catalyze exclusively the formation of (ϩ)-germacrene A, making this the first report, to our knowledge, on the isolation of (ϩ)-germacrene A synthase (GAS)-encoding genes. Northern analysis demonstrated that both genes were expressed in all chicory tissues tested albeit at varying levels. Protein isolation and partial purification from chicory heads demonstrated the presence of two GAS proteins. On MonoQ, these proteins co-eluted with the two heterologously produced proteins. -
Biochemical and Functional Characterization of Induced Terpene Formation in Arabidopsis Roots
Biochemical and Functional Characterization of Induced Terpene Formation in Arabidopsis Roots Reza Sohrabi Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Biological Sciences Dorothea Tholl, Committee Chair Glenda Gillaspy Khidir Hilu John Jelesko July 23rd 2013 Blacksburg Virginia Keywords: Cytochrome P450, plant volatiles, specialized metabolism, root chemical defense, Arabidopsis iii Biochemical and Functional Characterization of Induced Terpene Formation in Arabidopsis Roots Reza Sohrabi ABSTRACT Plants have evolved a variety of constitutive and induced chemical defense mechanisms against biotic stress. Emission of volatile compounds from plants facilitates interactions with both beneficial and pathogenic organisms. However, knowledge of the chemical defense in roots is still limited. In this study, we have examined the root-specific biosynthesis and function of volatile terpenes in the model plant Arabidopsis. When infected with the root rot pathogen Pythium irregulare, Arabidopsis roots release the acyclic C11-homoterpene (E)-4,8- dimethylnona-1,3,7-triene (DMNT), which is a common constituent of volatile blends emitted from insect-damaged foliage. We have identified a single cytochrome P450 monooxygenase of the CYP705 family that catalyzes a root-specific oxidative degradation of the C30-triterpene precursor arabidiol thereby causing the release of DMNT and a C19-degradation product named arabidonol. We found that DMNT shows inhibitory effects on P. irregulare mycelium growth and oospore germination in vitro, and that DMNT biosynthetic mutant plants were more susceptible to P. irregulare infection. We provide evidence based on genome synteny and phylogenetic analysis that the arabidiol biosynthetic gene cluster containing the arabidiol synthase (ABDS) and CYP705A1 genes possibly emerged via local gene duplication followed by iv de novo neofunctionalization.