Use of Spent Mushroom Substrate in New Mushroom Crops to Promote the Transition Towards a Circular Economy

Total Page:16

File Type:pdf, Size:1020Kb

Use of Spent Mushroom Substrate in New Mushroom Crops to Promote the Transition Towards a Circular Economy agronomy Review Use of Spent Mushroom Substrate in New Mushroom Crops to Promote the Transition towards A Circular Economy Diego Cunha Zied 1,* , Jose Ernesto Sánchez 2, Ralph Noble 3 and Arturo Pardo-Giménez 4 1 Faculdade de Ciências Agrárias e Tecnológicas (FCAT), Universidade Estadual Paulista (UNESP), Câmpus de Dracena, Dracena 17900-000, Brazil 2 El Colegio de la Frontera Sur, Chiapas 30700, Mexico; [email protected] 3 Warwickshire College Group, Pershore College, Pershore WR10 3JP, UK; [email protected] 4 Centro de Investigación, Experimentación y Servicios del Champiñón (CIES), 16220 Quintanar del Rey, Spain; [email protected] * Correspondence: [email protected] Received: 23 July 2020; Accepted: 15 August 2020; Published: 21 August 2020 Abstract: The use of spent mushroom substrate (SMS) in new cultivation cycles has already been reported due to its economic and environmental viability. When considering the application of the circular economy concept in the production of edible mushrooms, the re-use of the SMS within the same process is highly attractive, because it allows a better use of the biomass and the energy involved in the process and, therefore, tends to improve energy efficiency and resource conservation. However, this alternative generates important challenges, which derive from maintaining the quality standards of the mushrooms produced and, at the same time, not incurring excessive costs that are detrimental to the process itself. In our opinion, the main difficulty of the process in achieving success is regarding the biological and agronomic parameters that involve the production of the mushroom. It is useless to apply SMS in new cycles if the mushroom harvest is impaired and farms become non-viable. However, numerous examples are reported here where SMS was recycled into new substrates for either the same or different mushroom species without negatively affecting yield compared with using substrates prepared from 100% fresh raw materials. Thus, we suggest that each farm has its own specific technological study, since a small variation in the raw material of the compost, and mushroom cultivation practices and casing layer used, can influence the entire viability of the mushroom circular economy. Keywords: efficiency process; waste reduction; compost production; casing layer; yield 1. Introduction Mushroom cultivation has a relationship with the conversion of agricultural and agro-industrial waste into food of high nutritional value; it stands out as an environmentally sustainable option [1]. This metabolic capacity of fungi takes place through degradative microbiological processes, which to achieve their highest economic viability, and optimal chemical, physical, environmental and technological process/conditions must be controlled (Figure1). Agronomy 2020, 10, 1239; doi:10.3390/agronomy10091239 www.mdpi.com/journal/agronomy Agronomy 2020, 10, 1239 2 of 20 Agronomy 2020, 10, x FOR PEER REVIEW 2 of 21 Environmental MUSHROOM GROWING Physical conditions Temperature, process humidity and Water Casing (optional) holding CO2 content management capacity, porosity, FUNGAL density DEGRADATIVE Production Mechanical ACTIVITY harvest, drip Composting Particle size irrigation, process control and compost process Straw aeration added casing Sugar cane Raw Correction Construction bagasse Material of the C/N of tunnels, Chemical ratio, N Technological Phase II and content and III together Sawdust pH process process Figure 1.1. Scheme of mushroom cultivation and the main chemical,chemical, physical, environmental and technological processprocess/conditions,/conditions, whichwhich cancan influenceinfluence thethe mostmost importantimportant stagesstages ofof thethe production.production. Currently mushroommushroom cultivation cultivation is carried is carried out worldwide, out worldwide, adopting adopting the most diversethe most technologies diverse possible,technologies from possible, the simplest from the to thesimplest most to technologically the most technologically advanced [advanced2]. It should [2]. It be should noted be that noted the degreethat the of degree economic of economic investment investm andent the and local the social local conditions social conditions of each of country each country are factors are factors that a ffthatect theaffect technological the technological degree degree of cultivation of cultivation [3]. Despite [3]. Despite this, the this, entire the production entire production process startsprocess from starts the selectionfrom the selection of the raw of materials the raw materials that will bethat used will for be theused production for the production of the compost of the/ substrate.compost/substrate. There is a specificspecific criterion in the choice of raw materials that is related to the nutrition of mushrooms, which are classifiedclassified asas primaryprimary andand secondarysecondary decomposers.decomposers. Primary decomposersdecomposers require materials with higher CC/N/N ratio and lignin content and lower nitrogen content (sawdust, sugarcane bagassebagasse and and straw), straw), whereas whereas secondary secondary decomposers decomposers require require materials materials with with lower lower C/N ratioC/N andratio higher and higher cellulose, cellulose, hemicellulose hemicellulose and nitrogen and nitrogen contents contents (manure (manure and compost and compost “mixture “mixture of various of agriculturalvarious agricultural wastes”) wastes”) [4–6]. Another [4–6]. specificAnother aspect specific is thataspect the is secondary that the decomposerssecondary decomposers develop in substratedevelop in degraded substrate by degraded bacteria by or bacteria other fungi or other [7]. Evenfungi so, [7]. the Even versatility so, the versatility of mushrooms of mushrooms can allow themcan allow to be them primary to be and primary secondary and decomposerssecondary decomposers at the same at time, the assame is the time, case as of isPleurotus the case ofspp., Pleurotus which canspp., be which grown can in sawdustbe grown/wheat in sawdust/wheat straw or in substrate straw (sugaror in substrate cane bagasse, (sugarBrachiaria cane bagasse,straw, wheatBrachiaria and ricestraw, bran wheat and limestone).and rice bran This and factor limestone). allows species This factor to be disseminatedallows species and to cultivatedbe disseminated in different and regionscultivated with in greaterdifferent ease regions [8]. Therefore, with greater in mushroom ease [8]. cultivation,Therefore, specialin mushroom attention cultivation, should be paidspecial to whichattention agricultural should be or agro-industrialpaid to which wastesagricultural will be or used agro to- attainindustrial successful wastes production will be used and economicto attain viabilitysuccessful in production the activity and [9]. Ineconomic this review, viability we will in the discuss activity the use[9]. ofIn SMSthis review, in new mushroomwe will discuss crops. the use of SMS in new mushroom crops. 2. Circular Economy 2. CircularThe circular Economy economy’s concept is not only to correctly choose the raw materials that will be the basis of the activity, but also to define correctly all the actions involved during each production phase, The circular economy’s concept is not only to correctly choose the raw materials that will be the in order to apply again the wastes generated in the activity on the same company [10]. Using this basis of the activity, but also to define correctly all the actions involved during each production phase, concept in mushrooms production, the main concern would be the spent mushroom substrate (SMS), in order to apply again the wastes generated in the activity on the same company [10]. Using this the principal waste generated in the cultivation [11]. However, some research has already been concept in mushrooms production, the main concern would be the spent mushroom substrate (SMS), developed aiming at the use of SMS as a complementary material to raw materials for new substrate the principal waste generated in the cultivation [11]. However, some research has already been formulations, and as a casing layer for the cultivation of Agaricaceous mushrooms [12–15]. Figure2 developed aiming at the use of SMS as a complementary material to raw materials for new substrate illustrates the dynamics of the process in the mushroom circular economy, where the only waste during formulations, and as a casing layer for the cultivation of Agaricaceous mushrooms [12–15]. Figure 2 illustrates the dynamics of the process in the mushroom circular economy, where the only waste during the crop cycle would be the plastic bags/bottle, which are used to grow certain species (Lentinula edodes, Pleurotus spp., Volvariella volvacea, Flammulina velutipes, and others). Agronomy 2020, 10, 1239 3 of 20 the crop cycle would be the plastic bags/bottle, which are used to grow certain species (Lentinula edodes, Pleurotus spp., Volvariella volvacea, Flammulina velutipes, and others). Agronomy 2020, 10, x FOR PEER REVIEW 3 of 21 Water RAW MATERIALS Compost production Supplements Decrease environmental Limestone and gypsum impacts Heat treatment Inoculation Spawn Decrease CIRCULAR dependence Spawn on raw ECONOMY SMS run materials Soil Peat WASTES Casing (optional) FLUSHES Minimize the Reducing the waste Production (harvest phase) amount of transportation wastes distance FiFiguregure 2. MushroomMushroom circular circular economy economy representing representing the beginning the beginning of the processof the with process
Recommended publications
  • Phylogeny of the Pluteaceae (Agaricales, Basidiomycota): Taxonomy and Character Evolution
    AperTO - Archivio Istituzionale Open Access dell'Università di Torino Phylogeny of the Pluteaceae (Agaricales, Basidiomycota): taxonomy and character evolution This is the author's manuscript Original Citation: Availability: This version is available http://hdl.handle.net/2318/74776 since 2016-10-06T16:59:44Z Published version: DOI:10.1016/j.funbio.2010.09.012 Terms of use: Open Access Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law. (Article begins on next page) 23 September 2021 This Accepted Author Manuscript (AAM) is copyrighted and published by Elsevier. It is posted here by agreement between Elsevier and the University of Turin. Changes resulting from the publishing process - such as editing, corrections, structural formatting, and other quality control mechanisms - may not be reflected in this version of the text. The definitive version of the text was subsequently published in FUNGAL BIOLOGY, 115(1), 2011, 10.1016/j.funbio.2010.09.012. You may download, copy and otherwise use the AAM for non-commercial purposes provided that your license is limited by the following restrictions: (1) You may use this AAM for non-commercial purposes only under the terms of the CC-BY-NC-ND license. (2) The integrity of the work and identification of the author, copyright owner, and publisher must be preserved in any copy.
    [Show full text]
  • Mushroom Cultivation
    CMS COLLEGE OF SCIENCE AND COMMERCE (AUTONOMOUS) MODEL EXAMINATIONS (October 2019) ALL UG COURSES (EXCEPT BIOSCIENCE) SEMESTER V EDC – MUSHROOM CULTIVATION SL QUESTIONS ANS NO 1 To which division does it belong? A A. Basidiomycetes B. Pteridophyta C. Thallophyta D. Mollusca 2 Mushroom is: A A. Saprophyticfungus B. AutotrophicAlgae None of the C. Heterotrophicfungus D. above 3 Mycellium produces white or colored umbrella shaped fruiting bodies called: B A. Haphae B. Basidiocarp C. Annalus D. Seta 4 Basidiocarp consist of a fleshy stalk called ___________ and umbrella like D head borne on its top called __________ A. Hyphae and Seta B. Seta and Annalus Annalus adn C. Antheridia D. Stipe and Pileus 5 When young fruiting body is completely enveloped by a thin membrane, it is C called _____________ A. Mycelium B. Rhizoids C. Velum(veil) D. Septate 6 With the growth of ____________ velum gets ruptured, while a part of it B remained attached to stipe in the form of ring or____________. Basidiocarp and A. Slender B. Pileus and Annalus Pyrenoid and C. Conjugation D. Hyaline and Pyrenoid 7 On the lower side of Pileus number of vertical plates like structure are present D called____________ A. Spores B. Organelles Mushroom C. Dryopteris D. Gills 8 The gills on either sides bear club shaped basidia which A produce_____________ A. Basidiocarp B. Chloroplasts C. funaria D. None of these 9 C It grows during ______ A. Summer season B. Winters C. Rainy season D. all seasons 10 One of the best edible species mushrooms under A A. Sahiwal B. Kasur C.
    [Show full text]
  • Cultivation of the Oyster Mushroom (Pleurotus Sp.) on Wood Substrates in Hawaii
    CULTIVATION OF THE OYSTER MUSHROOM (PLEUROTUS SP.) ON WOOD SUBSTRATES IN HAWAII A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI'IIN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN TROPICAL PLANT AND SOIL SCIENCE DECEMBER 2004 By Tracy E. Tisdale Thesis Committee: Susan C. Miyasaka, Chairperson Mitiku Habte Don Hemmes Acknowledgements I would first like to acknowledge Susan C. Miyasaka, my major advisor, for her generosity, thoughtfulness, patience and infinite support throughout this project. I'd like to thank Don Hemmes and Mitiku Habte for taking time out of their schedules to serve on my committee and offer valuable insight. Thanks to Jim Hollyer for the much needed advising he provided on the economic aspect of this project. Thanks also to J.B. Friday, Bernie Kratky and all the smiling faces at Beaumont, Komohana, Waiakea and Volcano Research Stations who provided constant encouragement and delight throughout my mushroom growing days in Hilo. 111 Table of Contents Acknowledgements , iii List of Tables ,,, , vi List of Figures vii Chapter 1: Introduction '" 1 Chapter 2: Literature Review , 3 Industry ,,.. ,,,,, , 3 Substrates 6 Oyster Mushroom " '" 19 Production Overview 24 Chapter 3: Research Objectives , '" 32 Chapter 4: Materials and Methods 33 Substrate Wood 33 Cultivation Methods 34 Crop Yield ,, 39 Nutrients 43 Taste 44 Fruiting Site Assessment. .46 Economic Analysis .46 Chapter 5: Results and Discussion ,, .48 Substrate Wood ,, 48 Preliminary Experiment. '" 52 IV Final Experiment.
    [Show full text]
  • Optimization of Agro-Residues As Substrates for Pleurotus
    Wu et al. AMB Expr (2019) 9:184 https://doi.org/10.1186/s13568-019-0907-1 ORIGINAL ARTICLE Open Access Optimization of agro-residues as substrates for Pleurotus pulmonarius production Nan Wu1†, Fenghua Tian1†, Odeshnee Moodley1, Bing Song1, Chuanwen Jia1, Jianqiang Ye2, Ruina Lv1, Zhi Qin3 and Changtian Li1* Abstract The “replacing wood by grass” project can partially resolve the confict between mushroom production and balancing the ecosystem, while promoting agricultural economic sustainability. Pleurotus pulmonarius is an economically impor- tant edible and medicinal mushroom, which is traditionally produced using a substrate consisting of sawdust and cottonseed hulls, supplemented with wheat bran. A simplex lattice design was applied to systemically optimize the cultivation of P. pulmonarius using agro-residues as the main substrate to replace sawdust and cottonseed hulls. The efects of difering amounts of wheat straw, corn straw, and soybean straw on the variables of yield, mycelial growth rate, stipe length, pileus length, pileus width, and time to harvest were demonstrated. Results indicated that a mix of wheat straw, corn straw, and soybean straw may have signifcantly positive efects on each of these variables. The high yield comprehensive formula was then optimized to include 40.4% wheat straw, 20.3% corn straw, 18.3% soybean straw, combined with 20.0% wheat bran, and 1.0% light CaCO3 (C/N 42.50). The biological efciency was 15.2% greater than that of the control. Most encouraging was the indication= that the high yield comprehensive formula may shorten the time to reach the reproductive stage by 6 days, compared with the control.
    [Show full text]
  • Oyster Mushroom) Related with Its Chemical Composition: a Review on the Past Decade Findings
    Biotechnological, nutritional and therapeutic uses of Pleurotus spp. (Oyster mushroom) related with its chemical composition: A review on the past decade findings Rúbia Carvalho Gomes Corrêaa,b,c, Tatiane Brugnaric, Adelar Brachtc, Rosane Marina Peraltac, Isabel C.F.R. Ferreiraa,* aMountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança, Campus de Santa Apolónia, 1172, 5301-855 Bragança, Portugal. bCAPES Foundation, Ministry of Education of Brazil, 70.040-020, Brasília, DF, Brazil. cState University of Maringá, Department of Biochemistry, 87020-900, Maringá, PR, Brazil. * Author to whom correspondence should be addressed (Isabel C.F.R. Ferreira; e-mail: [email protected]; telephone +351-273-303219; fax +351-273-325405). 1 Abstract Background: The particular characteristics of growth and development of mushrooms in nature result in the accumulation of a variety of secondary metabolites, several of them with biological activities. The genus Pleurotus is a cosmopolitan group of mushrooms with high nutritional value and therapeutic properties, besides a wide array of biotechnological and environmental applications. Scope and approach: The present report aims to provide a critical review on aspects related to chemical compounds isolated from the genus Pleurotus with possible biotechnological, nutritional and therapeutic uses. Investigations on the genus have immensely accelerated during the last ten years, so that only reports published after 2005 have been considered. Key findings and conclusions: The most important Pleurotus species cultivated in large scale are P. ostreatus and P. pulmonarius. However, more than 200 species have already been investigated to various degrees. Both basidiomata and mycelia of Pleurotus are a great renewable and easily accessible source of functional foods/nutraceuticals and pharmaceuticals with antioxidant, antimicrobial, anti- inflammatory, antitumor and immunomodulatory effects.
    [Show full text]
  • Transcriptional and Enzymatic Profiling of Pleurotus Ostreatus
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Academica-e Transcriptional and Enzymatic Profiling of Pleurotus ostreatus Laccase Genes in Submerged and Solid-State Fermentation Cultures Raúl Castanera,a Gúmer Pérez,a Alejandra Omarini,a Manuel Alfaro,a Antonio G. Pisabarro,a Vincenza Faraco,b,c Antonella Amore,b and Lucía Ramíreza Genetics and Microbiology Research Group, Department of Agrarian Production, Public University of Navarre, Pamplona, Spaina; Department of Organic Chemistry and Biochemistry, Complesso Universitario Monte S. Angelo, University of Naples Federico II, Naples, Italyb; and School of Biotechnological Sciences, University of Naples Federico II, Naples, Italyc The genome of the white rot basidiomycete Pleurotus ostreatus includes 12 phenol oxidase (laccase) genes. In this study, we ex- amined their expression profiles in different fungal strains under different culture conditions (submerged and solid cultures) Downloaded from and in the presence of a wheat straw extract, which was used as an inducer of the laccase gene family. We used a reverse tran- scription-quantitative PCR (RT-qPCR)-based approach and focused on determining the reaction parameters (in particular, the reference gene set for the normalization and reaction efficiency determinations) used to achieve an accurate estimation of the relative gene expression values. The results suggested that (i) laccase gene transcription is upregulated in the induced submerged fermentation (iSmF) cultures but downregulated in the solid fermentation (SSF) cultures, (ii) the Lacc2 and Lacc10 genes are the main sources of laccase activity in the iSmF cultures upon induction with water-soluble wheat straw extracts, and (iii) an addi- tional, as-yet-uncharacterized activity (Unk1) is specifically induced in SSF cultures that complements the activity of Lacc2 and Lacc10.
    [Show full text]
  • Structural Characterization and Biological Activity of Lactarius Scrobiculatus
    Structural characterization and biological activity of Lactarius scrobiculatus Ivana Tomic Thesis for the Master´ degree in Pharmacy 45 study points Department of Pharmaceutical Chemistry School of Pharmacy Faculty of Mathematics and Natural Sciences UNIVERSITY OF OSLO November/2018 II Structural characterization and biological activity of Lactarius scrobiculatus Thesis for Master´ degree in Pharmacy Department for Pharmaceutical chemistry School of Pharmacy Faculty of Mathematics and Natural Sciences University in Oslo Ivana Tomic November 2018 Supervisor: Anne Berit Samuelsen III © Author 2018 Structural characterization and biological activity of Lactarius scrobiculatus Ivana Tomic http://www.duo.uio.no/ Print: Reprosentralen, Universitetet i Oslo IV Acknowledgments The present thesis was carried out at the Departement of Pharmaceutical Chemistry, University of Oslo (UiO), for the Master´s degree in Pharmacy at the University of Oslo. The other institute include Norwegian Centre of Molecular Medicine, where I have performed activity assay. First and foremost, I would like to thank to my supervisor Anne Berit Samuelsen for hers support and guidance throughout my work and useful comments during the writing. Further, I also want to thank Hoai Thi Nguyen and Cristian Winther Wold for help with carrying out GC and GC-MS analysis. Also, I am very thankful to Karl Malterud for help with NMR analysis. Special thanks to Suthajini Yogarajah for her patience and lab support. I would also like to thank to Kari Inngjerdingen for good and helpful Forskningforberedende kurs. My gratitude goes also to Prebens Morth group at NMCC, special to Julia Weikum and Bojana Sredic, who were always kind and helpful. Finally, I would like to express my fabulous thanks to my wonderful parents, my husband and my four sons for their great patience, sacrifice, moral support and encouragement during my master thesis.
    [Show full text]
  • Forest Fungi in Ireland
    FOREST FUNGI IN IRELAND PAUL DOWDING and LOUIS SMITH COFORD, National Council for Forest Research and Development Arena House Arena Road Sandyford Dublin 18 Ireland Tel: + 353 1 2130725 Fax: + 353 1 2130611 © COFORD 2008 First published in 2008 by COFORD, National Council for Forest Research and Development, Dublin, Ireland. All rights reserved. No part of this publication may be reproduced, or stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying recording or otherwise, without prior permission in writing from COFORD. All photographs and illustrations are the copyright of the authors unless otherwise indicated. ISBN 1 902696 62 X Title: Forest fungi in Ireland. Authors: Paul Dowding and Louis Smith Citation: Dowding, P. and Smith, L. 2008. Forest fungi in Ireland. COFORD, Dublin. The views and opinions expressed in this publication belong to the authors alone and do not necessarily reflect those of COFORD. i CONTENTS Foreword..................................................................................................................v Réamhfhocal...........................................................................................................vi Preface ....................................................................................................................vii Réamhrá................................................................................................................viii Acknowledgements...............................................................................................ix
    [Show full text]
  • Production of Paddy Straw Mushroom (Vovlariella Volvacea): Paddy Straw Mushroom Is an Edible Mushroom of the Tropics and Subtropics
    1 Production of paddy straw mushroom (Vovlariella volvacea): Paddy straw mushroom is an edible mushroom of the tropics and subtropics. It was first cultivated in China as early as in 1822. Around 1932-35, the straw mushroom was introduced into Philippines, Malaysia, and other South-East Asian countries by overseas Chinese. In India this mushroom was first cultivated in early 1940’s. In India, 19 edible species of Volvariella have been recorded but cultivation methods have been devised for three of them only viz; V. volvacea, V. esculenta (Mass) and V. diplasia. Volvariella volvacea is deep grey in colour and number of fruiting body is less per bed whereas V. diplasia is whitish or ashy in colour and, fruiting body is more with smaller size. Paddy straw mushroom (Volvariella spp.) also called ‘straw mushroom’ is a fungus of the tropics and subtropics and has been cultivated for many years in India. Paddy straw mushroom is also known as “warm mushroom” as it grows at relatively high temperature. It is a fast growing mushroom and under favorable growing conditions total crop cycle is completed within 4-5 weeks time. This mushroom can use wide range of cellulosic materials and the C: N ratio needed is 40 to 60, quite high in comparison to other cultivated mushrooms. It can be grown quite quickly and easily on uncomposted substrates such as paddy straw and cotton waste or other cellulosic organic waste materials. Several species of Volvariella have reportedly been grown for food, but only three species of the straw mushroom i.e. Volvariella volvacea, Volvariella esculanta and Volvariella diplasia are cultivated artificially.
    [Show full text]
  • Bioactive Compounds and Medicinal Properties of Oyster Mushrooms (Pleurotus Sp.)
    FOLIA HORTICULTURAE Folia Hort. 30(2), 2018, 191-201 Published by the Polish Society DOI: 10.2478/fhort-2018-0012 for Horticultural Science since 1989 REVIEW Open access www.foliahort.ogr.ur.krakow.pl Bioactive compounds and medicinal properties of Oyster mushrooms (Pleurotus sp.) Iwona Golak-Siwulska, Alina Kałużewicz*, Tomasz Spiżewski, Marek Siwulski, Krzysztof Sobieralski Department of Vegetable Crops Faculty of Horticulture and Landscape Architecture, Poznań University of Life Sciences Dąbrowskiego 159, Poznań, Poland ABSTRACT There are about 40 species in the Pleurotus genus, including those with high economic significance, i.e. P. ostreatus and P. pulmonarius. The fruiting bodies of oyster mushrooms are of high nutritional and health- promoting value. In addition, many species belonging to the Pleurotus genus have been used as sources of substances with documented medicinal properties, such as high-molecular weight bioactive compounds (polysaccharides, peptides and proteins) and low-molecular weight compounds (terpenoids, fatty acid esters and polyphenols). The bioactive substances contained in the mycelium and fruiting bodies of Pleurotus species exhibit immunostimulatory, anti-neoplastic, anti-diabetic, anti-atherosclerotic, anti-inflammatory, antibacterial and anti-oxidative properties. Their multidirectional positive influence on the human organism is the result of interaction of bioactive substances. Extracts from individual Pleurotus species can be used for the production of dietary supplements increasing the organism’s immunity.
    [Show full text]
  • Paddy Straw Mushroom (433)
    Pacific Pests, Pathogens and Weeds - Online edition Paddy straw mushroom (433) Common Name Paddy straw mushroom, straw mushroom, Chinese mushroom. Scientific Name Volvariella volvacea Distribution It is cultivated widely in East and Southeast Asia, and introduced in many other regions, including Africa, North America and Australia. It is recorded from Solomon Islands. Use & Appearance The paddy straw mushroom is grown on rice straw beds and picked immature, during the button or egg phase and before the veil ruptures (Photo 1). It is found in woodchips, rich garden Photo 1. Button stage of the paddy straw soil, compost piles and, in the Pacific, on decaying trunks of fallen sago palm and empty fruit mushroom, Volvariella volvacea, showing bunches of oil palm. They are often available fresh in Asia, but are more frequently found canned many still enclosed in the veil, and others or dried in countries where they are not cultivated. where the veil has broken. Methods of cultivation are here: http://www.fao.org/3/ca4450en/ca4450en.pdf. Young stages are formed under a greyish-brown veil (‘universal veil’), which surrounds the mushroom at the ‘button stage’ (Photo 2). It breaks to allow the stem and cap to expand leaving a dark brown cup-shaped structure (the ‘volva’) at the base (Photo 2). The cap is 5-12 cm diameter, first ovoid, then cone-like and finally broadly convex or bell- shaped, dark grey in the centre, becoming silvery-white or brownish-grey towards the margins, radially streaked with soft hairs (Photo 3). The cap tends to split at the edges.
    [Show full text]
  • The Cardioprotective Properties of Agaricomycetes Mushrooms Growing in the Territory of Armenia (Review) Susanna Badalyan, Anush Barkhudaryan, Sylvie Rapior
    The Cardioprotective Properties of Agaricomycetes Mushrooms Growing in the Territory of Armenia (Review) Susanna Badalyan, Anush Barkhudaryan, Sylvie Rapior To cite this version: Susanna Badalyan, Anush Barkhudaryan, Sylvie Rapior. The Cardioprotective Properties of Agari- comycetes Mushrooms Growing in the Territory of Armenia (Review). International Journal of Medic- inal Mushrooms, Begell House, 2021, 23 (5), pp.21-31. 10.1615/IntJMedMushrooms.2021038280. hal-03202984 HAL Id: hal-03202984 https://hal.umontpellier.fr/hal-03202984 Submitted on 20 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Cardioprotective Properties of Agaricomycetes Mushrooms Growing in the territory of Armenia (Review) Susanna M. Badalyan 1, Anush Barkhudaryan 2, Sylvie Rapior 3 1Laboratory of Fungal Biology and Biotechnology, Institute of Pharmacy, Department of Biomedicine, Yerevan State University, Yerevan, Armenia; 2Department of Cardiology, Clinic of General and Invasive Cardiology, University Hospital № 1, Yerevan State Medical University, Yerevan, Armenia;
    [Show full text]