ThePennsylvaniaStateUniversity

TheGraduateSchool

CollegeofEngineering

PERFORMANCEEVALUATIONOFTHEMICROWAVE

ELECTROTHERMALTHRUSTERUSING,

SIMULATEDHYDRAZINE,AND

ADissertationin

AerospaceEngineering

by

DanielE.Clemens

©2008DanielE.Clemens

SubmittedinPartialFulfillment oftheRequirements fortheDegreeof

DoctorofPhilosophy

May2008 ThedissertationofDanielE.Clemenswasreviewedandapproved*bythefollowing: MichaelM.Micci ProfessorofAerospaceEngineering DissertationAdvisor ChairofCommittee RobertG.Melton ProfessorofAerospaceEngineering DavidB.Spencer AssociateProfessorofAerospaceEngineering SvenG.Bilén AssociateProfessorofElectricalEngineeringandEngineeringDesign GeorgeA.Lesieutre ProfessorofAerospaceEngineering HeadoftheDepartmentofAerospaceEngineering *SignaturesareonfileintheGraduateSchool. iii

ABSTRACT The Microwave Electrothermal Thruster (MET) is an electric propulsion (EP) device that uses an electromagnetic resonant cavity within which a freefloating is ignited and sustained in a propellant gas. Microwaveenergyiscoupledtothepropellantgasthroughcollisionsbetweenfreeelectronsandheavyparticlesin theplasma.Theheatedpropellantisacceleratedthoughagasdynamicnozzleandexhaustedtogeneratethrust.This heatingmechanismissimilartothatofanarcjet,whichutilizesanarcdischargeformedbetweentwoelectrodesto heat a propellant gas. The main difference is that the METplasma is freefloating and thus the system does not sufferfromthelifetimelimitingelectrodeerosionproblemsthatarecharacteristicofthearcjet.TheMETpotentially offers thrust and specific impulse comparable to arcjets with higher efficiency at low power levels and longer lifetimes. Research was initiated to examine the feasibility of operating the MET using the products of hydrazine decomposition as the propellant gas. The goal of this research was to improve the performance of a hydrazine chemicalsystembycombiningitwithanEPsystemthatcanoutperformthearcjetanddoesnotsufferfromerosion problems. Operation with hydrazine propellant allows for integration with a conventional chemical propulsion systemonboardaspacecraft.Inaddition,suchasystemcouldpossiblybeusedformultimodeoperation,thereby enhancingtheoperationalcapabilitiesofthespacecraft.Forexample,itcouldbeoperatedinahighspecificimpulse mode,suitableforstationkeeping,withmicrowaveenergysustainingahightemperatureplasmaatmoderatelylow pressures,oroperatedinahighthrustmode,suitableforrapidspacecraftrepositioning,athighpressureswithout microwaveenergyinput.OperationoftheMETusingpureammonia,anotherlightweightliquidstorablepropellant, wasalsoexaminedtodeterminehowwelltheMETperformscomparedtothearcjetusingammonia.Thefeasibility ofoperatingtheMETatvariousfrequenciesandpowerlevels usingsimulatedhydrazineandammonia hasbeen demonstrated. IntheMETplasma,microwaveenergyiscoupledtothepropellantgasthroughfreeelectronsintheplasma. The electric field accelerates free electrons, which then transfer their kinetic energy to heavy particles through collision.Thus,electricfieldstrengthandchamberpressureplayimportantrolesinthepowerdepositionandenergy exchangemechanisms.Theseroleswereexaminedtheoreticallythroughnumericalmodelingofthecavityelectric fieldandexperimentallythroughthevariationofseveralMETcomponentsandparameters.Inthisprogram,testing wasconductedonthe7.5GHzMETatapowerlevelof70–100WusingpurenitrogenandvariousmixturesofN 2, H2, and NH 3 to simulate decomposed hydrazine. Parametric studies of the effects of nozzle throat diameter, microwavefrequency,andmicrowavepowerwereperformed.Testingwasalsoconductedonthe2.45GHzMETat apowerlevelof1–2kWusingpurenitrogen,simulatedhydrazine,andpureammonia.Parametricstudiesofthe effects of nozzle throat diameter, antenna probe depth, propellant injector diameter, and the inclusion of an impedance matching unit were performed. Thrust and specific impulse measurements for the 2.45 and 7.5GHz METswereobtainedusingthruststands.Atthepresenttime,the2.45and7.5GHzMETsarenotoptimizedfor operation with simulated hydrazine or ammonia, but key areas of study that have potential for significant performance enhancement have been identified. For the 2.45GHz thruster, calculated specific impulses with ammonia and simulated hydrazine approach 400 s and 425 s, respectively, whereas, for the 7.5GHz thruster, calculated specific impulse with simulated hydrazine approaches 220 s. However, experimental performance measurements were up to 40% lower than theoretical calculations. Numerical electromagnetic modeling of the existing 7.5 and 2.45GHz thrusters was performed using the commercially available finite element analysis software COMSOL Multiphysics. This modeling yielded insight on the effects of variation of antenna depth, microwavefrequency,andmicrowavepower.Theresultsagreedwellwithexperimentalmeasurements.Numerical electromagnetic modeling was also performed to design a new 8GHz MET. This thruster was built and a preliminaryperformanceevaluationwasconducted.Calculatedspecificimpulsewithsimulatedhydrazinereached approximately300swith95%couplingefficiencyataforwardpowerof250W. iv

TABLEOFCONTENTS LISTOFFIGURES...... vi LISTOFTABLES...... xi NOMENCLATURE...... xii ACKNOWLEDGMENTS...... xiv CHAPTER1 INTRODUCTION...... 1 I. MOTIVATIONFOR EP ANDTHE MET ...... 1 II. BASIC OPERATIONAL PRINCIPLESOFTHE MET ...... 4 III. PRIOR RESEARCHAND DEVELOPMENT ...... 5 IV. PROJECT SCOPEAND OBJECTIVES ...... 8 REFERENCES ...... 11 CHAPTER2 MICROWAVEELECTROTHERMALTHRUSTERTHEORY...... 13

Z I. TM MNP RESONANT CAVITY FIELD THEORY ...... 13 II. TRANSMISSION LINE IMPEDANCE MATCHING ...... 15 III. BREAKDOWN IONIZATION ...... 17 IV. POWER ABSORPTIONIN TIME HARMONIC AC FIELDS ...... 20 V. CHEMICAL EQUILIBRIUMWITH PROPELLANTSOF INTEREST ...... 21 A. PureNitrogen ...... 23 B. PureAmmonia ...... 23 C. DecomposedHydrazine ...... 24 VI. CHAMBER TEMPERATUREAND PERFORMANCE CALCULATIONS ...... 25 REFERENCES ...... 28 CHAPTER3 ANALYTIC AND NUMERICAL ELECTROMAGNETIC MODELING OF THE MICROWAVEELECTROTHERMALTHRUSTER...... 29 I. SCOPEAND OBJECTIVES ...... 29 II. ANALYTIC ELECTROMAGNETIC MODELOFTHE MET ...... 29 III. NUMERICAL ELECTROMAGNETIC MODELOFTHE MET ...... 35 IV. RESULTSAND DISCUSSION ...... 36 A. The2.45GHzMET ...... 36 B. The7.5GHzMET ...... 38 C. The8.4GHzMET ...... 40 D.Comparisonof2.45,7.5,and8.4GHzMETs ...... 43 V. SUMMARYAND CONCLUSIONS ...... 44 REFERENCES ...... 45 CHAPTER4 THEKWCLASS 2.45GHZ MICROWAVE ELECTROTHERMAL THRUSTER USING NITROGEN,SIMULATEDHYDRAZINE,ANDAMMONIAPROPELLANTS...... 46 I. SCOPEAND OBJECTIVES ...... 46 II. EXPERIMENTAL METHODS ...... 47 A. ExperimentalApparatus ...... 47 B. ExperimentalProceduresandTheoreticalCalculations ...... 49 III. RESULTSAND DISCUSSION ...... 51 A. BaselineStudiesUsingNitrogen ...... 51 B. EffectsofAntennaDepthVariationUsingSimulatedHydrazine ...... 53 C. EffectsofPowerandInjectorDiameterVariationUsingSimulatedHydrazine ...... 55 D. EffectsofNozzleThroatDiameterVariationUsingSimulatedHydrazineandAmmonia ...... 56 E. ThrustMeasurementsUsingSimulatedHydrazineandAmmonia ...... 59 IV. SUMMARYAND CONCLUSIONS ...... 60 REFERENCES ...... 62 v

CHAPTER5 THE 100W 7.5GHZ MICROWAVE ELECTROTHERMAL THRUSTER USING NITROGENANDSIMULATEDHYDRAZINEPROPELLANTS...... 63 I. SCOPEAND OBJECTIVES ...... 63 II. EXPERIMENTAL METHODS ...... 64 A. ExperimentalApparatus ...... 64 B. ExperimentalProceduresandTheoreticalCalculations ...... 68 III. RESULTSAND DISCUSSION ...... 70 A. EffectsofNozzleThroatDiameterVariationUsingNitrogenandSimulatedHydrazine ...... 70 B. EffectsofAmmoniaDissociationParameterVariation...... 73 C. EffectsofMicrowaveFrequencyVariationUsingSimulatedHydrazine ...... 75 D. EffectsofMicrowavePowerVariationUsingSimulatedHydrazine ...... 78 E. ThrustMeasurementsUsingSimulatedHydrazine ...... 80 IV. SUMMARYAND CONCLUSIONS ...... 82 REFERENCES ...... 84 CHAPTER6 SUMMARYANDCONCLUSIONS...... 85 KEY FINDINGSAND RECOMMENDATIONS ...... 89 APPENDIX PRELIMINARY PERFORMANCE EVALUATION OF THE 8.4GHZ MICROWAVE ELECTROTHERMALTHRUSTERUSINGSIMULATEDHYDRAZINE...... 91 vi

LISTOFFIGURES Fig.1.1 NumberofoperationalspacecraftusingEPsystemseachdecadesincethe1960s…………...……3 Fig.1.2 SchematicdiagramoftheMET……………………………………………………………………….4 z Fig.1.3 ElectromagneticfieldconfigurationfortheTM 011 modeintheemptyMETcavity………………4 Fig.1.4 Hydrazine decomposition reaction temperature and mean molecular weight vs. degree of ammoniadissociation…………………………………………………………………………………..9 Fig.2.1 Cylindricalcoordinatesystemforthemicrowaveresonantcavity………………………………...13 z Fig.2.2 TM 011 resonantfrequencyvs. h/aforvariouscavityradiiwith = 0and ε= ε0………………...15 Fig.2.3 RelativeEfieldstrengthsvs. h/awith Ezevaluatedat r=0, z= h,and Erevaluatedat r= a, z= h/2……………………………………………………………………………………………………....15 Fig.2.4 Losslessterminatedtransmissionline…………………………………………………………….....15 Fig.2.5 Measured thresholds of microwave breakdown in (a) air, f=9.4 GHz, diffusion length Λ is indicatedoneachcurve;(b)Heggas(Hewithanadmixture of Hg vapor), Λ=0.06 cm. [Ref. 3]………………………………………………………………………………………………………..18 Fig.2.6 Equilibriumconstantvs.temperature…………………………………………………………….…22 Fig.2.7 Equilibriummolefractionvs.temperatureforpureN 2propellantat100kPa…………………..23 Fig.2.8 Equilibriummolefractionvs.temperatureforpureNH 3propellantat100kPa………………...24 Fig.2.9 Equilibrium mole fraction vs. temperature for decomposed hydrazine propellant at 100 kPa……………………………………………………………………………………………………..24 Fig.2.10 Specificheatsforspeciesconsideredinequilibriumcalculations……………………………….…26 Fig.3.1 Cylindricalcoordinatesystemforthemicrowaveresonantcavity…………………………..…….30 Fig.3.2 Geometryforcavityloadedwithslabofthickness t……………………………………..32 Fig.3.3 ResonantfrequencyforfirstthreeTMmodes.Cavityhas a=15mmand h=45mm.Dielectric has εr=4andradius a………………………………………………………………………………...35 Fig.3.4 GeneralgeometryanddimensionsusedfornumericalmodelingoftheMET……………………36 Fig.3.5 Representative mesh consisting of approximately30ktetrahedralelementsand38kdegreesof freedom………………………………………………………………………………………………...36 Fig.3.6 Numericalsolutionfor Efieldnormevaluatedat r=0and z= hvs.frequencyforthe2.45GHz METwith1kWinputpower.Variousantennadepthsareshown…………………………..……37 Fig.3.7 Numericalsolutionfor Efieldnormevaluatedat2.450GHzwith1kWinputpowerforantenna depthof:(a)0mm;(b)18.5mm;(c)31.2mm.Scaleisshownwithunitsof10 5V/m………….…37 Fig.3.8 Numericalsolutionfor Efieldnormevaluatedat r=0and z= hvs.frequencyforthe7.5GHz METwith100Winputpower.Variousantennadepthsandtipshapesareshown………….…..38 vii

Fig.3.9 Efieldnorminsidethe7.5GHzMET.Inputpoweris100W.Cavityisshownoperatingatthe particularresonantfrequencyfortheantenna.Antennadepthandtipshapeandfrequencyare: (a)0mm,flat,7.679GHz;(b)2mm,round,7.656GHz;(c)2mm,flat,7.642GHz;(d)4mm, round,7.579GHz;(e)4mm,flat,7.540GHz.Scaleisshownwithunitsof10 5V/m……………39 Fig.3.10 Analyticsolutionforresonantfrequencyvs. h/afortwodifferentcavityradii.Curvesareshown fortheemptycavitycaseandthecaseofacavityloadedatthebasewithaquartzslabwith t=4 mm, rc= a,and εr=4.2……………………………………………………………………………..…41 Fig.3.11 Numericalsolutionfor Efieldnormevaluatedat r=0and z= hvs.frequencyforthe8.4GHz METwith350Winputpower.Resultsfortheemptyandloadedcasesareshown.Legendshows antennadepths………………………………………………………………………………………41 Fig.3.12 Efieldnorminsidethe8.4GHzMET.Inputpoweris350W.Cavityisshownoperatingatthe particular resonant frequency for the configuration. Antenna depth, loading condition, and frequencyare:(a)0mm,empty,8.434GHz;(b)2mm,empty,8.377GHz;(c)0mm,loaded, 8.052GHz;(d)2mm,loaded,8.052GHz.Scaleisshownwithunitsof10 5V/m……………...….42 Fig.3.13 Numericalsolutionfor Efieldlinestructureinsidethe8.4GHzMETusingthe0mmantenna: (a)emptycavity;(b)loadedcavity………………………………………………………………...…43 Fig.3.14 Numericalsolutionfor Efieldnormevaluatedat r=0and z= hvs.frequencyforthe1000W 2.45GHz,100W7.5GHz,and350W8.4GHzMETsassuminga0mmantennadepth…...….43 Fig.3.15 Comparisonof EfieldnorminsidevariousMETs.Frequency,power,andantennadepthare:(a) 2.45GHz,1000W,18.5mm;(b)7.656GHz,100W,2mm;(c)8.377GHz,350W,2mm.Scaleis shownwithunitsof10 5V/m………………………………………………………………………….44 Fig.4.1 Laboratory2.45GHzMET…………………………………………………………………………..47 Fig.4.2 METnozzlecontour…………………………………………………………………………………..47 Fig.4.3 Microwavesystemschematic…………………………………………………………………...…….48 Fig.4.4 Thruststandschematic……………………………………………………………………………….49 Fig.4.5 Deflectionconeandstraingageflexure.Theconehasabasediameterof10.2cm………………49 Fig.4.6 Resultsoftypicalweightedcalibrationofstraingageresponsetoaknownappliedload.Points shownaretheaverageoffivetests.Thestandarddeviationforallpointswas<1mV………….50 Fig.4.7 N2METplasmaatchamberpressureof168kPawith1kWabsorbedpower……………...……51 Fig.4.8 N2exhaustplumein.METnozzleisrecessedin20cmdiamflangeport………….……51 Fig.4.9 Couplingefficiencyvs.chamberpressureusingN 2,0.86mmnozzle,31.2mmantenna,1.4mm injectors.Absorbedpowerisapproximately1.2kW…………………………………………….....52 Fig.4.10 Temperature vs. chamber pressure using N 2, 0.86mm nozzle, 31.2mm antenna, 1.4mm injectors.Absorbedpowerisapproximately1.2kW…………………………………………….....52 Fig.4.11 Simulated hydrazine MET plasma at chamber pressure of 30 kPa with 1 kW absorbed power………………………………………………………………………………………………..…53 Fig.4.12 Coupling efficiency vs. chamber pressure using N 2 + 2H 2, 0.86mm nozzle, 1.4mm injectors. Forwardpowerisapproximately2kW.Antennadepthisgiveninlegend…………………….....53 viii

Fig.4.13 Chamberpressureratiovs.chamberpressureusingN 2+2H 2,0.86mmnozzle,1.4mminjectors. Forwardpowerisapproximately2kW.Antennadepthisgiveninlegend…………………….....54 Fig.4.14 Chamber temperature vs. specific power using N 2 + 2H 2, 0.86mm nozzle, 1.4mm injectors. Forwardpowerisapproximately2kW.Antennadepthisgiveninlegend.Maximumvacuum Isp foreachcaseisshown………………………………………………………………………………....54 Fig.4.15 Coupling efficiency vs. chamber pressure using N 2 + 2H 2, 0.86mm nozzle, 18.5mm antenna. Injectordiameterandforwardpowergiveninlegend……………………………………….…….55 Fig.4.16 Pressureratiovs.chamberpressureusingN 2+2H 2,0.86mmnozzle,18.5mmantenna.Injector diameterandforwardpowergiveninlegend……………………………………………………….55 Fig.4.17 Chambertemperaturevs. specificpowerusing N 2 + 2H 2, 0.86mm nozzle, 18.5mm antenna. Injector diameter and forward power given in legend. Maximum vacuum Isp for each case is shown…………………………………………………………………………………………………..56 Fig.4.18 Couplingefficiencyvs.chamberpressureusingN 2+2H 2,0.4mminjectors,18.5mmantenna. Nozzlethroatdiameterandforwardpowergiveninlegend…………………………………….…57 Fig.4.19 Couplingefficiencyvs.chamberpressureusingNH 3,0.86mmnozzle,18.5mmantenna.Injector diameterandforwardpowergiveninlegend……………………………………………………….57 Fig.4.20 Pressureratiovs.chamberpressureusingN 2+2H 2,0.4mminjectors,18.5mmantenna.Nozzle throatdiameterandforwardpowergiveninlegend……………………………………………….57 Fig.4.21 Pressure ratio vs. chamber pressure using NH 3, 0.4mm injectors, 18.5mm antenna. Nozzle throatdiameterandforwardpowergiveninlegend……………………………………………….57 Fig.4.22 Chambertemperaturevs.specificpowerusing N 2 + 2H 2,0.4mminjectors,18.5mm antenna. Nozzlethroatdiameterandforwardpowergiveninlegend.Maximumvacuum Isp foreachcase isshown………………………………………………………………………………………..……….58 Fig.4.23 Chambertemperaturevs.specificpowerusingNH 3,0.4mminjectors,18.5mmantenna.Nozzle throat diameter and forward power given in legend. Maximum vacuum Isp for each case is shown…………………………………………………………………………………………………..58 Fig.4.24 AmmoniaMETplasmaatchamberpressureof45kPawith2kWabsorbedpower………….....58 Fig.4.25 Thrust vs. mass flow using N 2 + 2H 2 and NH 3, 0.86mm nozzle, 18.5mm antenna, 0.4mm injectors,1.4kWforwardpower…………………………………………………………………….59 Fig.4.26 Specificimpulsevs.specificpowerusingN 2+2H 2andNH 3,0.86mmnozzle,18.5mmantenna, 0.4mminjectors,1.4kWforwardpower……………………………………………………….…..59 Fig.4.27 Thrust efficiency vs. chamber pressure using N 2 + 2H 2 and NH 3, 0.86mm nozzle, 18.5mm antenna,0.4mminjectors,1.4kWforwardpower……………………………………………..…..59 Fig.5.1 Laboratory7.5GHzMET………………………………………………………………………..…..64 Fig.5.2 METnozzlecontour…………………………………………………………………………………..64 Fig.5.3 Microwavesystemschematic………………………………………………………………………....65 Fig.5.4 Spectrumanalyzeroutputforthemagnetron.Thefrequencyspanforthisscreencaptureis100 MHz…………………………………………………………………………………………………....66 ix

Fig.5.5 SpectrumanalyzeroutputfortheTWTA.The frequency span for this screencapture is 100 MHz…………………………………………………………………………………………………....66 Fig.5.6 Spectrumanalyzeroutputforthemagnetron.Thefrequencyspanforthisscreencaptureis10 MHz…………………………………………………………………………………………………....66 Fig.5.7 Spectrum analyzer output for the TWTA. The frequency span for this screencapture is 10 kHz……………………………………………………………………………………………………..66 Fig.5.8 NetworkanalyzeroutputshowingtheMETwithanantennadepthofapproximately3mm…...67 Fig.5.9 NetworkanalyzeroutputshowingtheMETwithanantennadepthofapproximately0mm…...67 Fig.5.10 Thruststandschematic……………………………………………………………………………….68 Fig.5.11 Momentumtrapwith28mmdiameter…………………………………………………………..….68 Fig.5.12 Couplingefficiencyvs.chamberpressureusingN 2,75Waverageforwardpower.Nozzlethroat diameterisgiveninlegend………………………………………………………………………..…..70 Fig.5.13 Couplingefficiencyvs.chamberpressureusingN 2+2H 2,79Waverageforwardpower.Nozzle throatdiameterisgiveninlegend……………………………………………………………………70 Fig.5.14 Pressure ratio vs. chamber pressure using N 2, 75 W average forward power. Nozzle throat diameterisgiveninlegend………………………………………………………………………..…..71 Fig.5.15 Pressureratiovs.chamberpressureusingN 2+2H 2,79Waverageforwardpower.Nozzlethroat diameterisgiveninlegend……………………………………………………………………...…….71 Fig.5.16 Chambertemperaturevs.specificpowerusingN 2,75Waverageforwardpower.Nozzlethroat diameterisgiveninlegend……………………………………………………………………………71 Fig.5.17 Chambertemperaturevs.specificpowerusingN2+2H 2,79Waverageforwardpower.Nozzle throatdiameterisgiveninlegend.Max Isp isshown……………………………………………..…71 Fig.5.18 Coupling efficiency vs. chamber pressure using simulated hydrazine with different values of degreeofammoniadissociation, X.Averageforwardpoweris80W,0.272mmnozzle…...…….74 Fig.5.19 Pressureratiovs.chamberpressureusingsimulatedhydrazinewithdifferentvaluesofdegreeof ammoniadissociation, X.Averageforwardpoweris80W,0.272mmnozzle………………….74 Fig.5.20 Chamber temperature vs. specific power using simulated hydrazine with different values of degreeofammoniadissociation, X.Averageforwardpoweris80W,0.272mmnozzle.Max Isp foreachcaseisshown………………………………………………………………………………....74 Fig.5.21 Chamberpressurevs.frequencyusingN 2+4NH 3,0.221mmnozzle.Solidpoints, Pfor =80W; openpoints, Pfor =110W……………………………………………………………………………..76 Fig.5.22 Chambertemperaturevs.frequencyusingN2+4NH 3,0.221mmnozzle.Solidpoints, Pfor =80 W;openpoints, Pfor =110W………………………………………………………………………....76 Fig.5.23 Couplingefficiencyvs.frequencyusingN2+4NH 3,0.221mmnozzle, Pfor =80W………………76 Fig.5.24 Chamber pressure vs. frequency using N 2 + 2H 2, 0.272mm nozzle. Solid points, Pfor =80W; openpoints, Pfor =105W………………………………………………………………………….….77 x

Fig.5.25 Chambertemperaturevs.frequencyusingN2+2H 2,0.272mmnozzle.Solidpoints, Pfor =80W; openpoints, Pfor =105W…………………………………………………………………………..…77 Fig.5.26 Couplingefficiencyvs.frequencyusingN2+2H 2,0.272mmnozzle, Pfor =80W………………...77 Fig.5.27 Chamberpressureandpressureratiovs.specificpowerforvariousmassflowsusingN 2+4NH 3, 0.221mmnozzle.Solidpoints,pressure;openpoints,pressureratio…………………………..…78 Fig.5.28 Chamberpressureandpressureratiovs.specificpowerforvariousmassflowsusingN 2+2H 2, 0.272mmnozzle.Solidpoints,pressure;openpoints,pressureratio………………………….….78 Fig.5.29 Parametric plot of chamber temperature vs. specific power with mass flow (solid lines) and absorbedpower(dashedlines)asparametersusingN2+2H 2,0.272mmnozzle………………...79 Fig.5.30 Squarerootofforwardpowervs.chamberpressureindicatingthethresholdpowerrequiredto sustaintheplasmaforeachpropellantmixture…………………………………………………….80 Fig.5.31 Thrust vs. mass flow using simulated hydrazine with different values of degree of ammonia dissociation, X.Forwardpoweris105W,0.272mmnozzle………………………………….……81 Fig.5.32 Specificimpulsevs.specificpowerusingsimulatedhydrazinewithdifferentvaluesofdegreeof ammoniadissociation, X.Forwardpoweris105W,0.272mmnozzle…………………………....81 Fig.5.33 Thrustefficiencyvs.chamberpressureusingsimulatedhydrazinewithdifferentvaluesofdegree ofammoniadissociation, X.Forwardpoweris105W,0.272mmnozzle………………………....81 Fig.A.1 Couplingefficiencyvs.chamberpressureusingN 2+2H 2.Forwardpowerisgiveninlegend…92 Fig.A.2 Pressureratiovs.chamberpressureusingN 2+2H 2.Forwardpowerisgiveninlegend………...92 Fig.A.3 Chambertemperaturevs. specificpowerusing N 2 + 2H 2. Forward power is given in legend. Maximumvacuumspecificimpulseisshown……………………………………………………….92 Fig.A.4 Vacuumspecificimpulsevs.forwardpowerusingN 2+2H 2foroperatingconditionswith~95% couplingefficiency…………………………………………………………………………………….92 xi

LISTOFTABLES Table1.1 Performancecharacteristicsforselectedelectricpropulsionsystems…………………………...….3 Table2.1 Specific heat polynomial coefficients over the temperature range 200–6000 K for species consideredinequilibriumcalculations………………………………………………………………26 Table4.1 METnozzledimensions………………………………………………………………………………47 Table5.1 METnozzledimensions…………………………………………………………………………..…..64 xii

NOMENCLATURE 0 α conicalhalfangle,deg g f specificGibbsfreeenergyofformation,J/kg 1 0 β wavenumber,m G f totalGibbsfreeenergyofformation,J 1 βr rdirectionwavenumber,m h cavityheight,m 1 βres resonantfieldwavenumber,m ha antennaheight,m 1 βz zdirectionwavenumber,m hp coaxialportheight,m

γ ratioofspecificheats hs separationplateheight,m

Γ reflectioncoefficient hT antennaTeflonheight,m v changeinvelocity,m/s H magneticfieldvector,Oe ε permittivity,F/m I current,A

ε0 permittivityoffreespace,F/m Isp specificimpulse,s

εr dielectricconstant j −1 ητ thrustefficiency J currentdensity,A/m 2

ηc couplingefficiency Jm Besselfunction ηH heatingefficiency Jm′ firstderivativeofBesselfunction λ divergencelossfactor K equilibriumconstant Λ characteristicdiffusionlength,m p mɺ massflowrate,kg/s permeability,H/m me electronmass,kg 0 permeabilityoffreespace,H/m MW molecularweight,kg/kmol νm collisionfrequencyformomentumtransfer,Hz M exhaustMachnumber σ electricalconductivity,S e M initialspacecraftmass,kg τ thrust,N i Mp propellantmass,kg χmn zeroesoftheBesselfunction n stoichiometriccoefficient ω fieldradianfrequency,rad/s n electronnumberdensity,m 3 a cavityradius,m e p staticpressure,Pa A* nozzlethroatarea,m 2 0 2 p referencepressure,Pa Ae nozzleexitarea,m p0 totalpressure,Pa Az magneticvectorpotential,HA/m pa atmosphericpressure,Pa Bmn vectorpotentialconstant,HA/m p exitpressure,Pa c* characteristicvelocity,m/s e Pabs absorbedpower,W Cτ thrustcoefficient Pave averagepower,W Cp constantpressurespecificheat,J/kgK P forwardpower,W d* throatdiameter,m for Pinp inputpower,W de exitdiameter,m P reflectedpower,W E electricfieldvector,V/m ref Pspec specificpower,MJ/kg fres resonantfrequency,Hz q magnitudeofelectroncharge,C g gravitationalaccelerationatEarthsurface,m/s 2 e xiii

R resistance, T statictemperature,K

R universalgasconstant,J/kgK T0 totaltemperature,K ra antennaradius,m ue exhaustvelocity,m/s rc antennacapradius,m V voltage,V ri nozzleinletradius,m X reactance, ; degree of ammonia dissociation; rp coaxialportradius,m molefraction t antennacapthickness,m Z impedance, ts separationplatethickness,m xiv

ACKNOWLEDGMENTS

Many people along the way have contributed to my work here at Penn State and I would like to take this opportunitytoexpressmygratitude.IwouldliketothankDr.Micciforhisconfidence,support,andadvice.Ihave learnedagreatdealfromhimthroughoutmytimeashisstudent.Dr.Bilénhasalwaysgivengreatadvice,bothin andoutofthelab.Ithanktherestofmycommittee,Dr.MeltonandDr.Spencer,fortheirsupportovertheyears.I wouldliketothankDr.Lesieutreforgivingmetheopportunitytoteach.Ilearnedalotfromtheexperience,most especiallyhowhardprofessorshavetoworkinordertobegoodteachers.Ithankallmyprofessorsfortheirhard work in providing me with a great education. Bob Dillon’s fabrication expertise and knowledge have been invaluable.RickAuhlandMarkCatalanohavedonemorefavorsformethanIcancount.Ithankallmylabmates, notonlyfortheirhelpwithwork,butalsoforkeepingofficelifeveryinteresting.Thesamegoesfortherestofmy friendsbelongingtotheAerospacestudentbodyandofficestaff.IwouldalsoliketothankthoseatDARPA,Johns

Hopkins University Applied Physics Lab, and Northrop Grumman Space Technology who have funded this research.

Onamorepersonalnote,myparentshaveprovidedan incredible amount of encouragement and inspiration throughoutmylife.Icouldnothavebeensuccessfulwithouttheirsupportandthesupportofmygrandmotherand mybrotherandsisters.Finally,mywifeStephaniedeservesatremendousamountofcredit.Shehastakencareof everyotherpartofourlifetogetherandhasputupwithalotwithoutnearlyenoughthanksfromme.Icouldnot havedonethiswithouther.

1

Chapter1

Introduction

The Microwave Electrothermal Thruster (MET) is an electric propulsion (EP) device that uses an electromagneticresonantcavitywithinwhichafreefloatingplasmaisignitedandsustainedinapropellantgas.The propellantheatedbytheplasmaisacceleratedthoughagasdynamicnozzleandexhaustedtogeneratethrust.This heatingmechanismissimilartothatofanarcjet,whichutilizesanarcdischargeformedbetweentwoelectrodesto heat a propellant gas. The main difference is that the METplasma is freefloating and thus the system does not sufferfromthelifetimelimitingelectrodeerosionproblemsthatarecharacteristicofthearcjet.TheMETpotentially offers thrust and specific impulse comparable to arcjets with higher efficiency at low power levels and longer lifetimes.Thisdissertationreportsonthenumericalmodelingandexperimentalperformancemeasurementofthree

METsoperatingatdifferentmicrowavefrequenciesusingvariouspropellantgases.

I.MotivationforEPandtheMET

Thekeyparametersofperformanceevaluationarethrustandspecificimpulsegivenby

ɺ τ =mue +( p e − p ae ) A (1.1)

ɺ Isp = τ mg (1.2)

Thrustisthereactionforcegeneratedonarocketbyanexpelledpropellantandspecificimpulseisdefinedasthe ratioofthrusttoweightflowoftheexpelledpropellant.Byconservingmomentuminthesystemconsistingofthe rocketandexpelledpropellant,itcanbeshownthatthefractionofinitialspacecraftmassoccupiedbypropellantis givenby

− v Isp g Mp M i =1 − e (1.3)

2

Therefore,increasingthespecificimpulsedecreases thepropellantfractionrequiredforspacecraft maneuvering.

Reducingthepropellantmassrequiredforagivenvcanhavethreeeffects.First,theamountofpropellanttaken intoorbitonboardthespacecraftcanbereduced,therebyreducinginitialmass.Second,theinitialmasscanremain thesame,butpropellantmasscanbetradedforpayloadmass.Thus,forthesamelaunchcost,alargerpayloadcan bedeliveredintoorbit.Third,ifthepropellantmassandpayloadmassiskeptconstant,thelifetimeofthespacecraft requiring onorbit attitude control and v can be increased (without regard to power systems). With these considerations,ahighspecificimpulseisanattractivequalityforapropulsionsystem.

Specificimpulseisanindicatorofhowmuchenergycanbeextractedfromtheresourcesonboard,andhowwell thatenergycanbeconvertedtokineticenergyforapropulsivemaneuver.Chemicalpropulsionsystemsutilizethe energy contained in the chemical bonds of the propellants. For this reason, they are known as energylimited systems.Theamountofenergyreleasedfollowinganygivenexothermicreactionisrelativelysmall(compared,for instance,totheenergyreleasedfollowingnuclearormatter–antimatterreactions).Thisplacesanupperboundonthe achievablespecificimpulseatapproximately500s.1

EPsystemsarenotlimitedbytheenergyofareaction,butrathertheamountofelectricalpoweravailable onboard.Forthisreason,theyareknownaspowerlimitedsystems.Inastrictlytheoreticalsense,itispossibleto inputasmuchenergyasdesiredintoapropellant.However,therearepracticallimitationstothisstatementbasedon materialconsiderations,etc.Sincemoreenergycanbeputintothesystem,specificimpulsesof500–10,000sare achievable. 1

EPsystemsbeginwithelectricalenergyobtainedinsomemannersuchassolarpower,chemicalfuelcells,etc.

TheconversionofelectricalenergythatfollowsthenleadstofurthersubclassificationofEPsystems.Electrothermal systems convert the electrical energy to thermal energy by heating a neutral propellant and then expelling the propellant through a gasdynamic nozzle in a manner similar to a chemical propulsion system. Electrostatic and electromagnetic systems use the electrical energy to generate electric or magnetic fields, which act to expel a chargedpropellant.

SignificantprogressinEPsystemshasbeenmadethroughresearchingovernmentlaboratories,academia,and industry. 26 The number of operational spacecraft with EP systems has increased sharply over the past several decadesastheyhavegainedheritageanddemonstratedincreasedreliability.ThistrendisshownclearlyinFig.1.1.

Thrustersystemsthathavebeensuccessfullyoperatedinspaceincluderesistojets,arcjets,thrusters,andHall 3

thrusters. Presently, close to 200 operational spacecraft 250 employ some type of EP system for tasks such as 200 150 stationkeeping and orbit raising. Their mission 100 capabilities continue to expand as power availability 50

OperationalSpacecraft 0 increases with progress in onboard power generation, 1960s 1970s 1980s 1990s 2000s storage, distribution, and regulation. Much research is Decade Fig.1.1 Number of operational spacecraft using EP also dedicated to determining the effects of spacecraft systemseachdecadesincethe1960s.[Refs.2–6] interactions. These include electromagnetic interference duetotheionizedplume,andspacecraftcontaminationduetosputtering,ionbackflow,andplumeimpingementon criticalmechanisms.

OneimportantperformancemetricusedtodescribeEPsystemsistheratiooftheexhaustkineticenergytothe inputpower,knownasthethrustefficiencyanddefinedby

ητ = τ Isp g2 P inp (1.4)

Equation(1.4)showsthat,ingeneral,thereisatradeoff betweenthrustand specificimpulse fora given input powerlevelbecausemaintaininghighthrustwithhighspecificimpulserequiresveryhighpower.Decreasingthrust increasesthetimerequiredtocompleteaspacecraftmaneuver.Thismaybeunacceptableforvariousreasons,so thereisademandforpropulsionsystemsthatoffer moderatethrustlevels withspecificimpulsehigherthanthat whichisavailableusingconventionalchemicalthrusters.Table1.1showstypicalperformancecharacteristicsfor severalEPsystems.

Electrothermal thrusters, such as the arcjet and the MET, can meet this requirement. Both systems utilize a plasmadischargetoheatapropellantgas;however,they Table1.1 Performancecharacteristicsforselected havefundamentaldifferencesinthewaythedischargeis electricpropulsionsystems.[Refs.2–6] ignited and sustained. The arcjet forms an arc discharge Thruster Power(kW) Thrust(mN) Vacuum I sp (s) η τ Hall 0.2–20 0.005–100 1500–3000 0.60 betweentwoelectrodes.Thearcdischargeisattachedto Ion 0.5–25 0.005–500 2500–3400 0.65 Resistojet 0.5–1.5 5–500 300–350 0.80 theelectrodesurfaces,leadingtolifetimelimitingerosion Arcjet 0.005–26 5–5000 150–1000 0.35 MET 0.07–5 2–700 150–600 0.50 4 problems.TheMET,incontrast,formsafreefloatingdischargeinamicrowaveresonantcavity,thusavoidingthe electrodeerosionthatischaracteristicofthearcjet.TheMETalsooffershigherefficiencythanthearcjet.

II. BasicOperationalPrinciplesoftheMET

TheMET,shownschematicallyinFig.1.2,consistsofacircularcrosssectionresonantcavityoperatinginthe

z TM 011 mode.Thisresonantmode,showninFig.1.3foranemptycavity,ischaracterizedbyregionsofhighelectric energydensityonthecavity axisattheendplates,andin theannularregioncircumscribingthecavity midplane.

Properlyselectingtheheighttodiameterratioofthecavitycausestheelectricenergydensityattheendplatestobe muchgreaterthanatthemidplane.

Theresonantcavityisacircularcrosssectionwaveguideshortedbytwoconductingendplates.Oneendplate containsanozzleandtheothercontainsanantennaforinputtingmicrowavepower,eachalongthecavityaxis.For lowlevelsofmicrowavepower,plasmainitiationonlyoccursatlowpressures(<~7kPa).However,onceinitiated, theplasmacanbesustainedathighpressures.Thecavityispartitionedbyadielectricseparationplatethatallows thetwohalvesofthecavitytobemaintainedatdifferentpressures.Priortoplasmainitiation,thenozzlesectionis evacuated whiletheantenna sectionis maintainedatatmosphericpressure.Thisensuresplasma formationinthe nozzlesectionandinhibitsitneartheantenna,whichisintheotherregionofhighelectricenergydensity.Thisalso reducesmechanicalstressontheseparationplatebydecreasingthepressuredifferentialacrossitwhenthechamber pressureishigh.

Nozzle Electric Field Plasma Propellant Magnetic Vortex Field Separation Plate

Antenna

Fig.1.3 Electromagnetic field configuration for the z Fig.1.2 SchematicdiagramoftheMET. TM 011 modeintheemptyMETcavity. 5

Uponplasmainitiation,propellantisinjectedupstreamofthenozzleandafreefloatingplasmaformsinthe regionofhighelectricenergydensityatthenozzleentrance.Thepropellantisinjectedtangentiallytoformavortex flowinsidethechamber,coolingthechamberwalls,andaidingplasmastabilizationduetothegenerationofaradial pressuregradientthathelpstomaintaintheplasmacenteredonthecavityaxis.Microwaveenergyiscoupledtothe propellantgasthroughfreeelectronsintheplasma.Theelectricfieldacceleratesfreeelectrons,whichthentransfer theirkineticenergytoheavyparticlesthroughcollisions.Thepropellantflowingaroundandthroughtheplasmais heatedandexhaustedthroughachokednozzle.

Duringnormaloperation,someportionoftheforwardpowerisreflectedandtheremainderisabsorbedbythe plasma.Ohmicheatingofthewallsisassumedtobenegligiblecomparedtotheforwardpowerbecausethewalls aregoodelectricalconductors.Thecouplingefficiency,relatinghowwellthemicrowaveenergyisabsorbedbythe plasma,isthen

ηc =PPabs for =( P for − P ref) P for (1.5)

III.PriorResearchandDevelopment

ResearchontheMETbeganatTheMichiganStateUniversityandThePennsylvaniaStateUniversityinthe

1980s. 11,12 Earlyworkdemonstratedthefeasibilityoftheconceptusingvariablegeometryresonantcavitiesinwhich thecavity’sresonantfrequencywasactivelytuned.Observationsofchambercharacteristicsshowedthatitcouldbe used effectively as a propulsion device. Spectroscopic diagnostics of the cavity plasma indicated electron temperaturesof10,000–12,000K,insensitivetooperatingconditions. 13,14 Afixedgeometrycavitywasthenbuilt andoperated. 15,16 Excellentperformancewasdemonstratedusingthissimpler,morepracticaldesign.Todate,this designhasremainedlargelyunchanged.

Recent work on the high power (kWclass) 2.45GHz MET includes an emission thermometry study using andnitrogenpropellants. 17 Spatiallyresolvedemissionspectrawereobtainedexperimentallyandcompared to temperaturedependent emission models. From this comparison, rotational temperatures, and thus translational temperatures,oftheMETplasmasweredetermined.Thetranslationalandrotationaltemperatureswereassumedto be in equilibrium at typical operating pressures. A Schumann–Runge oxygen emission model was developed assuming an anharmonically vibrating, nonrigid, rotating O 2 molecule. The commercially available software 6

+ LIFBASE was used to model the N 2 first negative system emission of the nitrogen plasmas. Rotational

+ temperaturesof2000KforO 2and5500KforN 2 weremeasuredandfoundtobenearlyconstantoverarangeof operatingconditions.

Research at Penn State on the low power (~100 W) 7.5GHz MET was initiated in 1997 and focused on characterizingchamberconditionsandobtainingthrustandspecificimpulsemeasurementsusing,nitrogen, andammoniapropellants. 18,19 Thethrusterwasascaleddownversionoftheonedevelopedduringprevioushigh powerprototypetesting andthedesignwasintendedforuseonsmallspacecraftrequiringlowpower,lowthrust propulsioncapabilities.Itwasdemonstratedthattheplasmacouldbeignitedbyevacuatingthecavitytoapressure lowenoughforbreakdowntooccurataforwardpowerlevelof<100W.

Asuspendedpendulumthruststandemployingalinearvariabledifferential(LVDT)wasusedto resolvethedisplacementofthependulumcausedbyfiringofthethruster.Theresolutionofthatthruststandwas insufficient due to the low thrusttoweight ratio of the system. An invertedpendulum thrust stand was then developed to increase resolution. In this configuration, the thrust was directed horizontally and the exhaust was discharged into the laboratory atmosphere. Helium and nitrogen were used as propellants and a broad range of operatingconditions wereobserved.Becausethethruster was oriented horizontally, the buoyancy of the plasma becameaproblemduringnitrogentesting,butnotduringheliumtesting.Usinghelium,themaximumaveragethrust was6.5mNwithacorrespondingspecificimpulseof149s.Usingnitrogen,themaximumaveragethrustwas8.6 mNwithacorrespondingspecificimpulseof62s.

Concurrently,a2.45GHzthrusterwastestedatlowpowertodeterminefrequencyeffectsonperformance. 20

Untilthen,onlyhighpowertestinghadbeenperformedatthisfrequency.Experimentswereperformedinvacuumto observechamberbehavior.Resultsshowedthatthelowpowerversionofthe2.45GHzthrustercouldnotfunction adequatelyasaspacepropulsiondevicebecausethemaximumchamberpressuresthatwereachievedbeforeplasma extinction were prohibitively low. Attention was then focused fully on development of the 7.5GHz thruster. It performed well in vacuum, demonstrating that it could be run autonomously under realistic space conditions for extendedperiods.Testingwithhelium,nitrogen,andammoniaresultedinchamberpressuresashighas372kPa,

379kPa,and49kParespectively,withcouplingefficienciesashighas99%.Vacuumexperimentswereperformed with a closetovertical orientation of the thruster. Using the mass flow equation and measurements of chamber 7 pressureundercoldflowandhotfireconditions,maximummeanchambertemperaturesof1700Kforhelium,2100

Kfornitrogen,and1240Kforammoniawerecalculated.

Doppler shift measurements of centerline exhaust velocity and, hence, specific impulse were performed in vacuumusingheliumwithaninputpowerof80W.Centerlinespecificimpulsewasmeasuredrangingfrom730–

1330 s, increasing with increasing specific power ranging from 15–30 MJ/kg. At low mass flow rates, the experiment waslimitedbythelowintensityofthelightemittedby theexhaustplume.Athigh massflowrates, pressurebroadeningoftheemissionlinesprecludedaccuratemeasurementoftheshift.

Spectroscopic measurements of electron temperature in helium propellant were also performed using the relativelineintensitymethod.Theassumptionoflocalthermodynamicequilibrium(LTE)iscommonlymadefor systemsatorabovepressuresof1atm;however,ahighdegreeofnonequilibriumwasobservedevenatpressuresof

2atm.At345kPa,theLTEassumptionwasvalidatedwithmeasuredelectrontemperaturesof4005K±18%.

A new verticaldeflection thrust stand was developed to obtain vacuum and laboratory atmosphere thrust measurements.Thisfulcrumbalancethruststandallowedthethrustertobeorientedvertically,thuseliminatingthe effects of plasma buoyancy perturbations. Laboratoryatmosphereexperimentswereconductedusinghelium, but only one operating point was investigated. 21 With a mass flow of 9.36 mg/s, the maximum recorded thrust and specificimpulsewere21mNand228srespectively.Onlycoldflowthrustwasrecordedinvacuumdemonstrating thatthethruststandcouldbeusedeffectivelyforstudyinthatenvironment.

DirectthrustmeasurementsoftheMETusingboththependulumandfulcrumbalancetypestandsweredifficult to perform due to the fact that the microwave power supply was rigidly fixed to the thruster by a bidirectional couplerthatallowedforwardandreflectedpowermeasurements.Itwasdifficulttofacilitatethefreemotionofthe entire system necessary for direct thrust measurements. In the case of the highpower MET, this would be impossible because of the size of the power supply. An indirect vacuum thrust measurement apparatus that employed a momentum trap attached to an invertedpendulum was developed and tested by researchers at the

AerospaceCorporationstudyingthekWclass2.45GHzMET. 22 Severalpropellantsweretestedincludinghelium, nitrogen,,nitrousoxide,andwatervapor.Themaximumperformancesobservedwereasfollows:He–Isp

=420s, ητ=0.75;N 2–Isp =240s, ητ=0.5;H 2–Isp =360s, ητ=0.07;N 2O–Isp =210s, ητ=0.6.Thereliabilityof the results of the H 2O testing is questionable, but reasonable, with specific impulse and thrust efficiency approaching400sand0.25,respectively. 8

AmomentumtrapthruststandwasthendevelopedatPennStatefortestingwiththelowpowerMET. 23,24 The thruster wasoriented vertically,attachedandsealedtotheflangeplateofa vacuum facility,and haditsexhaust directedintoamomentumtrapattachedtoastraingageflexure.Theflexurewascalibratedtomeasuretheforceof thefluidenteringthemomentumtrap,whichwasassumedtobeequaltothethrust.Nitrogenwasusedaspropellant.

Coldflowtestingwasperformedtovalidatethemomentumtrapconcept.Excessiveheattransferfromtheexhaust plume to the momentum trap and strain gage flexure prevented accurate hot fire thrust measurements, but experimentallyobservablequantitieswereusedtocalculateperformance.Themaximummeanchambertemperature observedwas2233K.Usingaconverging–divergingnozzle,themaximumthrustandspecificimpulsewere20.8 mNand204s,respectively.Atamassflowof10.4mg/sandspecificpowerof6.1MJ/kg,thiscorrespondedtoa thrustefficiencyof33%.

Recently, an effort was undertaken to characterize the electromagnetic interference (EMI) generated by the

METsystem. 25 IncontrasttothebroadbandEMIsignaturesofarcjet,ion,Halleffect,andpulsedplasmathrusters,it was shown that the 7.5GHz MET has an EMI signature that contains only a few well defined, narrowband frequency components. In addition, the majority of the radiated emissions were attributed to the supporting electroniccomponents,andnotthethrustercavityorexhaustplume.Itwassuggestedthat,givenpropershieldingof the supporting electronics, the MET has the ability to produce negligible radiated emissions during startup and continuousoperation.

IV.ProjectScopeandObjectives

Examination of the gasdynamic conservation equations reveals that Isp ∝ Tc MW . Low molecular weight propellantssuchasheliumandhydrogenaredesirable,butliquidstorablepropellantsofferaclearadvantagewhen considering tank size and thermal maintenance. Ammonia and catalytically decomposed hydrazine are good candidates.

Hydrazinehasbeenusedinmonopropellantandbipropellantsystemsformanyyears.Monopropellantsystems areverysimple.Liquidhydrazineispassedthroughacatalystbedanddecomposes,releasingenergy.Thatenergyis absorbed by the product gases, which are exhausted through a gasdynamic nozzle. Hydrazine monopropellant thrusters are attractive due to their simplicity, reliability, and long heritage, but have a relatively low specific 9

impulse( Isp ~220s)comparedtoelectricpropulsionsystems(Isp ≥450s).Whenusedinabipropellantsystem, thereisoftenexcesshydrazineremainingafterspacecraftorbitalinsertion.

Hydrazinedecomposesinthepresenceofacatalystaccordingtothefollowingreactions: 26

3NH24→ 4NH 3 + N 2 (1.6)

4NH3→ 2N 2 + 6H 2 (1.7)

Duringthefirstreaction,hydrazineundergoescatalyticdecompositiontoformgaseousammoniaandnitrogen.This reactiongoestocompletionrapidlyandishighlyexothermic.Theammoniathendissociates,formingnitrogenand hydrogen. The second reaction occurs much slower than the first and is endothermic. These reactions can be combined to yield the following global reaction where X is the degree of ammonia dissociation with X = 0 correspondingto0%and X=1correspondingto100%:

3NH24→− 41( X) NH 3 ++( 2 X 1N) 22 + 6H X (1.8)

Thedegreetowhichammoniadissociatesisafunctionofsystemcharacteristicsandisamajordesignconsideration.

Itaffectscompositionandtemperature,asshowninFig.1.4,therebyaffectingspecificimpulse.

Hydrazineisalsousedinresistojetandarcjetsystems.Hydrazineresistojetsofferaspecificimpulseof~300s with ~500 W of power, which is only a modest 1800 25 enhancement over conventional systems; however, Temp 1600 MW 20 hydrazine arcjets give a more substantial performance 1400 15 improvement. Aerojet produces the MR510 hydrazine 1200 10 arcjet system offering a specific impulse of 585 s at a Temperature(K) 1000 5 MeanMolecularWeight powerlevelof2.2kW.ThisisanupgradefromtheMR 800 0 509systemwithaspecificimpulseof502sat1.8kWof 0.0 0.2 0.4 0.6 0.8 1.0 DegreeofAmmoniaDissociation power. 4 These systems are currently operational. While Fig.1.4 Hydrazine decomposition reaction temperature and mean molecular weight vs. degree of ammonia dissociation.[Ref.26] 10 arcjetresearchhasbeenfocusedprimarilyonhighpowerlevels(>1kW),operationatlowpowerlevelshasalso beenexamined.SankovicandHopkinsreportedspecificimpulsesof350–440susing simulated hydrazine(N 2+

7 2H 2)with200–300Wofpowerand0.25–0.36thrustefficiency. WillmesandBurtonreportedspecificimpulsesof

150–190susingsimulatedhydrazinewith50–150Wofpowerand0.05–0.20thrustefficiency. 8

Ammonia has also been used as propellant in arcjet systems. Fife et al. reported onorbit performance measurementsofa26kWammoniaarcjetshowingaspecificimpulseof786sand0.27thrustefficiency,consistent withgroundbasedtesting. 27 Auweter–Kurtzetal.reportedaspecificimpulseof480sand0.36thrustefficiency using a 750W ammonia arcjet. 28 Sankovic and Hopkins demonstrated specific impulses of 350–470 s using

7 simulatedammonia(N 2+3H 2)with200–300Wofpowerand0.28–0.36thrustefficiency.

Research was initiated to examine the feasibility of operating the MET using the products of hydrazine decomposition as the propellant gas. The goal of this research was to improve the performance of a hydrazine chemicalsystembycombiningitwithanEPsystemthatcanoutperformthearcjetanddoesnotsufferfromerosion problems. Operation with hydrazine propellant allows for integration with a conventional chemical propulsion system onboard a spacecraft. In addition, such a system could possibly be used for multimode operation. For example,thesystemcouldbeoperatedathighpressure without microwave power for highthrust maneuvers, or operated at lower pressure with microwave power for highIsp maneuvers, thereby enhancing the operational capabilitiesofthespacecraft.OperationoftheMETusingpureammoniawasalsoexaminedtodeterminehowwell theMETperformscomparedtothearcjetusingthispropellant.PreviousinvestigationsindicatedthattheMETcan outperformthearcjetatlowpowerlevels usingheliumpropellant.WillmesandBurton, working withthearcjet, reportedaspecificimpulseof313satapowerlevelof119Wand280sat80W. 9DataobtainedbySouliezetal. indicatedspecificimpulseinexcessof400satapowerlevelof80WwiththeMET. 20

Inthisprogram,testingwasconductedonthe7.5GHzMETatapowerlevelof70–100Wusingpurenitrogen andvarious mixturesofN 2,H 2,andNH 3tosimulatedecomposedhydrazine.Parametricstudiesoftheeffectsof nozzlethroatdiameter,microwavefrequency,andmicrowavepowerwereperformed.Testingwasalsoconducted onthe2.45GHzMETatapowerlevelof1–2kWusingpurenitrogen,simulatedhydrazine,andpureammonia.

Parametricstudiesoftheeffectsofnozzlethroatdiameter,antennaprobedepth,propellantinjectordiameter,andthe inclusionofanimpedancematchingunitwereperformed.Thrustandspecificimpulsemeasurementsforthe2.45 and7.5GHzMETswereobtainedusingthruststands.Numericalelectromagneticmodelingoftheexisting7.5and 11

2.45GHz thrusters was performed using the commercially available finite element analysis software COMSOL

Multiphysics.Thismodelingyieldedinsightontheeffectsofvariationofantennadepth,microwavefrequency,and microwavepower.Theresultsagreedwellwithexperimentalmeasurements.Numericalelectromagneticmodeling wasalsoperformedtodesignanew8GHzMET.Thisthrusterwasbuiltandapreliminaryperformanceevaluation wasconducted.

References

1Humble, R. W., Henry, G. N., and Larson, W. J., editors, Space Propulsion Analysis and Design , The McGrawHill Companies,Inc.,NewYork,1995. 2Martinez–Sanchez,M.,andPollard,J.E.,“SpacecraftElectricPropulsion–AnOverview,” JournalofPropulsionandPower , Vol.14,No.5,1998,pp.688–699. 3King,L.B.,“ReviewoftheEPActivitiesofUSAcademia,”AIAAPaper20043332,July2004. 4Myers,R.M.,“OverviewofMajorU.S.IndustrialElectricPropulsionPrograms,”AIAAPaper20043331,July2004. 5Lichtin,D.A.,“AnOverviewofElectricPropulsionActivitiesinU.S.Industry–2005,”AIAAPaper20053532,July2005. 6Gatsonis,N.A.,andPartridge,J.M.,“OverviewofElectricPropulsionResearchinU.S.Academia,”AIAAPaper20053533, July2005. 7Sankovic,J.,andHopkins,J.,“MiniaturizedArcjetPerformanceImprovement,”AIAAPaper19962962,July1996. 8Willmes,G.F.andBurton,R.L.,“PerformanceMeasurementsandEnergyLossesina100WattPulsedArcjet,”AIAAPaper 19962966,July1996. 9Willmes,G.F.,andBurton,R.L.,“LowPowerHeliumPulsedArcjet,” JournalofPropulsionandPower ,Vol.15,No.3, 1999,pp.440–446. 10 Horisawa,H.,andKimura,I.,“InfluenceofConstrictorSizeonThrustPerformanceofaVeryLowPowerArcjet,”AIAA Paper19983633,July1998. 11 Whitehair,S.,Asmussen,J.,andNakanishi,S.,“MicrowaveElectrothermalThrusterPerformanceinHeliumGas,” Journal ofPropulsion ,Vol.3,No.2,1987,pp.136–144. 12 Micci,M.M.,“ProspectsforMicrowaveHeatedPropulsion,”AIAAPaper19841390,June1984. 13 Balaam,P.,andMicci,M.M.,“InvestigationofFreeFloatingResonantCavityMicrowavePlasmasforPropulsion,” Journal ofPropulsion ,Vol.8,No.1,1992,pp.103–109. 14 Balaam,P.,andMicci,M.M.,“InvestigationofStabilizedResonantCavityMicrowavePlasmasforPropulsion,” Journalof PropulsionandPower ,Vol.11,No.5,1995,pp.1021–1027. 15 Sullivan, D. J., and Micci, M. M., “Performance Testing and Exhaust Plume Characterization of the Microwave Arcjet Thruster,”AIAAPaper19943127,June1994. 16 Sullivan,D.J.,Kline,J.,Philippe,C.,andMicci,M.M.,“CurrentStatusoftheMicrowaveArcjetThruster,”AIAAPaper 19953065,June1995. 17 Chianese, S. G., and Micci, M. M., “Microwave Electrothermal Thruster Chamber Temperature Measurements and PerformanceCalculations,” JournalofPropulsionandPower ,Vol.22,No.1,2006,pp.31–37. 18 Nordling,D.andMicci,M.M.,“LowPowerMicrowaveArcjetDevelopment,”IEPCPaper1997089,Aug.1997. 19 Nordling,D.,Souliez,F.,andMicci,M.M.,“LowPowerMicrowaveArcjetTesting,”AIAAPaper19983499,July1998. 20 Souliez,F.J.,Chianese,S.G.,Dizac,G.H.,andMicci,M.M.,“LowPowerMicrowaveArcjetTesting:PlasmaandPlume DiagnosticsandPerformanceEvaluation,” MicropropulsionforSmallSpacecraft ,editedbyM.M.MicciandA.D.Ketsdever, Vol.147,ProgressinAstronauticsandAeronautics,AIAA,Reston,VA,2000,pp.199–214. 21 Roos,C.J.A.,“VerticalDeflectionThrustStandMeasurementsofaLowPowerMicrowave ArcjetThruster,”Masterof ScienceThesis,DepartmentofAerospaceEngineering,ThePennsylvaniaStateUniversity,2001. 22 Diamant,K.D.,Zeigler,B.L.,andCohen,R.B.,“MicrowaveElectrothermalThrusterPerformance,” JournalofPropulsion andPower ,Vol.23,No.1,2007,pp.31–37. 23 Welander, B. A., “Low Power Microwave Arcjet Thruster Using Nitrogen Propellant,” Master of Science Thesis, DepartmentofAerospaceEngineering,ThePennsylvaniaStateUniversity,2004. 24 Clemens,D.E.,“PerformanceEvaluationofaLowPowerMicrowaveElectrothermalThruster,”MasterofScienceThesis, DepartmentofAerospaceEngineering,ThePennsylvaniaStateUniversity,2004. 25 Sanfillipo, J., Bilén, S. G., Clemens, D. E., Welander, B. A., and Micci, M. M., “Measurement of Electromagnetic InterferencefromaMicrowaveElectrothermalThruster,” JournalofPropulsionandPower ,SubmittedforPublication,2007. 26 Schmidt,E.W., HydrazineandItsDerivatives:Preparation,Properties,Applications ,JohnWiley&Sons,Inc.,NewYork, 2001. 12

27 Fife, J. M., Bromaghim, D. R., Chart, D.A., Hoskins,W.A.,Vaughn,C.E.,andJohnson,L.K.,“Orbital Performance MeasurementsofAirForceElectricPropulsionSpaceExperimentAmmoniaArcjet,” JournalofPropulsionandPower ,Vol.18, No.4,2002,pp.749–753. 28 Auweter–Kurtz,M.,Glocker,B.,Golz,T.,Kurtz,H.L.,Messerschmid,E.W.,Riehle,M.,andZube,D.M.,“ArcjetThruster Development,”JournalofPropulsionandPower ,Vol.12,No.6,1996,pp.1077–1083. 13

Chapter2 MicrowaveElectrothermalThrusterTheory

ThetheoryoftheMETspansthetopicsofcompressiblefluidflow,electromagnetics,chemistry,andplasma physics.KnowledgeofthesetopicsisessentialtounderstandtheMET.Thischapterpresentsabasicfoundationfor thestudyoftheMETanddescribesthemethodsusedtopredictitsperformancefromempiricaldata.

z I. TM mnp ResonantCavityFieldTheory

TheelectromagneticfieldtheoryoftheMETbeginswithMaxwell’sEquations.Properrearrangementofthem leads to second order differential equations with wave solutions. z Solutions of the wave equations can be found in the form of vector potentials. The MET resonant cavity is of cylindrical shape, so it is natural to use cylindrical coordinates for theoretical analysis. The coordinatesystemfortheresonantcavityisshowninFig.2.1. h Theresonantcavityisassumedtobeaperfectconductorfilledwitha a φ homogeneous,lossless,sourcefreemedium.Forsuchacavity,itcanbe r 0 shownthattheelectricandmagneticfieldcomponentsandtheresonant Fig.2.1 Cylindrical coordinate system z 1 frequencyfortheTM 011 resonantmodearegivenby forthemicrowaveresonantcavity.

B χ π Ej= 011 01 J′ ()χ rasin () π zh (2.1) r ωε a h 0 01

Eφ = 0 (2.2)

2 B011χ 01  Ejz = −   Jra0()χ 01 cos () π zh (2.3) ωε a 

H r = 0 (2.4) 14

B χ H= − 011 01 Jra′ ()χcos () π zh (2.5) φ a 0 01

H z = 0 (2.6)

TMz 1 22 ()fres=()χ 01 a + () π h (2.7) 011 2π ε

z Figure2.2showstheTM 011 resonantfrequencyforanemptycavity,with = 0and ε= ε0,asafunctionof h/a fordifferentcavityradii.Theeffectof varyingcavity geometrycanbeseen.Asthecavity heightandradiusare increased, the resonant frequency decreases. Similarly, perturbations inside the cavity, such as the presence of dielectricinsertsorplasma,canaltertheresonantfrequencycausingitsaccurateanalyticalpredictiontobedifficult.

Foragivendesiredresonantfrequency,thereexist an infinite number of combinations of cavity height and

z radiusthatsatisfyEq.(2.7).TheTM 011 resonantmodehasregionsofhighelectricfieldstrengthontheaxisnearthe nozzleandantenna( Ez max = Ez|r = 0, z = 0, h),andinthemidplaneannulus( Er max = Er|r = a, z = h/2 ).Studyingthefield equations,itcanbeseenthattheratio h/a determinestherelativefieldstrengthsofthoseregions.Evaluatingthe electricfieldinthoseregions,

Ezr| =0, zh = χ01 J0 ()0  h  h =   = 1.475  (2.8) Er| r= az, = h 2π Ja 1() χ 01    a

Formaximumperformanceandefficientpropellantheating,itisdesirabletohavethehighestconcentrationoffield energy near the nozzle. High field strength in the midplane annulus adversely affects thruster performance. The relative electric field strength in this region is higher when h/a is lower. For this reason, h/a must be properly selectedtoensure highrelative fieldstrengthatthenozzle.ThisisdemonstratedinFig.2.3.Todate,theMETs designedatPennStatehavehad h/a~3.

15

50 16 14 40 12 10 30 |

a =5mm r

/E 8 z

20 |E 6 15mm 4 10 45mm 2 ResonantFrequency(GHz) 0 0 0 2 4 6 8 10 0 2 4 6 8 10 h/a h/a z Fig.2.2 TM 011 resonant frequency vs. h/a for various Fig.2.3 Relative Efield strengths vs. h/a with Ez cavityradiiwith = 0and ε= ε0. evaluatedat r=0, z= h,and Erevaluatedat r= a, z= h/2.

II. TransmissionLineImpedanceMatching

Thetermtransmissionlinereferstoadistributednetworkwherevoltagesandcurrentscanvaryinmagnitude andphaseoveritslength. 2Wavepropagationontransmissionlinescanbeanalyzedusinganextensionofcircuit theory or a specialization of field theory, depending on convenience. The concept of impedance matching is important to the analysis of MET operation and is presented here without fully developing the foundations of transmissionlinetheory.

Thetermimpedancereferstothecomplexratioofvoltagetocurrent, V/I ,inACcircuits.Impedance, Z,consists ofrealandimaginarypartsknownasresistance, R,andreactance, X,respectively,suchthat

Z= R + jX (2.9)

Figure2.4showsalosslesstransmissionline,withcharacteristiclineimpedance Z0,terminatedinanarbitrary load impedance ZL. If an incident wave of the form

V(z), I(z) IL + − jβ z V0 e is generated from a source at z<0 with line + matched impedance ( Zg=Z0), then the ratio of voltage to Z0, β ZL VL – current for this wave is the characteristic impedance of theline. z l 0 Fig.2.4 Losslessterminatedtransmissionline. 16

Ifthelineisterminatedinanarbitraryloadsuchthat ZL ≠ Z 0 ,thentheloadisunmatchedtothetransmission lineandareflectedwaveisexcited.Thetotalvoltageandcurrentonthelinearethengivenbythe sum of the incidentandreflectedwavessuchthat

+−jzβ −+ jz β Vz( ) = Ve0 + Ve 0 (2.10)

+−jzβ −+ jz β Iz() =( Ve0 − Ve 0) Z 0 (2.11)

At z=0,thevoltageandcurrentarerelatedbytheloadimpedance,whichcanbewrittenas

+ − + − ZVL =()()0 I 0 =+ ZVV00( 0) ( VV 0 − 0 ) (2.12)

RearrangingEq.(2.12),theratioofthereflectedwaveamplitudetotheincidentwaveamplitudeisknownasthe voltagereflectioncoefficient, Γ ,suchthat

− + Γ=VV00 =−( ZZL 0) ( ZZ L + 0 ) (2.13)

Usingthevoltagereflectioncoefficient,Eqs.(2.10)and(2.11)canberewrittenas

+ −jzβ + jz β  VzVe( ) =0  + Γ e  (2.14)

+ −jzβ + jz β  IzVe( ) =0 − Γ e  Z 0 (2.15)

Itcanbeseenthatthevoltageandcurrentonthelineconsistsofasuperpositionofincidentandreflectedwaves, knownasstandingwaves.Whentheimpedanceoftheloadisequaltothecharacteristicimpedanceoftheline,Γ=0 andtherearenoreflectedwaves.Forthiscase,theloadissaidtobematchedtotheline. 17

Thetimeaveragedpowerflowalongthelineatanyposition zcanbecalculatedusing

*  Pave = Re VzIz( ) ( )  2 (2.16)

2 2 P= V+ −Γ V + 2 2 ZPPP =−= (2.17) ave( 0 0) 0 for ref abs

Thus,theaveragepowerisindependentofpositionalongtheline.ThefirstterminEq.(2.17)representstheincident

(forward)powerandthesecondtermrepresentsthereflectedpower.Whentheloadimpedanceismatchedtothe lineimpedance,thereisnoreflectedpower,andmaximumpowerisdeliveredtotheload.

The MET system can be considered as a terminated transmission line with the cavity acting as the load impedance.Ananalogousformulationinvolvingelectricandmagneticfieldsinsteadofvoltageandcurrentcanbe usedtodescribeitsoperation.Maximumpowerisabsorbedbytheplasmawhentheimpedanceofthecavity is matchedtotheimpedanceofthelineattheresonantfrequencyofthecavity.

III.BreakdownIonization

Electric breakdown is the process of transforming a nonconducting material into a conductor through the applicationofasufficientlystrongfield,whichstripselectronsfromneutralparticles. 3Ifastrongenoughfieldis appliedforasufficientperiodoftime,adischargemaybeignitedandsustained.

Themainmechanismofthebreakdownprocessisachainreactionknownaselectronavalanche.Inthecaseof timeharmonicelectricfields,asmallnumberofprimaryelectrons,eitheralreadypresentinthegasorintroducedfor seeding,oscillateandgainenergyfromtheappliedfield.Withsufficientenergy,anelectroncollideswithaneutral particle and ionization occurs creating another free electron. The two electrons have reduced energy after the collisionbutquicklygainenergyagainbybeingacceleratedbythefield.Withsufficientenergy,thesetwoelectrons willcollidewithneutralstocreatefourelectrons,andsoon.Theliberationofeachelectronbeginsanewchainof ionization.

Thechainreactioncanbeslowedorterminatedbyvariouslossmechanismsinthesystem.Energycanbelost byexcitingelectronicenergystatesinmoleculesandatoms,andvibrationalandrotationalmodesinmolecules.This 18 slowstheionizationrateofachainreactionbydecreasing the amount of energy available for ionization. Chain reactions can also be terminated by the loss of an electron.Diffusionandattachmenttothecavitywallsis theprimarycauseofthelossofelectrons,thoughinthe case of electronegative gases, attachment to molecules can also be a factor. Depending on the density, recombination is not a substantial loss mechanism of electronsduringtheavalancheprocess,butitcanhelpto limit the final level of ionization reached after many generationsofsecondaryelectrons. Fig.2.5 Measured thresholds of microwave breakdown in (a) air, f=9.4 GHz, diffusion length Λ is indicated on If the rate of ionization barely exceeds the rate of each curve; (b) Heg gas (He with an admixture of Hg vapor),Λ=0.06cm.[Ref.3] electron loss, a discharge will be ignited and sustained.

This is known as the threshold. The process depends heavily on electric field strength and frequency and gas pressure. For a given pressure and field frequency, there exists a threshold electric field strength above which breakdownwilloccurandbelowwhichitwillbeterminated.Abovethethresholdfieldstrength,dramaticchanges occurinthepropertiesofthegasasitisrapidlyionized.However,justbelowthethresholdfieldstrength,verylittle changeisobservedatall.

SolutionstotheBoltzmannequationandempiricalevidenceshowthat,overarangeofpressures,there isa minimumthresholdelectricfieldthatcaninducebreakdown.Figure2.5showsthresholdelectricfieldstrength Etas afunctionofpressureforvariousfieldfrequenciesanddiffusionlengths.Differentprocessesdominatetheregions

ofhighandlowpressurebecauseoftheeffectofpressureoncollisionfrequencyformomentumtransfer, ν m .

2 2 Atlowpressures, νm << ω anddiffusionisthemainlossmechanism.ThecharacteristicdiffusionlengthΛfora cylindricalcavityisgivenby

2 2 2 1 Λ =()χ01 a + () π h (2.18)

19

Thecharacteristicdiffusionlengthisanindicatorofthedischargevolumeandthedistanceanelectronmusttravelto belosttodiffusion.Foragivenpressure,increasingthislengthwillincreasetheprobabilitythatanelectronwill collidewithaneutralbeforeescapingtheionizationzone.Asthediffusionlengthdecreases,electricfieldstrength mustbeincreasedtomaintainahighprobabilityofionizationcollisionbyincreasingelectronkineticenergy.Fora given diffusion length, lowering pressure and density also lowers collision frequency and the probability of an ionizationcollision.Again,thefieldstrengthmustbeincreasedtoincreaseelectronkineticenergyandmaintaina high probability of ionization collision. In the low pressure region, the threshold field is proportional to field frequency,andinverselyproportionaltopressureanddiffusionlength.

Et ∝ω p Λ (2.19)

2 2 In the high pressure region, ν m >> ω and energy losses dominate while diffusion becomes less significant.

Electrons participate in elastic and inelastic collisions morefrequentlyandhavelesstimetobuild up sufficient kinetic energy for high probability of ionization. Energy is lost instead to electronic excitation of neutrals and internalenergymodesofmolecules.Becausethecollisionfrequencyisveryhigh,theoscillatingfieldhaslessofan effectonparticlebehavior.Thethresholdfieldbecomesfrequencyindependent,andsincediffusionlossesaremuch lesssignificant,thresholdenergyisproportionaltopressureonlyinthehighpressureregion.

Et ∝ p (2.20)

Theminimumthresholdelectricfieldoccursintheregionofpressurewhere ν m ~ω .Inthisregion,electrons haveenoughtimetobuildsufficientkineticenergyforionizationcollisionwhilestillparticipatinginanadequate numberofcollisionstomaintaintheelectronavalanche.Thebreakdownofgasesinmicrowavefieldsiseasiestat pressuresofapproximately1–10torr(0.13–1.33kPa).

20

IV.PowerAbsorptioninTimeHarmonicACFields

When subjected to a timeharmonic field, a collisional plasma acts as an ohmic heating source. Energy transferredfromthefieldtotheelectronsisdissipatedthroughcollisionswithheavyparticles. 4Thisphenomenonis responsibleforheavyparticleheatingintheMETplasma.Thepowerabsorbedinavolumeisgivenbythefield analogousversionof P=IV suchthat

Pabs = J ⋅ E (2.21)

Thecurrentdensity, J,isgivenby

J= σ E (2.22)

Theelectricalconductivity, σ,isgivenby

2 ne q eν m σ = 2 2 (2.23) meν m + ω

Thus,thepowerdissipatedintheplasmaisgivenby

n q 2 ν P= e e E 2 m (2.24) abs m 2 2 e ()νm + ω

2 2 2 2 2 Since Pfor ∝ E , ηc∝n em ν( ν m + ω ) . The term νm( ν m + ω ) is a maximum when νm = ω and the collision frequencyincreaseswithincreasingpressure.Theelectronnumberdensitycanalsovarywithpressureandelectric fieldstrength.Evenstill,weexpecttheconductivityand,thus,couplingefficiency,toexhibitamaximumoversome rangeofincreasingpressurefollowinglowpressureplasmaignition.However,aspressureisincreasedfurther,the collisionfrequencyandrecombinationlossesbecomegreaterandcouplingefficiencydecreasesuntilthepointwhere theselossesaretoogreattosustaintheplasmaanditisextinguished. 21

V. ChemicalEquilibriumwithPropellantsofInterest

Chemicalequilibriumisthefinalstatethatamixturewillreach,atagivenpressureandtemperature,afteran infiniteperiodoftime.Inreality,theactualtimeittakestoachieveequilibriumdependsontheindividualreaction rates.Inmostchemicalrocketchambers,equilibriumisassumedbecausetheflowismovingslowlyenough for equilibriumtobeestablishedatthechamberpressureandtemperature.Althoughammoniadissociationisaslow process,chemicalequilibriumisassumedintheMETchamber.

Depending on whether the MET is operated using pure N 2, pure NH 3, or mixtures of N 2, H 2, and NH 3 to simulatehydrazinedecompositionproducts,thefollowingthreeequilibriumreactionsareimportant:

⇌ 1 3 NH32 N+H 2 2 2 (2.25)

N2 ⇌ 2N (2.26)

H2 ⇌ 2H (2.27)

Theequilibriumconstant, Kp,foreachreactioncanbecalculatedusingtabulateddatafortheGibbsfreeenergyof formation.If n arethestoichiometriccoefficientsofspecies ishowninReactions(2.25)–(2.27), g 0 aretheGibbs i fi freeenergiesofformationofspecies i, R istheuniversalgasconstant,and Tistemperature,then 5

X ni ∏ i ∑ni− ∑ n i    prod p  prod reac K=−exp GRT0  =− exp  ng 0 − ngRT 0  = (2.28) p f∑ ififi ∑ i  n 0    i p prod reac  ∏ X i reac

0 where pisthemixturepressure, p isthereferencepressure,and Xiisthespeciesmolefractiondefinedby

Xi= n i∑ n i (2.29) 22

TheGibbsfreeenergyofformationforeachspecieswasobtainedfromtheJANNAFtablesatthereferencepressure p0=100kPa.6Thedataoverthetemperaturerange200–6000Kwerethenfittedtoafunctionoftheform

ln Kp = A − BT (2.30)

TheequilibriumconstantsforReactions(2.25)–(2.27),respectively,arethen

X12 X 32 N2 H 2 p  6049  K p1 =  =exp 13.7716 − (2.31) Xp0  T  NH 3    

2 X N p  114320  K p2 =  =exp 15.7423 − (2.32) Xp0  T  N2    

2 X H p  53128  K p3 =  =exp 14.0021 − (2.33) Xp0  T  H2    

The equilibrium constants are shown in Fig. 2.6 as a function of temperature. In general, high Kp favors products, whereas low Kp favorsreactants.The forwardreactionsof Reactions(2.25)–(2.27)arealldissociation reactions so Kp increases with increasing temperature. In general, when pressure or temperature change, the equilibriumwillshiftinanefforttoabsorbthechange.Increasingtemperatureshiftstheequilibrium toward the endothermic reaction so dissociation, an endothermic 101E+1010 process, is enhanced. Increasing pressure shifts the 1E+0510 5 equilibrium toward a fewer number of moles so K 1E+0010 0 p 1 dissociationissuppressed. 5 1E0510 K The equilibrium constants form part of a set of p 3 10

1E10EquilibriumConstant 10 K p 2 equationsthatcanbesolvedtodeterminetheequilibrium 1E1510 15 concentrationsofthechemicalspeciesinamixture at a 0 1000 2000 3000 4000 5000 6000 givenpressureandtemperature.Thissetofequations is Temperature(K) Fig.2.6 Equilibriumconstantvs.temperature. 23 completedbytheadditionofatomicspeciesconservationequations,sometimesreferredtoasmassbalance.

A. PureNitrogen

ForpureN 2,Reaction(2.26)istheonlyequilibriumreactionconsidered.Themassbalanceequationis

X+ X = 1 (2.34) N N 2

Equations (2.32) and (2.34) constitute a system of two 1.0 p =100kPa N equationswithtwounknownsifpressureandtemperature 0.8 2

0.6 are given. The solution is shown in Fig. 2.7. The N2 moleculehasatriplebondand,thus,ahighdissociation 0.4 MoleFraction 0.2 temperature.Atatmosphericpressure,Nispresentinthe N mixture only in negligible amounts at temperatures less 0.0 0 1000 2000 3000 4000 5000 6000 thanapproximately4500K. Temperature(K) Fig.2.7 Equilibrium mole fraction vs. temperature for pureN 2propellantat100kPa. B. PureAmmonia

ForpureNH 3,Reactions(2.25)–(2.27)areconsidered.Themassbalanceequationsare

X+ X + X ++ XX = 1 (2.35) NH3 N 2 H 2 N H

3X+ 2 X + X NH3 H 2 H = 3 (2.36) X+2 X + X NH3 N 2 N

Equation(2.36)reflectstheratioofHatomstoNatomsinthesystem.Equations(2.31)–(2.33)and(2.35)–(2.36) constituteasystemof fiveequations withfive unknownsifpressureandtemperaturearegiven.Thesolution is showninFig.2.8.

TheequilibriumsolutionshowsNH 3heavilydissociatedatroomtemperature,300K.Thisisunrealisticbecause

NH 3 dissociation is a slow process. However, at the high temperatures characteristic of the MET chamber, the 24 reaction rate is higher and the equilibrium solution 1.0 NH 3 p =100kPa becomes realistic. Over the temperature range of 0.8 H2 H approximately 1000–2200 K, NH is fully dissociated 3 0.6 leavingamixtureofH 2andN 2ina3:1moleratio.Non 0.4 N2 MoleFraction negligible amounts of H and N will begin to appear at 0.2 N temperatures of approximately 2200 K and 4500 K, 0.0 respectively. 0 1000 2000 3000 4000 5000 6000 Temperature(K) Fig.2.8 Equilibrium mole fraction vs. temperature for pureNH 3propellantat100kPa. C. DecomposedHydrazine

Fordecomposedhydrazine,Reactions(2.25)–(2.27)areconsidered.Themassbalanceequationsare

X+ X + X ++ XX = 1 (2.37) NH3 N 2 H 2 N H

3X+ 2 X + X NH3 H 2 H = 2 (2.38) X+2 X + X NH3 N 2 N

Equation(2.38)reflectstheratioofHatomstoNatomsinthesystem.Equations(2.31)–(2.33)and(2.37)–(2.38) constituteasystemof fiveequations withfive unknownsifpressureandtemperaturearegiven.Thesolution is showninFig.2.9.

Theequilibriumsolutionfordecomposedhydrazine 1.0 is similar to the solution for pure ammonia. This is p =100kPa 0.8 NH 3 because the equilibrium mixture composition does not H2 H 0.6 depend on the initial chemical composition, only the

0.4 N2

relativeamountofeachatomicspeciespresent,whichis MoleFraction 0.2 constant throughout the process (mass balance). This is N 0.0 whynoassumptionwasmadeabouttheinitialdegreeof 0 1000 2000 3000 4000 5000 6000 Temperature(K) ammoniadissociationfordecomposedhydrazine. Fig.2.9 Equilibrium mole fraction vs. temperature for Similartothepreviousdiscussiononpureammonia, decomposedhydrazinepropellantat100kPa. 25 theequilibriumsolutionfordecomposedhydrazineisunrealisticatlowtemperatures.Insomecases,theequilibrium solutionisunrealisticevenatelevatedtemperatures.Thisistrueinthecaseofahydrazinemonopropellantthruster.

Equilibrium codes are useless in determining the performanceofsuchathrusterbecausethey failtoaccurately predictthecompositionofthegasenteringthenozzle.Thecatalystbedistypicallypositionedimmediatelyupstream ofthenozzle.RecallthediscussionofhydrazinedecompositionchemistryinChapter.1.Thedegreeofammonia decompositionuponexitingthecatalystbedisafunctionoftheresidencetime,catalysttemperature,andcatalyst activity. 7Empiricalevidenceshowsthedegreeofammoniadissociation, X,isproportionalto Gat/pb,where Gisbed loading, tisresidencetime, pispressure,and aand bareempiricallydeterminedconstantscloseto1.Theresidence timeinthecatalystbedbeforeenteringthenozzleisinsufficientforthegastoreachequilibrium.

In contrast to the hydrazine monopropellant thruster, the propellant flowing through the MET chamber is thoughttohavealongerresidencetimeandthepropellantenteringthechamberisalreadydecomposedandhot.The additionalresidencetimeintheMETchamberisthoughttobesufficienttoreachequilibriumbeforeenteringthe nozzle.Ifthisistrue,thenregardlessofthedegreeofammoniadissociationofthegasenteringtheMETchamber, thecompositionofthegasenteringthenozzlewillconsistofamixtureofH 2andN 2ina2:1moleratiooverthe temperature range of approximately 1000–2200 K. NonnegligibleamountsofHand N willbegin toappear at temperaturesofapproximately2200Kand4500K,respectively.

VI.ChamberTemperatureandPerformanceCalculations

TocalculatetheperformanceoftheMET,themeanchambergascompositionandtemperaturemustbeknown.

Intheprevioussection,theequilibriumcompositionofthepropellantgaswassolvedassumingaknownpressure and temperature. However, chamber temperatures are unknown. Hot fire chamber temperatures are not directly measured,butinsteadarecalculatedbyequatingthemassflowsofthehotandcoldstates.Chamberpressureand massflowaremeasuredinthelaboratory.Neglectingchangesofboundarylayerthroatconstrictionbetweenthehot andcoldstates,

(γ+1) ( γ − 1 ) 2 γ2 γ + 1  h h T0h p 0 h  h() h  MW h =   (2.39) ()()γc+1 γ c − 1 T0c p 0 c  MW c γc2() γ c + 1 

C( T ) γ = p (2.40) Cp () T R 26 where the subscripts h and c stand for hot and cold, 90 respectively, the subscript 0 stands for stagnation 80 NH 3 70 property, MW ismolecularweight, C isconstantpressure p 60 specific heat, and T is taken to be 298 K. Thus, at a 50 0c N 40 2 given mass flow, the ratio of hottocold chamber 30 N H2 SpecificHeat(J/molK) pressures yields insight on chamber temperature and, 20 H 10 hence, specific impulse. The temperaturedependent 0 1000 2000 3000 4000 5000 6000 Temperature(K) specificheatsoftherelevantgasesareshowninFig.2.10. Fig.2.10Specific heats for species considered in The specific heats for each chemical species were equilibriumcalculations. obtainedfromtheJANNAFtables. 6Thedatawerethenfittoasixthorderpolynomialoftheform

6 5 4 3 2 CTap ( ) =1θ + a 2 θ + a 3 θ + a 4 θ + a 5 θ ++ aa 67 θ (2.41)

where θ = T/100.Table2.1showsthespecificheatpolynomial coefficientsforeach speciesapplicableoverthe range 200–6000 K. In the case of a gas mixture, the specific heats and molecular weights are mole averaged accordingto

Cp= ∑ X i C pi (2.42) i

MW= ∑ Xi MW i (2.43) i

Table2.1 Specificheatpolynomialcoefficientsoverthetemperaturerange200–6000Kforspecies consideredinequilibriumcalculations.

10 7 6 4 3 2 Species a 1x10 a 2x10 a 3x10 a 4x10 a 5x10 a 6x10 a 7

NH 3 177.33 33.770 238.96 70.184 20.523 331.34 26.071

N2 114.22 22.521 169.70 59.501 87.776 3.1252 28.526

H2 16.467 1.7140 1.5753 7.4269 26.508 2.9667 28.208 N 7.0621 1.6450 13.355 4.3280 6.1732 3.6354 20.850 H 0 0 0 0 0 0 20.786 27

Equations(2.39)–(2.43),alongwiththeappropriatesetofequilibriumequations,canbesolvedsimultaneously todeterminethemeanequilibriumgascompositionandchambertemperatureofthepropellant.Thepropellantflow isassumedtobeinequilibriuminthechamberandfrozenthroughthenozzle.Frozenflowmeansgascompositionis constant even though pressure and temperature are changing. This assumption is typical for thermal thrusters becausenozzleflowspeedsareveryhigh,andpressureandtemperaturechangetoorapidlyforequilibriumtobe established.Performancecanthenbecalculatedassumingquasi1Dflowofaperfectgaswithconstant specific heat.

8 Thrust, τ,andspecificimpulse, Isp ,arecalculatedusing

ɺ * τ = mc C τ (2.44)

* Isp = cCτ / g (2.45)

* where mɺ isthepropellantmassflowrate.Thecharacteristicvelocity, c ,andthethrustcoefficient, Cτ,aregivenby

γ h +1 γ −1 * 1  γ h+1  h RT 0 h c =     (2.46) γ h  2  MW h

γh+1 γ h − 1 2   2γ 2 γh−1 p γ h   ppA  C =λ h1 −+− e  eae (2.47) τ        * γhh−1 γ + 1  p0 h  p 0 hh p 0  A  

* where peand paaretheexhaustandambientstaticpressures,respectively,and Aeand A arethenozzleexhaustand throatareas,respectively.TheMETnozzlesarestraightwalledconicalnozzlesandtheysufferdivergencelosses duetooffaxisgasflow.If αistheconicalhalfangleofthenozzle,thedivergencelossfactor, λ,isgivenby

λ=(1 + cos α ) 2 (2.48) 28

Theexitpressurecanbeobtainedusingtheisentropicrelationship

−γ h γ −1 peγ h −1 2  h =1 + M e  (2.49) p0h 2 

withtheexhaustMachnumber, Me,obtainedfromthenozzlearearatioaccordingto

γ h +1   2()γ h − 1 Ae1 2  γ h −1 2  * =  1 + M e   (2.50) A M eγ h +1   2  

References

1Balanis,C.A., AdvancedEngineeringElectromagnetics ,JohnWiley&Sons,Inc.,Hoboken,1989. 2Pozar,D.M., MicrowaveEngineering ,AddisonWesleyPublishingCompany,Inc.,NewYork,1990. 3Raizer,Y.P., GasDischargePhysics ,SpringerVerlag,Berlin,1991. 4Fridman,A.,andKennedy,L.A .,PlasmaPhysicsandEngineering ,Taylor&FrancisBooks,Inc.,NewYork,2004. 5Turns,S.R., AnIntroductiontoCombustion–ConceptsandApplications,2nd Edition ,McGraw–Hill,NewYork,2000. 6NISTJANAFThermochemicalTables,4 th Edition ,editedbyC.W.Chase,Jr.,AIP,Woodbury,NY,1998. 7Schmidt,E.W., HydrazineandItsDerivatives:Preparation,Properties,Applications ,JohnWiley&Sons,Inc.,NewYork, 2001. 8Hill, P. G., and Peterson, C. R., Mechanics of Thermodynamics of Propulsion, 2 nd Edition , AddisonWesley Publishing Company,Inc.,NewYork,1992. 29

Chapter3 AnalyticandNumericalElectromagneticModelingofthe MicrowaveElectrothermalThruster

In this chapter, the analytical solutions to Maxwell’s Equations are derived for the MET resonant cavity.

COMSOL Multiphysics, a commercial finite element analysis (FEA) software, was used to perform numerical electromagneticmodelingofthreedifferentMETsdesignedtooperateat2.45,7.5,and8.4GHz,withvariousinput powers. The electric field of each cavity is examined along with parametric studies of the effects of varying microwavefrequencyandpower,varyingantennadepthandtipshape,andincludingvariousdielectricmaterials insidethecavity.Theresultsofthenumericalcalculationscomparefavorablytotheavailableanalyticsolutionsand demonstrate the usefulness of numerical modeling asatooltoenhanceunderstanding ofMETsandguide their design.

I. ScopeandObjectives

TheanalyticalsolutionstoMaxwell’sEquationswerederivedfortheemptyMETresonantcavity.Asolution thatpredictstheresonantfrequencyofadielectricloadedcavitywasalsoderived.Analyticsolutionsthataccurately accountforthepresenceoftheantennaanddielectricmaterialsofallshapesandsizesaredifficult,ifnotimpossible, toobtain.COMSOLMultiphysics,acommercial FEAsoftware, was usedtoperform numericalelectromagnetic modelingofthepreviouslyexisting1kWclass2.45GHzand100Wclass7.5GHzMETsinanefforttoenhance understanding of their operation. The electric field of each cavity was examined with parametric studies of the effectsofvaryingmicrowavefrequencyandpower,varyingantennadepth,andtheinclusionofvariousdielectric materialsinsidethecavity.Thesameanalysiswasthenperformedtoaidthedesignofanewcavityoperatingat approximately8.4GHzwith350Wofinputpower.Thisrepresentedthefirsttimethatdetailednumericalmodeling hadbeenperformedpriortocavityconstruction.

II. AnalyticElectromagneticModeloftheMET

TheelectromagneticfieldtheoryoftheMETbeginswithMaxwell’sEquations.Properrearrangementofthem leadstosecondorderdifferentialequationswithwavesolutions.Solutionsofthewaveequationscanbefoundinthe 30 form of vector potentials. The MET resonant cavity is of cylindrical z shape, so it is natural to use cylindrical coordinates for theoretical analysis.ThecoordinatesystemfortheresonantcavityisshowninFig.

3.1.

Theresonantcavityisassumedtobeaperfectconductorfilledwitha h homogeneous,lossless,sourcefreemedium.Forsuchacavity,itcanbe a φ r z 0 shownthatthevectorpotential AzfortheTM cylindricalcavitymodesis givenby 1 Fig.3.1 Cylindrical coordinate system forthemicrowaveresonantcavity.

ABJrCz= mn m(β r ) 2cos( mD φ) + 2 sin( mC φβ)  3 cos( z zD) + 3 sin ( β z z )  (3.1)

2 2 2 2 βr+ β z = βres = ω res ε (3.2)

Choosingasuitablecoordinatesystembyrotatingaboutthe zaxisallowsonetoseteither C2=0or D2=0.Setting

D2=0,

ABJz= mn m(β r rC) 2cos( mC φβ)  3 cos( z zD) + 3 sin ( β z z )  (3.3)

TheTM zfieldequationscanbecalculatedfromthevectorpotentialusingEqs.(3.4)–(3.9).Here, εand arethe permittivityandpermeability,respectively,ofthemediumfillingthecavity.

1 ∂2 A E= − j z (3.4) r ωε ∂r ∂ z

1 1 ∂2 A E= − j z (3.5) φ ωεr∂ φ ∂ z

31

2 1 ∂ 2  Ez = − j2 + β  A z (3.6) ωε ∂z 

1 1 ∂A H = z (3.7) r r ∂ φ

1 ∂A H = − z (3.8) φ ∂r

H z = 0 (3.9)

Conducting material surfaces cannot support tangential components of the electric field, thus the boundary conditionsfortheTM zcylindricalcavitymodesaregivenby

Erφ ( == a) Erz ( == a ) 0 (3.10)

Ezφ ( =0, h) = Ezr ( = 0, h ) = 0 (3.11)

ThecircumferentialcomponentoftheelectricfieldcanbecalculatedusingEqs.(3.3)and(3.5),whichyields

B mβ Ej= − mn z JrCmD()()()()βsin φ cos β zC− sin β z  (3.12) φ ωε r m r 2 3z 3 z 

ApplyingtheboundaryconditionstoEq.(3.12),

βr= χ mn a (3.13)

βz = p π h (3.14)

32

InsertingEqs.(3.13)and(3.14)intoEq.(3.2)andrearranging,

TMz 1 2 2 ()fres =()χmn aph + () π (3.15) mnp 2π ε

which can be used to determine the resonant frequency of a cylindrical cavity with a given geometry, or to determinethecavitygeometryforadesiredresonantfrequencyandfieldconfiguration.Iftheremainingconstants areabsorbedinto Bmn togive Bmnp ,Eq.(3.3)canberewrittenas

ABJz= mnp m(χ mn ra)cos( m φ) cos ( pzb π ) (3.16)

Ifthecavityisloadedwithadielectricinsert,thenthe field equations must be modified to include it. The following is the derivation of the field equations for a h losslesscavityloadedatoneendwithadielectricslabof thickness t and radius a. Figure 3.2 shows the cavity geometry. t a Forthedielectricfilledregion,thepotentialfunction Fig.3.2 Geometry for cavity loaded with dielectric slab ofthickness t. isgivenby

ABJr= βcos m φ cos β z (3.17) zd mnp d m()() r( z d )

β22+ β = β 2 = ωε 2 (3.18) rzd dres res dd

Forthegasfilledregion,thepotentialfunctionisgivenby

ABJr=()()()βcos m φ cos  β zh −  (3.19) zg mnpmr g  z g  33

β22+ β = β 2 = ωε 2 (3.20) rzg gres res gg

Theboundaryconditions,Eqs.(3.10)and(3.11),stillapply.Additionally,thefieldstangentialtothedielectric–gas interfacemustbecontinuous,i.e.,

Ezt= = Ezt = (3.21) rd( ) r g ( )

E zt= = E zt = (3.22) φd( ) φ g ( )

H zt= = H zt = (3.23) rd( ) r g ( )

H zt= = H zt = (3.24) φd( ) φ g ( )

UsingEq.(3.4)withEqs.(3.17)and(3.19),theradialcomponentsoftheelectricfieldscanbewrittenas

B β β Ej= − mnpd z d r Jrm′ βcos φ sin β z (3.25) rd mr()() () z d ωd ε d

Bmnpβ z β r Ej= − g g Jrm′ ()()()βcos φ sin  β zh−  (3.26) rg mr z g  ωg ε g

ApplyingtheboundaryconditionEq.(3.21)andsettingequalEqs.(3.25)and(3.26)yields

B β Bmnpβ z mnpd z d sinβt  =g g sin  β () t − h  (3.27) zd   z g  εdd ε gg

34

UsingEq.(3.8)withEqs.(3.17)and(3.19),thecircumferentialcomponentsofthemagneticfieldscanbewrittenas

B β H= − mnpd r Jrm′ βcos φ cos β z (3.28) φd m()() r() z d d

Bmnpβ r H= −g Jrm′ ()()()βcos φ cos  β zh −  (3.29) φg m r z g  g

ApplyingboundaryconditionEq.(3.24)andsettingequalEqs.(3.28)and(3.29)yields

B Bmnp mnp d cosβt  =g cos  β () t − h  (3.30) zd   z g  d g

DividingEq.(3.27)byEq.(3.30)andrearranging,wefind

β β z zd tanβt  =g tan  β () t − h  (3.31) zd   z g  εd ε g

where

β= β2 −= β 2 ωε 2 − χ a 2 (3.32) zd dres rres dd() mn

β= β2 −= β 2 ωε 2 − χ a 2 (3.33) zg gres rres gg() mn

Eq.(3.31)cannowbeusedtofindresonantmodefrequenciesforagivencavitygeometry.Figure3.3showsthe solutionsforacylindricalresonantcavitywithradius a=15mmandheight h=45mmloadedwithadielectricslab withradius a,thickness t,andpermittivity εd=4 ε0.Forthegas,apermittivity εg= ε0wasused.

Itcanbeseenthattheresonantfrequencyforagivenmodecandecreasesignificantlybyloadingthecavitywith adielectricslab.Thisphenomenonisadvantageousforthethrusterapplicationofthemicrowaveresonantcavity. 35

Foragivencavityradius,ifthecavityheightisdecreased, 11 10 theresonantfrequencywillincrease.Ifthecavityisthen z TM 012 9 loaded with a dielectric slab of proper thickness, the z 8 TM 011 resonantfrequencycanbedecreasedbacktothedesired 7 z TM 010 6 frequency of the power supply. Thus, in principle, the 5 ResonantFrequency(GHz) height and weight of the thruster body can be 4 0 5 10 15 20 25 significantlyreducedthroughtheinclusionofadielectric DielectricThickness(mm) slab. Fig.3.3 Resonant frequency for first three TM modes. Cavityhas a=15mmand h=45mm.Dielectrichas εr=4 andradius a.

III.NumericalElectromagneticModeloftheMET

COMSOLMultiphysicsisacommercialFEAsoftwarecapableofmodelingmanytypesofphysicsincluding fluiddynamics,heattransfer,andelectromagnetics.Theelectricfield structureand strengthinside the MET are criticallyimportanttoitsoperationandperformance.Analyticsolutionsthataccuratelyaccountforthepresenceof the antenna and dielectric materials of all shapes andsizesaredifficult,ifnotimpossible,toobtain. COMSOL

Multiphysicswasusedtomodeltheelectricfieldstructureinsidethepreviouslyexisting1kWclass2.45GHzand

100Wclass7.5GHzMETresonantcavities.Numericalmodelingwasthenusedtoaidthedesignofanew8.4

GHz350WMET.

The model presented is a 3D model produced using the RF (radiofrequency) Module of COMSOL

Multiphysics. Only the internal surfaces of the cavity were included in the model (i.e., metal walls have zero thickness),alongwiththecoaxialantenna.ThegeneralgeometryanddimensionsofthecavitiesareshowninFig.

3.4where hand aarethecavityheightandradius,respectively, hsand tsarethequartzseparationplateheightand thickness, respectively, rc and taretheantennacapradiusandthickness,respectively, ha and raaretheantenna height(ordepth)andradius,respectively, hpand rparethecoaxialportheightandradius,respectively,and hTisthe antennaTeflonheight.Inthevariousmodelspresented,dielectricmaterialsliketheseparationplateorantennacap mayormaynotbepresent. 36

a

ts h

hs

rc t ha ra r p hT hp

Fig.3.4 General geometry and dimensions used for Fig.3.5 Representativemeshconsistingofapproximately numericalmodelingoftheMET. 30ktetrahedralelementsand38kdegreesoffreedom.

Thesubdomainsweremodeledsuchthatthegasfilledportionofthecavityhaddielectricconstant εr=1.0,

Teflon had εr = 2.0, and quartz had εr = 4.2. The boundary conditions were such that the metal surfaces were assumedtobeperfectelectricconductors,andallotherinterfacesmaintainedcontinuitywiththeexceptionofthe outermostantennasurface,whichwasmodeledasacoaxialwaveexcitationport.Theinputmicrowavepowerand frequency were set to desired values. The mesh consisted of approximately 26,000–30,000 tetrahedral elements correspondingto33,000–38,000degreesoffreedom(DOF).ArepresentativemeshisshowninFig.3.5.

IV.ResultsandDiscussion

A. The2.45GHzMET

The2.45GHzMETcavitywasmodeledusingthefollowingdimensions: h=157.5mm, a=50.8mm( h/a=

3.10), hs=75.58mm, ts=6.35mm, hp=21.89mm, rp=20.90mm, hT=5.08mm,and ra=8.45mm.Three differentantennadepthsweremodeled.Oneantenna,with ha=0mm,hadaflattipthatwasflushwiththecavity base.Theothertwoantennas,with ha=18.5and31.2mm,hadhemisphericaltipswithradius ra.Theantennadepths of18.5and31.2mmcorrespondtothoseusedforlaboratoryexperiments.Nodielectricantennacapsweremodeled.

Theinputpowerwassetto1kWandinputfrequencywassweptwitharesolutionrangingfrom1–50MHz.Higher sweepresolutionwasusedinfrequencydomainsofhighgradientinordertoaccuratelycapturethebehaviorofthe electricfield. 37

TheMETplasmaissustainedintheregionofhigh E 2.0 1.8 TM z 0mm 010 31.2mm field strength on the cavity axis near the nozzle. The 1.6 V/m)

5 1.4 analyticsolutionshowsthatthemaximumfieldstrength z 1.2 18.5mm TM 011 1.0 inthisregionisfoundat r=0and z= h.Thenormofthe 0.8 0.6 Efield, E , was evaluated at this point for various 0.4 ElectricField(10 0.2 oper freq 0.0 frequencies and various antenna depths using the 2.20 2.25 2.30 2.35 2.40 2.45 2.50 numericalmodel.TheresultsareshowninFig.3.6.Using Frequency(GHz) Fig.3.6 Numericalsolutionfor Efieldnormevaluatedat Eq. (3.15), the analytic solution for the empty cavity r=0and z= hvs.frequencyforthe2.45GHzMETwith1 kWinputpower.Variousantennadepthsareshown. z z predictstheTM 010andTM 011 resonantfrequenciestobe

z 2.259and2.451GHz,respectively.Foranantennadepthof0mm,thenumericalsolutionpredictstheTM 010and

z TM 011 resonantfrequenciestobe2.223and2.420GHz,respectively.Thedifferencebetweentheanalyticaland numericalpredictionsisattributedtothepresenceoftheantennaandquartzseparationplateinthenumericalmodel thatisnotaccountedforanalytically.Themicrowavesourceusedinexperimentswiththisthrusterwasa2.45GHz magnetronwithnofrequencytuningcapability.Attheoperatingfrequency,slightlyhigherelectricfieldstrengthis obtainedusingthe18.5mmantennacomparedtothe31.2mmantenna.Theseantennadepthscorrespondtothose used in laboratory experiments. The cavity is poorly tuned for the operating frequency. Figure 3.7 shows the numerical solution for the Efieldnorm witheachantennaataninput microwavefrequencyof2.450GHz.The regionsofstrongelectricfieldontheaxisnearthenozzleandantennacanbeseen.UsingEq.(2.8),theanalytic

x10 5V/m 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 (a) (b) (c) Fig.3.7 Numericalsolutionfor Efieldnormevaluatedat2.450GHzwith1kWinputpowerforantennadepthof:(a)0 mm;(b)18.5mm;(c)31.2mm.Scaleisshownwithunitsof10 5V/m. 38 solutionpredictsthat,foranemptycavitywith h/a=3.10,the Efieldstrengthontheaxisatthenozzleis4.6times greaterthaninthemidplaneannulus.Thenumericalresultsagree.

Numericalaccuracywasinvestigatedthroughmeshrefinement.Thetypicalmeshsize,approximately27,000–

30,000 tetrahedral elements and approximately 34,000–38,000 degreesoffreedom, was chosen for the proper balanceofcomputationaltimeandaccuracy.Fortheparticularcaseusingthe18.5mmantennaat2.45GHz,shown inFig.3.7(b),refiningthemeshfrom28,897elements(36,386DOF)to106,406elements(130,602DOF)changed thevalueofthe Efieldnormevaluatedat r=0and z= hbyonly0.2%whileincreasingthecomputationaltimebya factorofmorethan6.5.

B. The7.5GHzMET

The7.5GHzMETcavitywasmodeledusingthefollowingdimensions: h=51.5mm, a=15.79mm( h/a=

3.26), hs=24.16mm, ts=3.18mm, hp=12.7mm, rp=4.88mm, hT=12.7mm,and ra=1.52mm.Theeffectsof antennadepthandtipshapewereexamined.Oneantenna,with ha=0mm,hadaflattipthatwasflushwiththe cavitybase.Twoantennashadflattipswith ha=2and4mm,andtwoantennashadhemisphericaltipswithradius raand ha=2and4mm.Variousantennadepthsovertherangeofapproximately0–4mmwereusedinlaboratory experiments.Theinputpowerwassetto100Wandinputfrequencywassweptwitharesolutionrangingfrom1–50

MHz.Highersweepresolutionwasusedinfrequencydomainsofhighgradientinordertoaccuratelycapturethe behavioroftheelectricfield.

TheMETplasmaissustainedintheregionofhigh Efieldstrengthonthecavityaxisnearthenozzle. The analyticsolutionshowsthatthemaximumfieldstrength 4.0 inthisregionisfoundat r=0and z= h.The Efieldnorm flat 3.5 0mm was evaluated at this point for various frequencies and V/m) 3.0 round 5 2.5 various antenna depths using the numerical model. The 2.0 2mm 1.5 results are shown in Fig. 3.8. Using Eq. (3.15), the 4mm 1.0

z ElectricField(10 analyticsolutionfortheemptycavitypredictstheTM 011 0.5 0.0 resonant frequency to be 7.830 GHz. For an antenna 7.3 7.4 7.5 7.6 7.7 7.8 7.9

z Frequency(GHz) depthof0mm,thenumericalsolutionpredictstheTM 011 Fig.3.8Numericalsolutionfor Efieldnormevaluatedat resonant frequency to be 7.679 GHz. The difference r=0and z= hvs.frequencyforthe7.5GHzMETwith 100 W input power. Various antenna depths and tip shapesareshown. 39

x10 5V/m 6

5

4

3

2

1

0 (a) (b) (c) (d) (e) Fig.3.9 Efield norm inside the 7.5GHz MET. Input power is 100 W. Cavity is shown operating at the particular resonantfrequencyfortheantenna.Antennadepthandtipshapeandfrequencyare:(a)0mm,flat,7.679GHz;(b)2mm, round,7.656GHz;(c)2mm,flat,7.642GHz;(d)4mm,round,7.579GHz;(e)4mm,flat,7.540GHz.Scaleisshownwith unitsof10 5V/m. betweentheanalyticalandnumericalpredictionsisattributedtothepresenceoftheantennaandquartzseparation plateinthenumerical modelthatisnotaccounted foranalytically.Thenumericalsolutionindicates that, as the antennadepthisincreased,theresonantfrequencyandthe maximum Efieldstrengthdecrease.Thereductionin maximumfieldstrengthisadisadvantage.However,increasingtheantennadepthalsohastheeffectofincreasing theresonantbandwidth.Thus,thecavityislesssensitivetoinputfrequency,whichisadvantageousconsideringthe inevitable offdesign operation of the thruster. The thruster will be designed and optimized for one operating condition;however,itislikelythattheMETwillbeoperatedoverarangeofconditions.

The power supply used for the bulk of experiments with this thruster was a traveling wave tube amplifier

(TWTA)withadirectfrequencytuningcapability.Experimentally,itwaspossibletovarythefrequencyoverthe entirerangeshowninFig.3.8.Figure3.9showsthe numerical solution for the Efield norm with each antenna operatingattheparticularresonantfrequencyfortheantenna.Theregionsofstrongelectricfieldontheaxisnear thenozzleandantennacanbeseen.UsingEq.(2.8),theanalyticsolutionpredictsthatthe Efieldstrengthonthe axisatthenozzleis4.8timesgreaterthaninthemidplaneannulusandthenumericalresultsindicate the same.

Figures3.8and3.9alsoindicatetheeffectsofantennatipshape.Foragivendepth,roundingtheantennaincreases theresonantfrequencyandmaximumfieldstrengthanddecreasestheresonantbandwidth.Thisislikelyduetothe factthatroundingthetipdecreasesthevolumeoftheperturbingmaterial,similartodecreasingtheantennadepth.In addition,roundingtheantennahastheeffectofincreasingthefieldstrengthatthetipcomparedtotheflatantenna withthesamedepth. 40

Mesh refinement studies were performed to examine numerical accuracy. The typical mesh size was approximately27,000–30,000tetrahedralelementsandapproximately34,000–38,000degreesoffreedom.Themesh sizewaschosentobalancecomputationaltimeandaccuracy.Forexample,usingthe2mmhemisphericalantennaat

7.656 GHz, shown in Fig. 3.9(b), refining the mesh from 29,283 elements (37,354 DOF) to 112,311 elements

(138,213DOF)changedthevalueofthe Efieldnormevaluatedat r=0and z= hbyonly0.6%whileincreasingthe computationaltimebyafactorofmorethan5.9.

C. The8.4GHzMET

The2.45and7.5GHzcavitiesexistedpriortothisproject.Interestwasgeneratedintheconstructionofanew cavitytobeoperatedusinganinputpowerof350Watafrequencyintherangeof7.9–8.4GHz.Thepowerand frequency range corresponded to an available spacequalified TWTA power supply. Analytical and numerical modelswereusedtoguidethedesignofthenewcavity.Thisrepresentedthe firsttimethatdetailed numerical modelinghadbeenperformedpriortocavityconstruction.

ThebaselineMETdesigncalledforadielectricseparationplatetopartitionthecavityandpreventplasmafrom contactingtheantenna.Theseparationplatewastypicallymadeofquartz,whichisabrittlematerial.Crackingof thequartzduringlaunchorsomeothertimeduringflightpresentsaconcern.Itwasdecidedthatthenewcavity designwouldnotincludeaseparationplateandexperimentswouldbeconductedtodetermineiftheMETcouldbe operated in this configuration without damaging the antenna. If unavoidable antenna damage was observed, the cavitywastobeloadedatthebasewithaquartzslabspanningthediameterofthecavityandthickenoughtocover theantenna.Thisdesignofferedcertainadvantages.First,thecavitycouldbefabricatedasasinglepieceinsteadof thetypicaltwohalves.Secondly,thequartz,ifitwasnecessary,wouldbepositionedfurtherawayfromthehigh temperatureregionofthecavityandexperiencelessthermalandmechanicalstress.

Analytic and numerical models were used to determine the dimensions for the new cavity. The operating frequencywasconstrainedbytheavailablepowersupplytotherangeofapproximately7.9–8.4GHz.Figure2.2 showsthatfor h/a~3,acavitywith a~15mmwillhavesucharesonantfrequency.Figure3.3showsthatthe resonantfrequencywillbesignificantlyreducedifthecavityisheavilyloadedwithadielectricmaterial.Theability tooperatethesameMETcavityinboththeemptyandloadedconfigurationswasdesired.Inordertoconstrainthe resonant frequency shift between the empty and loadedcasestothebandwidthofthepowersupply, while still 41

coveringandprotectingtheantenna,aquartzthicknessof 9.0 empty a=14.5mm only4 mm waschosen.Figure3.10showstheanalytic 8.8 a=15.0mm 8.6 solutionfortheresonantfrequencyasafunctionof h/a 8.4 for a = 14.5 and 15.0 mm. Numerical modeling 8.2 loaded accounting for the presence of the antenna was also 8.0 7.8 performedwithvariouscavitydimensionstosupportthe ResonantFrequency(GHz) 7.6 design. To obtain the proper resonant frequencies with 01 2 34 5 67 8 910 h/a some margin, a=14.7mmand h=47.775mm( h/a = Fig.3.10Analyticsolutionforresonantfrequencyvs. h/a for two different cavity radii. Curves are shown for the 3.25)werechosenasthedimensionsforthenew8.4GHz emptycavitycaseandthecaseofacavityloadedat the basewithaquartzslabwith t=4mm, rc= a,and εr=4.2. MET.

An8.4GHzMETcavitywasmodeledusingthefollowingdimensions: h=47.78mm, a=14.7mm( h/a=

3.25), hp=12.7mm, rp=4.88mm, hT=12.7mm,and ra=1.52mm.Theeffectsofantennadepthandinclusionof thequartzslabwereexamined.Theflattippedantennashad ha=0and2mm.Thequartzslabhad t=4mmand rc= a.Theinputpowerwassetto350Wandinputfrequencywassweptwitharesolutionrangingfrom1–50MHz.

Highersweepresolutionwasusedinfrequencydomainsofhighgradientinordertoaccuratelycapturethebehavior oftheelectricfield.

TheMETplasmaissustainedintheregionofhigh Efieldstrengthonthecavityaxisnearthenozzle. The analyticsolutionshowsthatthemaximumfieldstrengthinthisregionisfoundat r=0and z= h.The Efieldnorm wasevaluatedatthispointforvariousfrequenciesusing the numerical model. The results using both antenna 18 depthsfortheemptyandloadedcasesareshowninFig. 16 0mm 14 2mm

V/m) loaded

3.11.UsingEqs.(3.15)and(3.31),theanalyticsolutions 5 12 10 predicttheTM z resonantfrequenciesfortheemptyand 011 8 loaded cavities to be 8.413 GHz and 8.042 GHz, 6 empty 4 respectively. For an antenna depth of 0 mm, the ElectricField(10 2 0 z numerical solution predicts the TM 011 resonant 7.9 8.0 8.1 8.2 8.3 8.4 8.5 frequenciesoftheemptyandloadedcavitiestobe8.434 Frequency(GHz) Fig.3.11Numericalsolutionfor Efieldnormevaluated GHz and 8.052 GHz, respectively. The difference at r=0and z= hvs.frequencyforthe8.4GHzMETwith 350 W input power. Results for the empty and loaded casesareshown.Legendshowsantennadepths. 42 betweentheanalyticalandnumericalpredictionsisattributedtothepresenceoftheantennainthenumericalmodel thatisnotaccountedforanalytically.Thenumericalsolutionindicatesthat,fortheemptycavity,as theantenna depthincreases,theresonantfrequencyandthe maximum Efieldstrengthdecrease.Thereductionin maximum fieldstrengthisadisadvantage.However,increasingtheantennadepthalsohastheeffectofincreasingtheresonant bandwidth. Thus, the cavity is less sensitive to input frequency, which, as previously stated, is advantageous consideringtheinevitableoffdesignoperationofthethruster.However,theeffectofantennadepthfortheloaded cavity is slightly different. Although increasing the antenna depth decreases the maximum field strength and increasestheresonantbandwidthsomewhat,theresonantfrequencyremainsnearlyidentical.Ingeneral,theloaded cavity shows much higher maximum field strength than the empty cavity, but at the cost of greatly increased sensitivitytoinputfrequency.

Figure3.12showsthenumericalsolutionforthe Efieldnormwitheachantennafortheemptyandloadedcases operatingattheparticularresonantfrequencyfortheconfiguration.Fortheemptycavities,theregionsofstrong electricfieldontheaxisnearthenozzleandantennacanbeseen.UsingEq.(2.8),theanalyticsolutionpredictsthat the Efieldstrengthatthenozzleis4.8timesgreaterthaninthemidplaneandthenumericalresultsareinagreement.

Theloadedcavitieshaveadifferent Efieldstructurethantheemptycavities.Thefieldenergyisconcentratedonthe axisnearthenozzleinsteadofbeingdistributedbetweenthenozzleandantennaends,asitisintheemptycavity.

Figure3.13showsthe Efieldlinestructurefortheemptyandloadedcasesusingthe0mmantenna.Theregionof

x10 5V/m 18 16 14 12 10 8 6 4 2 0 (a) (b) (c) (d) Fig.3.12 Efieldnorminsidethe8.4GHzMET.Inputpoweris350W.Cavityisshownoperatingatthe particular resonantfrequencyfortheconfiguration.Antennadepth,loadingcondition,andfrequencyare:(a)0mm,empty,8.434 GHz;(b)2mm,empty,8.377GHz;(c)0mm,loaded,8.052GHz;(d)2mm,loaded,8.052GHz.Scaleisshownwithunits of10 5V/m. 43

(relatively) strong Efield in the radial direction at the midplane annulus can be seen for the empty cavity.

Loadingthecavitypullsthisregioninthedirectionofthe dielectricslab.

Numerical accuracy was again examined through mesh refinement. The typical mesh size, approximately

26,000–28,000 tetrahedral elements and approximately

33,000–36,000 degrees of freedom, was chosen for the (a) (b) properbalanceofcomputationaltimeandaccuracy. For Fig. 3.13 Numerical solution for Efieldline structure inside the 8.4GHz MET using the 0mm antenna: (a) the particular case of the empty cavity using the 0mm emptycavity;(b)loadedcavity. antennaat8.434GHz,showninFig.3.14(c),refiningthemeshfrom25,728elements(32,716DOF)to98,872 elements(121,631DOF)changedthevalueofthe Efieldnormevaluatedat r=0andz= hbyonly0.1%while increasingthecomputationaltimebyafactorofmorethan5.7.

D.Comparisonof2.45,7.5,and8.4GHzMETs

Numericalmodelinghasrevealedinterestinginformationaboutthe EfieldstrengthofthevariousMETs.Figure

3.14comparesthe Efieldnormevaluatedat r=0and z= hforthe1000W2.45GHz,100W7.5GHz,and350W

8.4GHzMETsassuminga0mmantennadepth.Themaximum Efieldstrengthofthe2.45GHzMETislower thanthatofthe7.5GHzMETdespitebeingoperatedusinganorderofmagnitudegreaterinputpower.Thecavity volumeofthe2.45GHzMETis32timesgreaterthanthe volumeofthe7.5GHzMETand39timesgreaterthan 7.0 6.0 8.4GHz

V/m) 350W the volume of the 8.4GHz MET. At the stated power 5 5.0 4.0 levels,the2.45GHzMETactuallyhasthelowestenergy 7.5GHz 3.0 100W density (power/volume) and the 8.4GHz MET has the 2.0 2.45GHz

ElectricField(10 1.0 1000W highest. This qualitatively explains the results. Figure 0.0 3.15 compares the Efield norm for typical operating 0 2 4 6 8 10 Frequency(GHz) configurations of the 2.45, 7.5, and 8.4GHz METs. Fig.3.14Numericalsolutionfor Efieldnormevaluated

1 2 at r=0and z= hvs.frequencyforthe1000W2.45GHz, Since E∝ P , the 2.45GHz MET would need much 100W7.5GHz,and350W8.4GHzMETsassuminga0 mmantennadepth. 44

x10 5V/m 8

7

6

5

4

3

2

1

0 (a) (b) (c) Fig.3.15Comparisonof EfieldnorminsidevariousMETs.Frequency,power,andantennadepthare:(a)2.45GHz, 1000W,18.5mm;(b)7.656GHz,100W,2mm;(c)8.377GHz,350W,2mm.Scaleisshownwithunitsof10 5V/m. higherpowertohavean Efieldstrengthcomparabletothe8.4GHzMEToperatingwith350Winputpower.

High Efieldstrengthisnecessarytosustainhighpressureplasmas. 2Aspressureincreases,electronsparticipate inelasticandinelasticcollisionsmorefrequentlyandhavelesstimetobeacceleratedbythe Efieldtobuildup sufficientkineticenergyforhighprobabilityofionization.Energyislostinsteadtoelectronicexcitationofneutrals andinternalenergymodesofmolecules.Ion–electronrecombinationlossesincreaseandtheresultisthat Efield strength must be increased in order to maintain a high probability of participation in collisions that result in ionization.SincethepropellantheatingefficiencyoftheMEThasbeenshowntoincreasewithincreasingpressure, high Efieldstrengthisnecessary.

V. SummaryandConclusions

In this chapter, the analytical solutions to Maxwell’s Equations were derived for the empty MET resonant cavity. Asolutionthatpredictstheresonantfrequencyofadielectricloadedcavity wasalsoderived. COMSOL

Multiphysics,acommerciallyavailableFEAsoftware,wasusedtoperformnumericalelectromagneticmodelingof the Efieldintheresonantcavityofpreviouslyexisting1kWclass2.45GHzand100Wclass7.5GHzMETs.

Parametric studies were performed to determine effects of varying microwave frequency and power, varying antenna depth, and the inclusion of various dielectric materials inside the cavity. The same analysis was then performedtoaidthedesignofanewcavityoperatingatapproximately8.4GHzwith350Winputpower. 45

Numericalmodelingprovidedquantitativeandqualitativeinsightontheeffectsofthepresenceofdielectric materialinsidethecavity.Thedielectricseparationplatereducedtheresonantfrequency.Loadingthebaseofthe cavity with a dielectric significantly alters the Efield structure and lowers the resonant frequency as well. This frequencyshiftwasanalyticallypredictedwithaccuracy.Numericalmodelingalsoprovidedinsightontheeffectsof varyingantennadepthandtipshape.Ingeneral,anincreaseinresonantfrequencyandmaximum Efieldstrength, andadecreaseinresonantbandwidth, wereobserved withdecreasingantennadepth. Roundinganantenna of a given depth produced the same effect, most likely due to the removal of material from the cavity, similar to decreasingtheantennadepth.Thesensitivityofthecavitytoinputfrequencywasstudiedindetailforthefirsttime.

Theresultsofthisanalysiscanbecomparedtotheresultsofexperimentalstudieswhereantennadepthisvariedand particularlytostudiesconductedusingaTWTApowersupplywithfrequencytuningcapability.Finally,modeling ofMETsoperatingatthreedifferentpowersandfrequencieshasindicatedsubstantialdifferencesinmaximum E fieldstrength,whichhasimplicationsforthemaximumchamberpressurereachedbeforeplasmaextinction.These resultscanbecomparedtotheresultsofexperimentalstudiesofthresholdpowernecessarytosustainplasmaata givenpressure.

Analyticsolutionsthataccuratelyaccountforthepresenceoftheantennaanddielectricmaterialsofallshapes and sizes are difficult, if not impossible, to obtain. Significant discrepancies between analytical and numerical resultsareobservedwhentheanalyticalmodeldoesnotaccountfortheseperturbations.Anumericalmodelthatcan accountforcavityperturbationsisveryhelpful.Theuseofthiscomputationaltooltoguidethedesignofthe8.4

GHz MET represented the first time that detailed numerical modeling had been performed prior to cavity construction.

References

1Balanis,C.A., AdvancedEngineeringElectromagnetics ,JohnWiley&Sons,Inc.,Hoboken,1989. 2Fridman,A.andKennedy,L.A .,PlasmaPhysicsandEngineering ,Taylor&FrancisBooks,Inc.,NewYork,2004. 46

Chapter4 ThekWClass2.45GHzMicrowaveElectrothermal ThrusterUsingNitrogen,SimulatedHydrazine,and AmmoniaPropellants

Research was initiated to examine the feasibility of operating the MET using the products of hydrazine decompositionasthepropellantgaswithaninputpowerofapproximately1–2kWataresonantfrequencyof2.45

GHz.Thegoalofthisresearch was to measuretheperformance of a high efficiency electrothermal propulsion system that may outperform the arcjet and does not suffer from erosion problems. Operation with hydrazine propellant allows for integration with a conventional chemical propulsion system onboard a spacecraft. This investigationrepresentsthefirstefforttocharacterizetheperformanceofthekWclassMETusingamixtureofN 2 and H2 to simulate hydrazine decomposition products. Studies with pure ammonia, another lightweight liquid storablepropellant,havealsobeenconducted.TheresultsareencouragingforfurtherdevelopmentoftheMETfor operationwithhydrazineandammonia.

I. ScopeandObjectives

IntheMETplasma,microwaveenergyiscoupledtothepropellantgasthroughfreeelectronsintheplasma.

The electric field accelerates free electrons, which then transfer their kinetic energy to heavy particles through collisions. Thus, electric field strength and chamber pressure play important roles in the power deposition and energy exchange mechanisms. These roles were examined experimentally through the variation of several MET components.Numericalmodelinghasdemonstratedthetheoreticaleffectsofvaryingantennadepthonthe MET electricfield.Fora given mass flow,thevariationof nozzlethroatdiameterresultsinthevariation of chamber pressure. Some studies have shown that the propellant injector diameter and, thus, injection velocity, has a significanteffectonMETperformance;however,thisphenomenonisnotwellunderstoodatthistime.

Duringthisinvestigation,severaltestswereperformed.FirsttheMETwasoperatedusingN 2propellantinan efforttocomparetheresultstothoseofpriorstudiesasabaseline.TheMETwasthenoperatedusingsimulated hydrazinedecompositionproductsandpureammonia. Parametricstudiesoftheeffectsofantennadepth and the 47 inclusionofanimpedancematchingunit,propellantinjectordiameter,andnozzlethroatdiameterwereperformed.

Thrustmeasurementswerethenobtainedusingsimulatedhydrazineandammoniapropellants.

II. ExperimentalMethods

A. ExperimentalApparatus

ThekWclasslaboratoryversionMET,showninFig.4.1,isanaluminumcylindricalresonantcavitywithan internalheightof157.5mmandadiameterof101.6mm.TheMETwasboltedandsealedwithanOringtothe flangeplateofavacuumfacilityandwaspositionedverticallytoprecludebuoyancyeffectsfromforcingtheplasma offaxis.ThethrusterbodywasOringsealedtoaremovablestainlesssteelnozzleplate.Twoconverging–diverging nozzleinsertswereconstructedfromtungsten.ThenozzlecontouranddimensionsareshowninFig.4.2andTable

4.1. The nozzle insert was bolted to the nozzle plate and sealed with a standard Conflat copper gasket seal.

Propellant was supplied to the MET through three tangential injection ports using Unit UFC 8100 mass flow controllers with an accuracy of ±0.21 mg/s for N 2, ±0.02 mg/s for H 2, and ±0.05 mg/s for NH 3. The propellant injectorswereremovabletoallowforparametrictestingoftheeffectsofvaryinginjectordiameter. The injector diametersusedinthisstudywere0.4and1.4mm.Chamberpressurewasmonitoredthroughapressuretapusingan

Omega PX41T0 pressure transducer with an accuracy of ±0.86kPa.Microwaveenergy was fedintothecavity coaxiallythroughacopperantennawithahemisphericaltip.Theantennawasremovabletoallowforparametric

15cm mɺ

ri d*

α

19cm de Fig.4.2 METnozzlecontour.

Table4.1 METnozzledimensions.

Nozzle r i (mm) d e (mm) d *(mm) A e /A* α (deg) 1 2.92 12.96 0.86 225 20 2 2.92 8.23 0.52 250 12 Fig.4.1 Laboratory2.45GHzMET. 48

PowerMeters

MET ThreePortCirculator

ForwardPower PowerSupplyand Magnetron Dual Autotuner Directional Coupler

WaveguidetoCoaxial ReflectedPower Coupler Dummy Load Fig.4.3 Microwavesystemschematic. testingoftheeffectsofantennadepthvariation.Theantennadepthspresentedinthisstudyare18.5and31.2mm.

Figure 4.3 shows a schematic of the microwave system. Microwave energy was produced using a Gerling

GL103lowripplepowersupplyandaGL1312.45GHzmagnetronwithavariablepoweroutputof0.5–2.5kW.

Themicrowaveenergy was sent via waveguidethroughaGerlingGL401Athreeport circulator,aGerling dual directional power coupler, and an Astex SmartMatch AX3060 microwave autotuner, to a waveguidetocoaxial couplerandthenintotheMET.Thethreeportcirculatorwasusedtodirectpowerreflectedbytheplasmaintoa watercooled dummy load. The dual directional coupler was used to facilitate forward and reflected power measurementsusingHewlett–Packard8481Apowersensorswithanaccuracyof±3%.

TheAstexautotunerisamechanizedthreestubimpedancematchingunitusedtomaximizepowerabsorbedby theplasma.Maximumpowerisabsorbedbytheplasmawhenthecavityimpedanceismatchedtotheimpedanceof themicrowavetransmissionline.Thecavityimpedancevariesasoperatingconditionschange.Whentheautotuner isactivated,tuningstubsprotrudeintothewaveguidetovariousdepths.Theautotunerdetectspowerreflectedbythe cavityandautomaticallyvariesthedepthsofthetuningstubstochangetheimpedanceofthetransmissionlineuntil thereflectedpowerisminimized.

Thethruststandconsistedofadeflectionconeattachedtoathinstraingageflexure.Thetipofthedeflection cone waspositionedapproximately1.9cmdownstreamfromthenozzleexit.Uponexitingthenozzle,the fluid momentum of the exhaust jet was initially in the vertical direction. The deflection cone redirected the exhaust momentumintothehorizontaldirection,thustransmittingaforce,whichwasassumedtobeequaltothethrust,to thestraingageflexure.AschematicofthethruststandisshowninFig.4.4.Figure4.5showsthedeflectioncone 49

VACUUM flangeplate straingage assembly deflection flexure cone base

exhaust

ATMOSPHERE MET Fig.4.5 Deflectionconeandstraingageflexure.Thecone Fig.4.4 Thruststandschematic. hasabasediameterof10.2cm. attachedtothestraingageflexure.Thedeflectionconehada11.4cmbasediameterandmeasured4.1cmfrombase totip.Thestraingageflexurewasathinrectangularsheetofaluminumwithfourstraingagesmountedonit.Twoof thestraingagesweremountedonthetopoftheflexure,twoweremountedonthebottom,andallweremountedin theaxialdirection.Thisconfigurationprovidedgoodsignalstrengthandthermalcompensation.Themomentarmof theassemblywas10.2cm.Theelectricalleadsofthestraingageswerefedthroughtheflangeplateofthevacuum facilitytoaVishay3800strainindicator.Theflexurewasclampedtoabase,whichwassecuredtotheflangeplate.

Thedeformationoftheflexurewasobservedusingthestrainindicator.Theflexurewascalibratedtoconvertthe strainmeasurementtothrust.Inanefforttopreventerrorsinthrustmeasurementduetothermaldeformationofthe flexure,amaterialwithlowthermalconductivitywasplacedbetweenthedeflectionconeandtheflexuretoreduce heatflow.

B. ExperimentalProceduresandTheoreticalCalculations

TheprimaryobjectiveofthisinvestigationwasthecharacterizationofhotfireoperationoftheMET.However, muchwaslearnedbyobservingitsoperationundercoldflowconditions.First,coldflowtemperatureswereknown and predictions of thrust were more accurate. Therefore,coldflowtesting wasusedtovalidatethethrust stand measurement concept. Secondly, hot fire chamber temperatures were not directly measured, but were instead calculatedwiththemassflowequationusingthemethoddescribedinCh.2.Theratioofhotandcold chamber pressures yielded insight on chamber temperature and, thus, specific impulse. To determine the cold flow characteristicsoftheMETwiththedifferentnozzles,chamberpressurewasobservedatvaryingmassflows.After evacuating the vacuum chamber, the mass flow was increased incrementally while recording MET chamber 50

pressure. This procedure was performed over the same 250 range of mass flow used for hot fire testing for direct 200 comparison. 150

The hot fire characteristics of the MET were 100 y=2.0055x Force(mN) R²=0.9998 observed during operation in vacuum. Propellant was 50 introduced into the chamber and brought to a pressure 0 0 50 100 150 sufficientlylowforelectricbreakdowntooccur,atwhich StrainGageResponse(mV) timethemicrowaveenergywasintroduced.Thispressure Fig.4.6 Results of typical weighted calibration of strain gageresponsetoaknownappliedload.Pointsshownare the average of five tests. The standard deviation for all wasusuallycloseto1kPa.Adiffuseplasmawouldthen pointswas<1mV. ignite. Increasing mass flow caused the plasma to coalescenearthenozzleentrance.Themassflowcontrollerwassettoadesiredflowrateandthechamberpressure andforwardandreflectedpowerswererecordedwhenthesystemreachedasteadystate.

In an effort to validate the deflectioncone thruststand,coldflowthrusttesting wasperformedinvacuum.

Beforeeachtest,thestraingageflexurewascalibratedtodetermineitsresponsetoanappliedload.Thedeflection conewaspositionedoverthenozzleandthestraingageflexurewassecuredtoitsbase.Knownweightsoverthe rangeoftheexpectedthrustwereaddedtotheflexureoverthecenterofthedeflectionconeandthe strain was recorded. Figure 4.6 shows a typical calibration response curve. After calibration, thrust measurements were performed.Themassflowwassettoadesiredrate.Whenthesystemreachedsteadystate,thestrainreadingwas recorded.Themassflowwasthenswitchedoffandthestrainreadingwasagainrecordedwhenthesystemreached steadystate.Thedifferenceofthestrainmeasurementswasthenusedforcalculationofthrustwiththeslopeofthe calibrationcurve.Thesamemethodwasusedforhotfirethrustmeasurements.

ThemethodusedtocalculateperformanceispresentedinChapter2andthedefinitionofthrustefficiencyis giveninEq.(1.4).Anotherimportantfigureofmeritthatwillbediscussedisthethermalorheating efficiency relatingthechangeinchamberstagnationenthalpytotheabsorbedpowerby

ɺ ηH=m CT p 0 P abs (4.1)

51

Specificpowerisdefinedas

ɺ Pspec= P abs / m (4.2)

Uncertaintiesincalculatedquantitiesareestimatedusingstandarderrorpropagationtechniquesthatincludethe manufacturergivenmeasurementuncertaintiesoftheapparatusdescribedintheprevioussection.

III.ResultsandDiscussion

A. BaselineStudiesUsingNitrogen

ChamberconditionswereexaminedusingN 2propellantsuppliedatroomtemperature.The31.2mmantenna andthe1.4mminjectors wereused forthistesting.Theforwardpowerlevelwassetat1.2kWandremained constant while the mass flow was increased incrementallyoverarangeof10.4–83.3mg/s.Powerandpressure measurements wereobtained whenthesystemreached asteadystateatagivenmassflow.Themassflow was increaseduntiltheplasmaextinguished.Figure4.7showsatypicalN 2METplasmaatachamberpressureof168 kPawith1kWabsorbedpower.Figure4.8showstheN2exhaustplumeinvacuumemanatingfromtheMETnozzle, whichisrecessedina20cmdiamflangeport.

With the autotuner operational, it was possible to couple approximately 1.1 kW into the cavity plasma.

20cm

Fig.4.7 N2METplasmaatchamberpressureof168kPa Fig.4.8 N2 exhaust plume in vacuum. MET nozzle is with1kWabsorbedpower. recessedin20 cm diamflangeport. 52

100 6000

90 5000 fromRef.1 4000 80 currentstudy 3000 70 2000

Temperature(K) rotationally 60 1000

opigEfcec(%) CouplingEfficiency unstableplasma 50 0 0 50 100 150 200 250 300 0 50 100 150 200 250 300 ChamberPressure(kPa) ChamberPressure(kPa) Fig.4.9 Coupling efficiency vs. chamber pressure using Fig.4.10 Temperature vs. chamber pressure using N2, N2, 0.86mm nozzle, 31.2mm antenna, 1.4mm injectors. 0.86mm nozzle, 31.2mm antenna, 1.4mm injectors. Absorbedpowerisapproximately1.2kW. Absorbedpowerisapproximately1.2kW.

Couplingefficiency,showninFig.4.9,remainedrelativelyconstantovertherangeofpressurewithanaverageof

94%forthisconfiguration.Theuncertaintyofthecouplingefficiencymeasurementsisestimatedtobelessthan

±1%.

Chambertemperatures,showninFig.4.10,werecalculatedfromthepressureratiodata.Theuncertaintyofthe temperature calculations is estimated to be ±100 K. It can be seen that chamber temperature increases with increasingmassflowduetotheassociatedchamberpressureincrease.Aschamberpressureincreases,theplasma and surrounding gas shift toward thermal equilibrium due to the increased number of particle collisions. The chamber pressure increase also forces the plasma closer to the nozzle. This increases heating efficiency by decreasingtheamountofpropellantthatcanflowaroundtheplasmaandbeexhaustedwithoutbeingheatedtoa hightemperature.Thisisreferredtoascoldflowslippage.Chambertemperatureisseentoincreasetoamaximum valueandthendecreasesuddenly.Thedecreaseisduetotheonsetofrotationalinstabilityoftheplasma.Theplasma wasobservedtoprecessabouttheaxisofthecavityatthispoint.Withouttheplasmainasteadypositionontheaxis nearthenozzle,propellantcanflowpastwithoutbeingheatedtothehighestpotentialtemperatureatthatpressure.

Withoptimizationofinjectorgeometry,itmaybepossibletoinhibitthisrotationalinstability,butsuchoptimization wasnotattemptedduringthisstudy.

Using emission thermometry, Chianese and Micci found the N 2 plasma temperature to be approximately constantat5500Koverarangeofoperatingconditionswith1.1kWabsorbedpower. 1Thismeasurementisalso depictedinFig.4.10.Forafrozenexhaustflow,theplasmatemperaturerepresentsthehighestpossible exhaust stagnationtemperature.Theexhausttemperaturecanbelowerthantheplasmatemperatureduetocoldflowslippage 53 andheattransfertothenozzlewall.Theselossesmightbemitigatedbyoperatingathighpressuretodecreasecold flowslippageandusinglowthermalconductivitymaterialsfornozzleconstruction.

B. EffectsofAntennaDepthVariationUsingSimulatedHydrazine

ChamberconditionswereexaminedusingsimulatedhydrazineconsistingofamixtureofN 2+2H 2suppliedat roomtemperature.Thiscorrespondstofullydecomposedhydrazine,the X=1conditioninEq.(1.8).The1.4mm injectors were used forthis testing.Variousantennaswereusedtoexaminetheeffectsofantennadepth on the operationoftheMET.Theforwardpowerlevelwassetandremainedconstantwhilethemassflowwasincreased incrementallyoverarangeof3.0–11.9mg/s.Power andpressuremeasurementswereobtainedwhenthesystem reachedasteadystateatagivenmassflow.Themassflowwasincreaseduntiltheplasmaextinguished.Figure4.11 shows a typical simulated hydrazine MET plasma at a chamberpressureof30kPawith1kWabsorbedpower.

Figures 4.12–4.14 show comparisons of operating characteristicsataforwardpowerlevelofapproximately

2 kW, with and without the autotuner operating, for antennadepthsof18.5mmand31.2mm.

Coupling efficiency is shown in Fig. 4.12. The uncertainty of the coupling efficiency measurements is estimated to be ±0.2–3.4%, increasing with decreasing Fig.4.11 SimulatedhydrazineMETplasmaatchamber pressureof30kPawith1kWabsorbedpower. coupling efficiency. The effect of the autotuner on 100 coupling efficiency is dramatic. If the cavity is poorly 80 tuned,agreaterportionoftheforwardpowerisreflected 60 and becomes waste heat. With the autotuner operating, 40 18.5mm,w/otuning the coupling efficiency decreased with increasing 31.2mm,w/otuning 20 18.5mm,w/tuning pressure,probablyduetoion–electronrecombinationand (%) CouplingEfficiency 31.2mm,w/tuning 0 adecreaseinplasmaconductivity. 0 10 20 30 40 50 60 ChamberPressure(kPa) Pressure ratio, shown in Fig. 4.13, and chamber Fig.4.12 Coupling efficiency vs. chamber pressure temperature, shown in Fig. 4.14, increased with using N 2 + 2H 2, 0.86mm nozzle, 1.4mm injectors. Forwardpowerisapproximately2kW.Antennadepthis giveninlegend. 54

3.0 2500 390s 18.5mm,w/otuning 31.2mm,w/otuning 2000 354s 360s 2.5 18.5mm,w/tuning 31.2mm,w/tuning 1500 305s 2.0 18.5mm,w/otuning 1000

PressureRatio 31.2mm,w/otuning 1.5 Temperature(K) 18.5mm,w/tuning 500 31.2mm,w/tuning 1.0 0 0 10 20 30 40 50 60 0 200 400 600 800 ChamberPressure(kPa) SpecificPower(MJ/kg) Fig.4.13 Chamberpressureratiovs.chamberpressure Fig.4.14 Chambertemperaturevs.specificpowerusing using N 2 + 2H 2, 0.86mm nozzle, 1.4mm injectors. N2 + 2H 2, 0.86mm nozzle, 1.4mm injectors. Forward Forwardpowerisapproximately2kW.Antennadepthis powerisapproximately2kW.Antennadepthisgivenin giveninlegend. legend.Maximumvacuum Isp foreachcaseisshown. increasingmassflowduetotheassociatedincreaseinchamberpressure.Aschamberpressureincreases,theplasma and surrounding gas shift toward thermal equilibrium due to the increased number of particle collisions. The chamber pressure increase also forces the plasma closer to the nozzle. This increases heating efficiency by decreasingtheamountofpropellantthatcanflowaroundtheplasmaandbeexhaustedwithoutbeingheatedtoa hightemperature.Theuncertaintyofthetemperaturecalculationsisestimatedtobe±35–150K,typicallyincreasing withincreasingtemperature.ThemaximumspecificimpulseforeachtestcaseisalsoshowninFig.4.14.Specific impulse was calculated assuming a perfect expansion to zero pressure. The uncertainty of the specific impulse calculationsisestimatedtobe±11–16s.

Thecavitymustbewelltunedtoreachthehighpressurenecessary forhighperformance.Varyingantenna depthhadaneffectoncavitytuning,althoughthiseffectwaslesspronouncedwiththeautotuneroperationalthan withoutwhenitisthesolemeansoftuning.Usingthe18.5mmantennadepth,thehighestpressureandperformance were reached, with specific impulse approaching 400 s. These experimental results agree with the results of numericalmodeling,whichindicatedslightlyhigherelectricfieldstrengthusingthe18.5mmantennacomparedto the31.2mmantenna.Higherelectricfieldstrengthallowshigherpressuretobereachedpriortoplasmaextinction.

Thenumericalmodelalsoshowedthatthecavitywaspoorlytunedforanoperatingfrequencyof2.45GHz.

Inthelaboratory,propellantisinjectedatroomtemperature.IftheMETweretobecombinedwithahydrazine monopropellantsystem,thepropellantwouldactuallybeinjectedatthehydrazinedecompositiontemperature.This temperaturerangesfromapproximately1700Kfor X=0to850Kfor X=1.Themicrowaveenergywouldthenbe usedtofurtherincreasethechamberstagnationenthalpy.Assuminganinjectiontemperatureof850Kandthesame 55 enthalpyincreasefromtheadditionofmicrowaveenergy,themaximumspecificimpulseshowninFig.4.14may increasefrom390sto435s.

C. EffectsofPowerandInjectorDiameterVariationUsingSimulatedHydrazine

ChamberconditionswereexaminedusingsimulatedhydrazineconsistingofamixtureofN 2+2H 2suppliedat roomtemperature.The18.5mmantennadepthwasusedforthistesting.Variousinjectorswereusedtoexaminethe effectsofinjectordiameterontheoperationoftheMET.Theautotunerwasusedforalltestingandtherangeof massflowexaminedwas3.0–20.8mg/s.Powerandpressuremeasurementswereobtainedwhenthesystemreached asteadystateatagivenmassflow.Themassflowwasincreaseduntiltheplasmaextinguished.Figures4.15–4.17 showcomparisonsofoperatingcharacteristicsatforwardpowerlevelsofapproximately1and2kWusingthe0.4 mmand1.4mminjectors.

CouplingefficiencyisshowninFig.4.15.Theuncertaintyofthecouplingefficiencymeasurementsisestimated to be ±0.2–3.4%, increasing with decreasing coupling efficiency. Again, the coupling efficiency decreased with increasingpressure,probablyduetoion–electronrecombinationandadecreaseinplasmaconductivity.

Pressureratio,showninFig.4.16,andchambertemperature,showninFig.4.17,increasedwithincreasingmass flow due to the associated increase in chamber pressure, even though coupling efficiency decreased. This demonstratestheincreaseinheatingefficiencyathighpressure.Atagivenpressure,temperatureincreased with increasingpower,asexpected.With1kWforwardpower,thechambertemperatureappearedtoleveloff,whereasat

2 kW, the temperature appeared to still be increasing at the point of plasma extinction. The uncertainty of the

100 3.5

80 3.0

60 2.5

40 0.4mm,1kW 2.0 0.4mm,1kW 1.4mm,1kW 1.4mm,1kW PressureRatio 20 0.4mm,2kW 1.5 0.4mm,2kW

opigEfcec(%) CouplingEfficiency 1.4mm,2kW 1.4mm,2kW 0 1.0 0 10 20 30 40 50 60 70 80 90 0 10 20 30 40 50 60 70 80 90 ChamberPressure(kPa) ChamberPressure(kPa) Fig.4.15 Coupling efficiency vs. chamber pressure Fig.4.16 Pressureratiovs.chamberpressureusingN 2+ using N 2 + 2H 2, 0.86mm nozzle, 18.5mm antenna. 2H 2,0.86mmnozzle,18.5mmantenna.Injectordiameter Injectordiameterandforwardpowergiveninlegend. andforwardpowergiveninlegend. 56 temperature calculations is estimated to be ±40–135 K, 3000 424 s typically increasing with increasing temperature. The 2500 390s 2000 341 s maximum specific impulse for each test case is also 1500 shown in Fig. 4.17. Specific impulse was calculated 1000 0.4mm,1kW 242 s

Temperature(K) 1.4mm,1kW assuming a perfect expansion to zero pressure. The 500 0.4mm,2kW 1.4mm,2kW uncertainty of the specific impulse calculations is 0 0 50 100 150 200 250 300 estimatedtobe±7–13s. SpecificPower(MJ/kg) Varyinginjectordiameterhastheeffectofvarying Fig.4.17 Chambertemperaturevs.specificpowerusing N2 + 2H 2, 0.86mm nozzle, 18.5mm antenna. Injector propellantinjectionvelocity.Reducinginjectordiameter diameter and forward power given in legend. Maximum vacuum Isp foreachcaseisshown. increasesinjectionvelocityandimpartsagreaterdegree ofswirltotheflow.Injectordiameterhadasignificanteffectonperformance,especiallyatlowpower.Usingthe

0.4mminjectorswithapproximately1kWforwardpower,themaximummassflowandpressureincreasedto21 mg/s and 80 kPa, respectively, from 6 mg/s and 16 kPa using the 1.4mm injectors at the same power level.

Maximumvacuumspecificimpulseincreasedfrom242sto341sbyusingthesmallerinjectors.Thiseffectwasstill pronouncedatthe2kWforwardpowerlevel where maximumspecificimpulseincreasedfrom390sto424 s.

Operation at high power and high mass flow was difficult due to poor tuning. This may have to do with a combinationofthefrequencyandpowerlimitationsofthemicrowavepowersupplyandtheautotuner.

Inthelaboratory,propellantisinjectedatroomtemperature.Assuminginsteadaninjectiontemperatureof850

K,correspondingtothehydrazinedecompositiontemperature,andthesameenthalpyincreasefromtheadditionof microwaveenergy,themaximumspecificimpulseshowninFig.4.17mayincreasefrom424sto468s.

D. EffectsofNozzleThroatDiameterVariationUsingSimulatedHydrazineandAmmonia

The0.52mmand0.86mmnozzleswereusedstudytheeffectsofnozzlethroatdiameterontheoperationofthe

MET.Chamberconditionswereexaminedusingbothsimulatedhydrazine(N2+2H 2)andpureammonia(NH 3).

Propellantsweresuppliedatroomtemperature.The0.4mminjectors,18.5mmantenna,andautotunerwereused for this testing. The forward power level was set and remained constant while the mass flow was increased incrementallyoverarangeof2.4–17.9mg/sforsimulatedhydrazineand1.3–20.3mg/sforammonia.Powerand pressuremeasurementswereobtainedwhenthesystemreachedasteadystateatagivenmassflow.Themassflow 57

100 100

80 80

60 60

40 0.52mm,1kW 40 0.86mm,1kW 0.52mm,1kW 20 0.52mm,2kW 20 opigEfcec(%) CouplingEfficiency opigEfcec(%) CouplingEfficiency 0.86mm,2kW 0.86mm,1kW 0 0 0 20 40 60 80 100 0 20 40 60 80 100 ChamberPressure(kPa) ChamberPressure(kPa) Fig.4.18 Coupling efficiency vs. chamber pressure Fig.4.19 Coupling efficiency vs. chamber pressure using N 2 + 2H 2, 0.4mm injectors, 18.5mm antenna. using NH 3, 0.86mm nozzle, 18.5mm antenna. Injector Nozzle throat diameter and forward power given in diameterandforwardpowergiveninlegend. legend. wasincreaseduntiltheplasmaextinguished.Figures4.18–4.23showcomparisonsofoperatingcharacteristicsfor eachpropellantatvariouspowerlevelswitheachnozzle.

CouplingefficiencyisshowninFigs.4.18and4.19.Theuncertaintyofthecouplingefficiencymeasurementsis estimated to be ±0.2–3.4%, increasing with decreasing coupling efficiency. For each propellant, the coupling efficiencydecreasedwithincreasingpressure,probablyduetoion–electronrecombinationandadecreaseinplasma conductivity.

Pressureratio,showninFigs.4.20and4.21,andchambertemperature,showninFigs.4.22and4.23,increased with increasing mass flow due to the associated increase in chamber pressure, even though coupling efficiency decreased.Thisdemonstratestheincreaseinheatingefficiencyathighpressure.Theuncertaintyofthetemperature calculationsisestimatedtobe±40–110Kforsimulatedhydrazineand±44–166Kforammonia,typicallyincreasing

4.0 4.0 0.52mm,1kW 3.5 0.86mm,1kW 3.5 0.52mm,2kW 3.0 0.86mm,2kW 3.0 2.5 2.5

2.0

2.0 PressureRatio PressureRatio 0.52mm,1kW 1.5 1.5 0.86mm,1kW 1.0 1.0 0 20 40 60 80 100 0 20 40 60 80 100 ChamberPressure(kPa) ChamberPressure(kPa) Fig.4.20 Pressureratiovs.chamberpressureusingN 2+ Fig.4.21 Pressure ratio vs. chamber pressure using 2H 2, 0.4mm injectors, 18.5mm antenna. Nozzle throat NH 3, 0.4mm injectors, 18.5mm antenna. Nozzle throat diameterandforwardpowergiveninlegend. diameterandforwardpowergiveninlegend. 58

3000 3000 424s 0.52mm,1kW 0.52mm,1kW 2500 400s 0.86mm,1kW 2500 0.86mm,1kW 0.52mm,2kW 2000 2000 394s 396s 338s 0.86mm,2kW 1500 1500 313s 1000 1000 Temperature(K) Temperature(K) 500 500

0 0 0 100 200 300 400 500 0 200 400 600 800 1000 SpecificPower(MJ/kg) SpecificPower(MJ/kg) Fig.4.22 Chambertemperaturevs.specificpowerusing Fig.4.23 Chambertemperaturevs.specificpowerusing N2 + 2H 2, 0.4mm injectors, 18.5mm antenna. Nozzle NH 3, 0.4mm injectors, 18.5mm antenna. Nozzle throat throat diameter and forward power given in legend. diameter and forward power given in legend. Maximum Maximumvacuum Isp foreachcaseisshown. vacuum Isp foreachcaseisshown. with increasing temperature. The maximum specific impulseforeachtestcaseisalsoshowninFigs.4.22and

4.23.Specificimpulsewascalculatedassumingaperfect expansion to zero pressure. The uncertainty of the specificimpulsecalculationsisestimatedtobe±6–13 s forsimulatedhydrazineand±11–13Kforammonia.

From these data, it is unclear whether there is an advantage offered by one nozzle over the other. For simulatedhydrazineat1kW,higherchambertemperature Fig.4.24 Ammonia MET plasma at chamber pressure wasobservedatagivenspecificpowerusingthesmaller of45kPawith2kWabsorbedpower. nozzle.Inaddition,ahighermaximumchamberpressureandpressureratiowerereachedbeforeplasmaextinction usingthesmallernozzle.However,at2kW,slightlyhighermaximumpressurewasreachedwiththesmallernozzle, buthigherpressureratiowasreachedwiththelargernozzle.Forammoniaat1kW,roughlythesamemaximum pressureandpressureratiowerereachedwitheachnozzle.Couplingefficiencyisverylowathighpressure.Ifmore powercouldbecoupledtotheplasmaathighpressure,performancewouldlikelyincrease.Highpressureandhigh power(i.e., Efieldstrength)arenecessaryforhighperformance.Figure4.24showsatypicalammoniaMETplasma atachamberpressureof45kPawith2kWabsorbedpower.

59

E. ThrustMeasurementsUsingSimulatedHydrazineandAmmonia

Thrust measurements were obtained usingboth simulated hydrazine and ammonia propellants. Propellants weresuppliedatroomtemperature.The0.86mmnozzle,0.4mminjectors,18.5mmantenna,andautotunerwere usedforthistesting.Theforwardpowerwas1.4kW.Thrustwasmeasuredattwodifferentmassflowsforeach propellant.Thrustwasmeasuredfivetimesateachmassflow.Thecorrespondingspecificimpulsewascalculated usingEq.(1.2)withtheexperimentalvaluesforthrustandmassflow.Figures4.25–4.27showtheaverageresultsof thetests.Theerrorbarsontheexperimentaldatapointsrepresentthestandarddeviationofthemeasurementsatthe particularoperatingcondition.Theerrorbarsonthetheoreticallinestakeintoaccounttheerrorassociatedwiththe systemcomponentsstatedinSectionII.A.

Forsimulatedhydrazine,themaximummeasuredthrustwas21.9mNwithacorrespondingspecificimpulseof

187sandthrustefficiencyof1.6%.Forpureammonia,

45 the maximum measured thrust was 24.9 mN with a 40 simhyd,exp simhyd,theor 35 corresponding specific impulse of 201 s and thrust ammonia,exp 30 ammonia,theor 25 efficiencyof2.1%.Performance measurementsdeviated 20 significantly from theoretical calculations. The average

Thrust(mN) 15 10 percent error was 27–30% for simulated hydrazine and 5 0 34–38% for ammonia. One probable source of 0 2 4 6 8 10 12 14 MassFlow(mg/s) discrepancyistheneglectofchangesinboundarylayer Fig.4.25 Thrustvs.massflowusingN 2+2H 2andNH 3, constrictionatthenozzlethroatbetweenthehotandcold 0.86mm nozzle, 18.5mm antenna, 0.4mm injectors, 1.4 kWforwardpower.

400 6 simhyd,exp 350 5 simhyd,theor 300 ammonia,exp 4 250 ammonia,theor 200 3 150 simhyd,exp 2 100 simhyd,theor SpecificImpulse(s)

hutEfcec(%) ThrustEfficiency 1 50 ammonia,exp ammonia,theor 0 0 0 50 100 150 200 250 0 10 20 30 40 50 60 SpecificPower(MJ/kg) ChamberPressure(kPa) Fig.4.26 Specificimpulsevs.specificpowerusingN 2+ Fig.4.27 Thrust efficiency vs. chamber pressure using 2H 2andNH 3,0.86mmnozzle,18.5mmantenna,0.4mm N2+2H 2andNH 3,0.86mmnozzle,18.5mmantenna,0.4 injectors,1.4kWforwardpower. mminjectors,1.4kWforwardpower. 60 states.Astheboundarylayeratthethroatgrows,theeffectivenozzleareadecreasesandthepressureatagivenmass flowincreases.Thecalculationofchambertemperaturewasbasedontheobservedpressureriseatagiven mass flowbetweenthehotandcoldstates.Itwasassumedthatthepressurerisewasduesolelytotemperatureincrease andnottothroatareadecrease.LowReynoldsnumbernozzlesexperiencesignificantboundarylayerlosses.The boundarylayerconstitutesasubstantialportionoftheflow,butaccuratepredictionsofitsgrowthasafunctionof temperaturecanbedifficult.Anothersourceoferrorisheattransferfromtheexhauststreamtothenozzlewall.This lossispersistentduetotheunavoidabletemperaturegradientthatexistsbetweenthehightemperatureexhaustand thenozzlewall.Othersourcesoferrorincludethepossibilityofgreatererrorsinmeasuredparameters,likemass flowandpressure,thanthosestatedinSectionII.A,whicharegiveninthemanufacturerliterature.Instrumentation errorscouldbehigheriftheinstrumentsarenotproperlycalibrated.

Themaximummeasuredandcalculatedvaluesofspecificimpulseshownherearelowerthanthemaximum valuesreportedintheresultsoftheparametricstudiesofSubsectionsB–D.Thereareseveralreasonsforthis.First, theoperatingconditionschosen forthethrust measurementswerenottheoperatingconditionsofthemaximum performance observed during parametric testing. The thrust measurement operating conditions were chosen for reliabilityandconvenience.Theprimarygoalofthrustmeasurementwastogaugetheaccuracyoftheperformance calculation.Secondly,thelowpumpingcapabilityofthevacuumfacilityledtosignificantbackpressure losses.

Ambientpressureinthevacuumtankrangedfromapproximately40–50Pa.Atthesepressures,theflowwasover expanded.Ifthetestinghadbeenperformedinafacilitycapableofpumpingdowntonegligibleambientpressure, calculatedthrustandspecificimpulsewouldhavebeen15–45%higher.Inaddition,specificimpulsevaluesreported intheresultsoftheparametricstudies werecalculatedassumingaperfectexpansiontozeropressure through a lossless nozzle with infinite area ratio. The theoretical values shown in the results of the thrust measurements accountfornonidealnozzleeffectsandpredicttheresultsexpectedundertheactualoperatingconditionsofthe experiment.

IV.SummaryandConclusions

BaselinestudiesofthekWclass2.45GHzMETwithN 2propellantwereconducted.Thecomparisonofresults to previous spectroscopic studies shows significant difference between the plasma temperature and the mean stagnation temperature of the exhaust. This indicatessubstantiallossesduetocold flow slippageand wall heat 61 transfer.Theselossesmightbemitigatedbyoperatingathighpressuretodecreasecoldflowslippageandusinglow thermalconductivitymaterialsfornozzleconstruction.

ThefeasibilityofoperatingthekWclass2.45GHzMETusingbothhydrazinedecompositionproductsand pureammoniaaspropellanthasbeendemonstrated.Someperformanceoptimizationstudieshavebeenperformed includingexaminationoftheinfluenceofantennadepth,injectordiameter,andnozzlethroatarea.Theresultsofthe antennastudyshowedthatantennadepthhadaneffectonthemaximumchamberpressureandtemperaturereached beforeplasmaextinction.Theexperimentalresultsagreedwiththeresultsofnumericalelectromagneticmodeling thatpredictedelectricfieldstrengthasafunctionofantennadepth. Pastinvestigationshaverevealedthatchamber temperature typically increases with increasing mass flow, presumably due to the associated chamber pressure increase.However,inthoseinvestigations,themassflowincreaseresultedinadecreaseinspecificpowerbecause inputpowerlevelstypicallyremainedapproximatelyconstant.Byusingnozzleswithdifferentthroatdiametersin thisstudy,thechamberpressurewasdecoupledfromthemassflowandspecificpowersotheeffectsofeachcould beisolatedandcharacterized.Highpressureandhighpowerareessentialforhighperformance.Theresultsofthe injector study showed that substantial performance increases could be realized through optimization of injector diameterand,thus,injectionvelocity.However,thisphenomenonisnotyetwellunderstood.Atthepresenttime,the

2.45GHzMETisnotoptimizedforoperationwithsimulatedhydrazineorammonia,butkeyareasofstudythat havepotentialforsignificantperformanceenhancementhavebeenidentified.Thesystemmustbeoptimizedfora specificchosenpropellant.Fortheconfigurationsusedinthisstudy,calculatedspecificimpulsesforammoniaand simulatedhydrazineapproach400sand425s,respectively.

Inthelaboratory,simulatedhydrazineisinjectedatroomtemperature.IftheMETweretobecombinedwitha hydrazine monopropellant system, the propellant actually would be injected at the hydrazine decomposition temperature. The microwave energy would then be used to further increase the chamber stagnation enthalpy.

Assuminganinjectiontemperatureof850Kandthesameenthalpyincreasefromtheadditionofmicrowaveenergy, themaximumspecificimpulsefortheconfigurationsusedinthisstudymayincreasefromapproximately425sto

470s.

Thrustmeasurementshavebeenobtainedusingsimulatedhydrazineandammoniapropellantsinordertogauge the accuracy of the performance calculated using laboratory measurements of mass flow and chamber pressure.

Significant discrepancy was observed with measured performance approximately 25–40% lower than theoretical 62 calculations.Thediscrepancyisattributedprimarilytochangesinboundarylayerconstrictionofthenozzlethroat that are not accounted for in the theoretical calculation. More sophisticated methods should be explored to accuratelypredictthesechanges.

References

1Chianese, S. G., and Micci, M. M., “Microwave Electrothermal Thruster Chamber Temperature Measurements and PerformanceCalculations,” JournalofPropulsionandPower ,Vol.22,No.1,2006,pp.31–37. 63

Chapter5 The100W7.5GHzMicrowaveElectrothermalThruster UsingNitrogenandSimulatedHydrazinePropellants

Research was initiated to examine the feasibility of operating the MET using the products of hydrazine decompositionasthepropellantgaswithaninputpowerofapproximately100Wataresonantfrequencyof7.5

GHz.Thegoalofthisresearch was to measuretheperformance of a high efficiency electrothermal propulsion system that may outperform the arcjet and does not suffer from erosion problems. Operation with hydrazine propellant allows for integration with a conventional chemical propulsion system onboard a spacecraft. This investigationrepresentsthefirstefforttocharacterizetheperformanceofthe100WclassMETusingmixturesof

N2,H2,andNH 3tosimulatehydrazinedecompositionproducts.Theresultsareencouragingforfurtherdevelopment oftheMETforoperationwithhydrazine.

I. ScopeandObjectives

IntheMETplasma,microwaveenergyiscoupledtothepropellantgasthroughfreeelectronsintheplasma.

The electric field accelerates free electrons, which then transfer their kinetic energy to heavy particles through collision.Thus,electricfieldstrengthandchamberpressureplayimportantrolesinthepowerdepositionandenergy exchangemechanisms.TheseroleswereexaminedexperimentallythroughthevariationofseveralMETparameters.

Numericalmodelinghasdemonstratedthetheoreticaleffectsofvaryingantennadepth,microwavefrequency,and microwavepowerontheMETelectricfield.Foragivenmassflow,thevariationofnozzlethroatdiameterresultsin thevariationofchamberpressure.TheperformanceoftheMETinagivenconfigurationwillvarydependingonthe choiceofpropellant.

Duringthisinvestigation,severaltestswereperformed.FirsttheMETwasoperatedusingN 2propellantinan efforttocomparetheresultstothoseofpriorstudiesas abaseline.TheMET wasthenoperatedusing various mixtures of N 2, H2, and NH 3tosimulatehydrazinedecompositionproducts.Parametricstudiesoftheeffectsof initialpropellantcomposition,nozzlethroatdiameter,andmicrowavefrequencyandpowerwereperformed.Thrust measurementswerethenobtainedusingsimulatedhydrazine.

64

II. ExperimentalMethods

A. ExperimentalApparatus

The100WclasslaboratoryversionMET,showninFig.5.1,isanaluminumcylindricalresonantcavitywithan internalheightof51.5mmandadiameterof31.6mm.TheMETwasboltedandsealedwithanOringtotheflange plateofavacuumfacilityandwaspositionedverticallytoeliminateplasmabuoyancyeffects.Thethrusterbodywas

Oringsealedtoremovablenozzleplates.Severalnozzleplateswereconstructedfromeithertungsten(W)or304 stainlesssteel(SST).ThecontouranddimensionsofthenozzlesusedinthisstudyareshowninFig.5.2andTable

5.1.PropellantwassuppliedtotheMETthroughtwotangentialinjectionports,locatedonoppositesides of the thruster, using Unit UFC 1100A mass flow controllers withanaccuracyof±0.021mg/sforN 2,±0.002mg/sfor Boltholes

H2, and ±0.019 mg/s for NH 3. Chamber pressure was monitoredthroughapressuretapusinganOmegaPX303 Nozzle Injectionport pressure transducer with an accuracy of ±1.7 kPa. Pressure tap Microwave energy was fed into the cavity through an Viewing window antennafashionedfromaPasternackcoaxialcandlestick connector. All components of the thruster system were located outside the vacuum chamber with the nozzle Fig.5.1 Laboratory7.5GHzMET. firingintothechamber.

Figure 5.3 shows a schematic of the microwave mɺ system. Two different microwave power supplies were ri usedforthisstudy.ThefirstwasaMictron,Inc.100H7.5 d* voltagetunablemagnetronandthesecondwasanAydin α 100W traveling wave tube amplifier (TWTA). The d microwaveenergywassentcoaxiallythroughathreeport e Fig.5.2 METnozzlecontour. circulator,aNarda3024dualdirectionalpowercoupler, Table5.1 METnozzledimensions. andthenintotheMET.Thethreeportcirculatorwasused

Material r i (mm) d e (mm) d *(mm) A e /A* α (deg) todirectpowerreflectedbytheplasmaintoaradiation SST 1.524 0.221 0.221 1 n/a cooled dummy load. The dual directional coupler was W 1.524 1.803 0.272 44 25 W 1.524 1.638 0.140 137 25 65

PowerMeters

MET ThreePortCirculator

ForwardPower

PowerSupply DualDirectionalCoupler

ReflectedPower Dummy Load Fig.5.3 Microwavesystemschematic. usedtofacilitateforwardandreflectedpowermeasurementsusingHewlett–Packard8481Apowersensorswithan accuracyof±3%.

The first power supply system consisted of a Mictron, Inc. 100H7.5 voltagetunable magnetron and accompanying power supply. It was possible to tune the output frequency of the magnetron over a range of approximately 7.4–7.7 GHzby varying its anode voltage; however, this also resulted in the variation of output power.Itwasimpossibletoindependentlyvaryfrequencyandforwardpowerwiththismicrowavepowersupply system.Theabilitytoindependentlyvaryfrequencyandpowerisadvantageousbecausetheresonantfrequencyof thecavitychangeswithoperatingconditions.Forstudyinthelaboratory,itisdesirableforfrequencyandpowerto be independently variable parameters so the effectsofeachcanbeisolatedandobserved.Asecond microwave power supply system was obtained to achieve this. This system consisted of a Hewlett–Packard 5.4–12.5 GHz variablesignalgeneratorandanAydin100WTWTA.TheTWTAtooktheinputsignalfromthesignalgenerator, atavariablepowerlevelofapproximately1mW,andamplifiedittoavariablepowerlevelwithamaximumof approximately100W.

Theoutputpowersignalsfromeachofthetwopowersupplysystemswereobservedandcomparedusingan

Agilentspectrumanalyzerandanattenuator.Figures5.4and5.5showtheoutputsignalsfromthemagnetronand

TWTA respectively. The vertical axes represent power level and the horizontal axes represent frequency. The frequencyspanofthehorizontalaxisis100MHzforeachofthesescreencaptures.Withthisscreenresolution,the signalsappearedtobeverysimilar;however,whenthefrequencyresolutionwasincreased,itwasshownthatthey 66

Fig.5.4 Spectrum analyzer output for the magnetron. Fig.5.5 Spectrum analyzer output for the TWTA. The Thefrequencyspanforthisscreencaptureis100MHz. frequencyspanforthisscreencaptureis100MHz.

Fig.5.6 Spectrum analyzer output for the magnetron. Fig.5.7 Spectrum analyzer output for the TWTA. The Thefrequencyspanforthisscreencaptureis10MHz. frequencyspanforthisscreencaptureis10kHz. werenot.Figure5.6showstheoutputsignalfromthemagnetronwithafrequencyspanof10MHz.Itcanbeseen thatthespectralpurityofthissignalislowasitoccupiesabandwidthofapproximately2MHz.Figure5.7shows theoutputsignalfromtheTWTAwithafrequencyspanof10kHz.Notethatthisfrequencyresolutionis1000 × greaterthaninFig.5.6,butthesignalstillappearscoherent,occupyingabandwidthofapproximately3kHz.Itcan beseenthatthespectralpurityoftheTWTAsignalismuchgreaterthanthatofthemagnetron.

TheimpedancematchingoftheMETresonantcavitywasalsoobservedusinganAgilentnetworkanalyzer.The

METoperatesinafixedgeometry soitisimperativeto determinetheantennadepththatoptimizesimpedance matchingattheresonantfrequencyofthecavity.Theantennaprotrudingintothecavityisactuallyaperturbation that changes resonant frequency, so optimizing the antenna depth experimentally is challenging and very time 67

Fig.5.8 NetworkanalyzeroutputshowingtheMETwith Fig.5.9 NetworkanalyzeroutputshowingtheMETwith anantennadepthofapproximately3mm. anantennadepthofapproximately0mm. consuming.Thenetworkanalyzerwasusedtoobservetheeffectofvaryingantennadepthandtooptimizethedepth for impedance matching. The network analyzer inputs a lowpower swept signal into a system and senses the reflectedsignalpowerleveloverthesamefrequencyband.InthecaseoftheMET,itshowsreflectedsignallevels approximatelyequaltoinputsignallevelsexceptinthefrequencydomainsoftheresonantmodesofthecavity.Near thesefrequencies,powerisstoredinthestandingwavestructureoftheresonantmodeinsteadofbeingreflected.

Figures5.8and5.9showoutputfromthenetworkanalyzerfortwodifferentrepresentativeantennadepths. The

z verticalaxesrepresentpowerlevelindBandthehorizontalaxesrepresentfrequency.TheTM 011 modeisofinterest sothefrequencyspanforeachofthesescreencapturesis1GHzcenteredat7.5GHz.Forthistypeof network analyzeroutput,afullyreflectedsignalatallfrequencieswouldberepresentedbyahorizontallineat0dBwhilea fullyabsorbedsignalatallfrequencieswouldberepresentedbyahorizontallineat50dB.Awelltunedresonant cavityshouldshowadownwardspikeataresonantfrequency.Ifthefrequencyspanislargeenough,severalspikes willoccurcorrespondingtothemanyresonantmodesofthecavity.Figure5.9showsthatthecavityistunedbestat

7.68GHzwiththeantennatipflushwiththebaseofthecavity.Thisisinaccordancewiththeresultsofnumerical electromagnetic modeling, which predicted the maximum electric field strength would occur using this configurationandthisfrequency.

AschematicofthethruststandsetupisshowninFig.5.10.Tofacilitatethrustmeasurements,amomentum trap,showninFig.5.11,wasusedtocatchanddeflecttheexhauststreamoftheMET.Themomentumtrapwasan aluminumcylindermeasuring48mmlongand28mmindiameterwithanentranceorificemeasuring9mmin diameter.Tworowsoffour3mmwideslotswerepositioned5mmand11mm,respectively,fromtheentrance 68

EntranceOrifice FlangePlate VacuumBellJar

StrainGage Flexure Momentum Assembly Trap

DeflectionCone MET ExhaustSlots Fig.5.10 Thruststandschematic. Fig.5.11 Momentumtrapwith28mmdiameter. orifice.A45degdeflectionconewasscrewedintotheupperportionofthemomentumtrap.Thetipoftheconewas

24mmdownstreamfromtheentranceorifice.Theexhaustjetpassedthroughtheorificeinthebottomofthetrap, impingedonthecone,wasredirected,andexitedthroughtheexhaustslots.Themomentumtrapwasattachedtoa thinaluminumflexurewithtwostraingagesmountedonitperpendiculartoeachother.Theelectricalleadsofthe straingageswerefedthroughtheflangeplateofthevacuumfacilitytoaVishay3800strainindicator.Theflexure wasclampedtoabase,whichwassecuredtotheflangeplate.Whenthethrusterwasoperated,themomentumtrap transmittedaload,whichwasassumedequaltothethrust,totheflexure.Thedeformationwasobservedusingthe strainindicator.Theflexurewascalibratedtoconvertthestrainmeasurementtothrust.Inanefforttopreventerrors in thrust measurement due to thermal deformation ofthe flexure,a material withlow thermalconductivity was placedbetweenthemomentumtrapandtheflexuretoreduceheatflow.

B. ExperimentalProceduresandTheoreticalCalculations

TheprimaryobjectiveofthisinvestigationwasthecharacterizationofhotfireoperationoftheMET.However, muchwaslearnedbyobservingitsoperationundercoldflowconditions.First,coldflowtemperatureswereknown and predictions of thrust were more accurate. Therefore,coldflowtesting wasusedtovalidatethethrust stand measurement concept. Secondly, hot fire chamber temperatures were not directly measured, but were instead calculatedwiththemassflowequationusingthemethoddescribedinCh.2.Theratioofhotandcold chamber pressures yielded insight on chamber temperature and, thus, specific impulse. To determine the cold flow characteristicsoftheMETwiththedifferentnozzles,chamberpressurewasobservedatvaryingmassflows.After evacuating the vacuum chamber, the thruster mass flow was increased incrementally while recording chamber 69 pressure. This procedure was performed over the same range of mass flow used for hot fire testing for direct comparison.

ThehotfirecharacteristicsoftheMETwereobservedduringoperationinvacuum.Propellantwasintroduced intothechamberandbroughttoapressuresufficientlylowenoughforelectricbreakdowntooccur,atwhichtime themicrowaveenergywasintroduced.Thispressurewasusuallycloseto1kPa.Adiffuseplasmawouldthenignite.

Increasingmassflowcausedtheplasmatocoalescenearthenozzleentrance.Themassflowcontrollerwassettoa desired flow rate and the chamber pressure and forward and reflected powers were recorded when the system reachedsteadystate.Fortestingwiththemagnetronpowersupply,thefrequencywasvariedatagivenmassflowto maximizechamberpressureand,hence,pressureratio.TestingwiththeTWTApowersupplywasmoredetailed sincefrequencyandpowercouldbeindependentlyvaried.Testswereconductedatconstantmassflowandforward powerleveloverarangeoffrequenciestodeterminetheoperatingrangefordifferentpropellants.Inothercases, testswereconductedholdingmassflowandfrequencyconstantwhileincrementallydecreasingforwardpowerto determinetheloweroperatinglimits.

Inanefforttovalidatethe momentumtrapthruststand,coldflowthrusttesting wasperformedinvacuum.

Beforeeachtest,thestraingageflexurewascalibratedtodetermineitsresponsetoanappliedload.Themomentum trapwaspositionedoverthenozzleandthestraingageflexurewassecuredtoitsbase.Knownweightsoverthe rangeoftheexpectedthrustwereaddedtotheflexureoverthecenterofthedeflectionconeandthe strain was recorded.Asexpected,theresponsewaslinear.Aftercalibration,thrustmeasurementswereperformed.Themass flowwassettoadesiredrate.Whenthesystemreachedsteadystate,thestrainreadingwasrecorded.Themassflow was then switched off and the strain reading was again recorded when the system reached steady state. The differenceofthestrainmeasurementswasthenusedforcalculationofthrustwiththeslopeofthecalibrationcurve.

Thesamemethodwasusedforhotfirethrustmeasurements.

ThemethodusedtocalculateperformancewaspresentedinChapter2andthedefinitionofthrustefficiency wasgiveninEq.(1.4).Anotherimportantfigureofmeritthatwillbediscussedisthethermalorheatingefficiency relatingthechangeinchamberstagnationenthalpytotheabsorbedpowerby

ɺ ηH=m CT p 0 P abs (5.1)

70

Specificpowerisdefinedas

ɺ Pspec= P abs / m (5.2)

Uncertaintiesincalculatedquantitiesareestimatedusingstandarderrorpropagationtechniquesthatincludethe manufacturergivenmeasurementuncertaintiesoftheapparatusdescribedintheprevioussection.

III.ResultsandDiscussion

A. EffectsofNozzleThroatDiameterVariationUsingNitrogenandSimulatedHydrazine

Nozzlethroatdiametereffectswereobservedusingpurenitrogen(N 2)andsimulatedhydrazine(N 2+2H 2, X=

1)propellantsuppliedatroomtemperature.Hotfiretestingwasperformedwitheachnozzleusingthemagnetron powersupply.Fornitrogen,theforwardpowerlevelvariedwithfrequencyintherangeof72–79Wwithanaverage of75W.Forsimulatedhydrazine,theforwardpowerlevelvariedwithfrequencyintherangeof76–85Wwithan averageof79W.Themassflowwasincreasedincrementallyoverarangeof1.04–10.41mg/sfornitrogenand

0.24–1.83mg/sforsimulatedhydrazine.Powerandpressuremeasurementswereobtainedwhenthesystemreached asteadystateatagivenmassflow.Forsimulated hydrazine,themassflowwasincreaseduntiltheplasma was extinguished.

Coupling efficiency for each propellant is shown in Figs. 5.12 and 5.13. The uncertainty of the coupling efficiencymeasurementsisestimatedtobe±1%orless.Foreachpropellant,couplingefficiencyisseentobea

100 100

95 95

90 90

85 85

80 d*=0.272mm 80 d*=0.272mm 75 d*=0.221mm 75 opigEfcec(%) CouplingEfficiency opigEfcec(%) CouplingEfficiency d*=0.140mm d*=0.221mm 70 70 0 100 200 300 400 500 600 0 10 20 30 40 50 ChamberPressure(kPa) ChamberPressure(kPa) Fig.5.12 Coupling efficiency vs. chamber pressure Fig.5.13 Coupling efficiency vs. chamber pressure using N 2, 75 W average forward power. Nozzle throat using N2 + 2H 2, 79 W average forward power. Nozzle diameterisgiveninlegend. throatdiameterisgiveninlegend. 71 strongfunctionofchamberpressure.Usingnitrogen,couplingefficiencywas>90%forpressuresof100kPaor greater.Usingsimulatedhydrazine,couplingefficiencyreachedamaximumof99.7%atapproximately24.8kPa.

Coupling efficiency decreased rapidly as chamber pressure was increased past this point, probably due to ion– electronrecombinationandadecreaseinplasmaconductivity.Theseresultsaresimilartotheresultsoftestingwith the 2.45GHz MET where coupling efficiency with simulated hydrazine was approximately 90% at a chamber pressureof40kPa.

Pressureratio,showninFigs.5.14and5.15,andchambertemperature,showninFigs.5.16and5.17,generally increasedwithincreasingmassflow.Chambertemperaturealsoincreasesatagivenmassflowbydecreasingnozzle throat diameter. Both effects are attributed to increasing chamber pressure. As chamber pressure increases, the plasmaandsurroundinggasshifttowardthermalequilibriumduetotheincreasednumberofparticlecollisions.The

3.0 1.6

1.5 2.5 1.4

2.0 1.3

d*=0.272mm 1.2 PressureRatio 1.5 PressureRatio d*=0.221mm d*=0.272mm 1.1 d*=0.140mm d*=0.221mm 1.0 1.0 0 100 200 300 400 500 600 0 10 20 30 40 50 ChamberPressure(kPa) ChamberPressure(kPa) Fig.5.14 Pressureratiovs.chamberpressureusingN 2, Fig.5.15 Pressureratiovs.chamberpressureusingN2+ 75 W average forward power. Nozzle throat diameter is 2H 2,79Waverageforwardpower.Nozzlethroatdiameter giveninlegend. isgiveninlegend. 2500 800 204s d*=0.272mm Isp d*=0.272mm 700 193s d*=0.221mm 2000 d*=0.221mm d*=0.140mm 600 1500 500 400 Temperature(K) Temperature(K) 1000 300

500 200 0 20 40 60 80 0 50 100 150 200 250 300 SpecificPower(MJ/kg) SpecificPower(MJ/kg) Fig.5.16 Chambertemperaturevs.specificpowerusing Fig.5.17 Chambertemperaturevs.specificpowerusing N2,75Waverageforwardpower.Nozzlethroatdiameter N2 + 2H 2, 79 W average forward power. Nozzle throat isgiveninlegend. diameterisgiveninlegend.Max Isp isshown. 72 chamber pressure increase also forces the plasma closer to the nozzle. This increases heating efficiency by decreasingtheamountofpropellantthatcanflowaroundtheplasmaandbeexhaustedwithoutbeingheatedtoa high temperature. The uncertainties in chamber temperature were ±15–100 K for nitrogen and ±20–60 K for simulatedhydrazine.

Usingnitrogen,themaximumchambertemperatureobservedwas2383Kusingthe0.221mmnozzle.Maxima wereobservedforalltemperaturecurves.Onthehighspecificpowersideofthecurve(lowmassflowside)moving towardthemaximum,thepressureincreaseisgoodforpropellantheatingduetothereasonsstatedpreviously.The maximumpointoccurswhenthespecificpowerbecomestoolowtoeffectivelyheatthatamountofpropellant.In thispressureregion,ionizationdecreasesduetoincreasedion–electronrecombination,andeventuallytheplasmais extinguished.

Onthehighspecificpowersideofthetemperature maximum,chambertemperatureand,therefore,specific impulsecanbeincreasedsignificantlyatagivenmassflowandspecificpowerbydecreasingnozzlethroatdiameter todriveupthechamberpressure.Forexample,withamassflowof4.16mg/s,chambertemperaturewasincreased from1774Kto2353Kbydecreasingnozzlethroatdiameterfrom0.272mmto0.140mm.Thiscorrespondstoan increaseinspecificimpulseofapproximately15%.Couplingefficiencyalsoincreasedwithincreasingmassflow andpressure,sotypically,foragivenmassflow,absorbedpoweraswellastemperatureincreasedwithdecreasing nozzle throat diameter. However, the absorbed powerincreasebyitselfdoesnotfullyaccountforthe observed increase in chamber temperature. For the previous example with a mass flow of 4.16 mg/s, the temperature increased33%followingan8%increaseinabsorbedpower.Thisdemonstratesanincreaseinheatingefficiencyat highpressure.

Rotationalinstabilitywasobservedforallnozzlesatamassflowof6.25mg/s.Theplasmawaspulledfromits stablelocationonthecavityaxisnearthenozzleandbegantorotateabouttheaxis.Forthe0.272and0.221mm nozzles,theflowbecamestableagainasmassflowwasincreased.Forthe0.140mmnozzle,theinstabilitypersisted withincreasingmassflowuntiltheplasmawasextinguished,whichoccurredatachamberpressureabove568kPa.

Theinstabilitywastheresultofcoupledfluiddynamicandelectromagneticphenomena.Precessionoftheplasma about the axis of the cavity has two direct effects on chamber conditions. First, moving away from the stable positionontheaxisnearthenozzleincreasestheamountofpropellantthatcanbeexhaustedwithoutbeingheatedto 73 ahightemperature,thusreducingchamberpressure.Secondly,theresonantelectricfielddistributionisperturbed.

Perturbationsofchamberpressureandelectricfieldleadtoperturbationsofabsorbedpower.

Using simulated hydrazine, the maximum chamber temperature observed was 717 K using the 0.221mm nozzle.Forbothnozzles,chambertemperaturewasstillincreasingpriortoplasmaextinction.Chambertemperature and,therefore,specificimpulsecanbeincreasedsignificantlyatagivenmassflowandspecificpowerbydecreasing nozzlethroatdiametertodriveupthechamberpressure.Forexample,withamassflowof0.61mg/s,chamber temperaturewasincreasedfrom388Kto626Kbydecreasingnozzlethroatdiameterfrom0.272mmto0.221mm.

Thiscorrespondstoanincreaseinspecificimpulseofapproximately27%.Couplingefficiencyalsoincreasedwith increasingmassflowandpressureoveracertainrange,so,typically,foragivenmassflow,absorbedpoweraswell astemperatureincreasedwithdecreasingnozzlethroatdiameter.Aswasthecasewhenusingnitrogen,theabsorbed powerincreasebyitselfdoesnotfullyaccountfortheobservedincreaseinchambertemperature.Fortheprevious example with a mass flow of 0.61 mg/s, the temperature increased 61% following a 13% increase in absorbed power. Conversely, using the 0.272mm nozzle, by increasing the mass flow from 1.52 mg/s to 1.83 mg/s, the chambertemperatureincreased7%followinga5%decreaseinabsorbedpower.Thisdemonstratesanincreasein heatingefficiencyathighpressure.ThemaximumspecificimpulseforeachtestcaseisalsoshowninFig.5.17.

Specific impulse was calculated assuming a perfect expansion to zero pressure. The uncertainty of the specific impulsecalculationsisestimatedtobe±4–7s.

In the laboratory, simulated hydrazine propellant is injected at room temperature. If the MET were to be combined with a hydrazine monopropellant system, the propellant would actually be injected at the hydrazine decompositiontemperature.Thistemperaturerangesfromapproximately1700Kfor X=0to850Kfor X=1.The microwaveenergywouldthenbeusedtofurtherincreasethechamberstagnationenthalpy.Assuminganinjection temperatureof850Kandthesameenthalpyincreasefromtheadditionofmicrowaveenergy,themaximumspecific impulseshowninFig.5.17willincreasefrom204sto272s.

B. EffectsofAmmoniaDissociationParameterVariation

Theeffectsofinjectedpropellantcompositionwereexaminedusingthe0.272mmnozzle.Themagnetronwas usedtosupplymicrowavepowertothecavityandwastunedtomaximizechamberpressureand,thus,chamber temperature at a given mass flow. Chamber conditions were examined using several propellant mixtures 74

100 2.2 X=0.0 95 2.0 X=0.4 90 X=1.0 1.8

85 1.6

80 1.4 X=0.0 PressureRatio X=0.4 75 1.2 opigEfcec(%) CouplingEfficiency X=1.0 70 1.0 0 20 40 60 80 0 20 40 60 80 ChamberPressure(kPa) ChamberPressure(kPa) Fig.5.18 Coupling efficiency vs. chamber pressure Fig.5.19 Pressure ratio vs. chamber pressure using usingsimulatedhydrazinewithdifferentvaluesofdegree simulated hydrazine with different values of degree of ofammoniadissociation, X.Averageforwardpoweris80 ammoniadissociation, X.Averageforwardpoweris80W, W,0.272mmnozzle. 0.272mmnozzle. corresponding to simulated hydrazine with different 800 I 207s sp X=0.0 203s degrees of ammonia dissociation, X, and propellant was 700 X=0.4 X=1.0 supplied at room temperature. The forward power level 600 186s variedwithvaryingfrequencyintherangeof74–89 W 500 eprtr(K) Temperature withanaverageof80W.Witheach mixture,the mass 400 flowwasincreaseduntiltheplasmawasextinguished. 300 0 50 100 150 200 250 300 Ingeneral,thecouplingefficiencycurves,shownin SpecificPower(MJ/kg) Fig. 5.18, exhibit maxima. The uncertainty for the Fig.5.20 Chambertemperaturevs.specificpowerusing simulated hydrazine with different values of degree of ammoniadissociation, X.Averageforwardpoweris80W, coupling efficiency measurements was approximately 0.272mmnozzle.Max Isp foreachcaseisshown. ±1% or less. Coupling efficiency increased with increasingmassflowandchamberpressure,duetotheincreasednumberofparticlecollisions,reachingamaximum ofover95%withallmixtures.Aschamberpressurewasincreasedpastthatpoint,couplingefficiencydecreased, probablyduetoion–electronrecombination.Themaximaoccurredatslightlydifferentpressuresdependingonthe valueof X,butalloccurrednear30kPa.

Pressureratio,showninFig.5.19,andchambertemperature,showninFig.5.20,increasedwithincreasingmass flowforeachmixtureduetotheassociatedchamberpressureincrease.Aschamberpressureincreases,theplasma and surrounding gas shift toward thermal equilibrium due to the increased number of particle collisions. The chamber pressure increase also forces the plasma closer to the nozzle. This increases heating efficiency by decreasingtheamountofpropellantthatcanflowaroundtheplasmaandbeexhaustedwithoutbeingheatedtoa 75 hightemperature.Theuncertaintyofthetemperatureisestimatedtobe±10–35K.Atagivenpressure,chamber temperatureincreasesas Xdecreases,thoughnotasmuchasitwouldappearlookingatthepressureratiodata.This isduetotheendothermicdissociationofNH 3,whichconstitutesmoreoftheinitialpropellant composition as X decreases. The maximum specific impulse for each test case is also shown in Fig. 5.20. Specific impulse was calculatedassumingaperfectexpansiontozeropressure.Theuncertaintyofthespecificimpulsecalculations is estimatedtobe±2–4s.Comparingperformancefordifferent valuesof X,thehighestpressure,temperature,and specificimpulsewerereachedwith X=0.4,correspondingtoa2.4NH 3+1.8N2+2.4H 2propellantmixture.The lowestmaximumchambertemperaturewasobservedwiththe X=1flow,correspondingtoaN 2+2H 2propellant mixture. Even though coupling efficiency and, thus, absorbed power decreased at higher pressures, chamber temperaturecontinuedtorisedemonstratingtheincreaseinheatingefficiencyassociatedwithincreasedpressure.

Inthelaboratory,propellantisinjectedatroomtemperature.Assuminginsteadaninjectiontemperatureof850

K, corresponding to the X = 1 hydrazine decomposition temperature, and the same enthalpy increase from the additionofmicrowaveenergy,themaximumspecificimpulsefor X=1showninFig.5.20mayincreasefrom186s to258s.Thespecificimpulsecalculatedhereassumingheatedpropellantinjectionislowerthanthatoftheprevious sectionduetotheuseofthelargernozzleforthistesting.

C. EffectsofMicrowaveFrequencyVariationUsingSimulatedHydrazine

TheTWTAsystemofferstheabilitytoindependently vary forwardpowerand frequency,and wasusedto determinetheeffectofvaryingfrequencyonchamberpressureandtemperature.Massflowandforwardpowerwere heldconstantwhilefrequencywasvariedoverthefulloperatingrangeoverwhichtheplasmacouldbesustained.

TestingwasperformedwithaN 2+4NH 3propellantmixture,correspondingto X=0,usingthe0.221mmnozzle.

Forwardpowerwasheldapproximatelyconstantatlevelsof80Wand110W,varyingwithin5%oftherespective powerlevelwithvaryingfrequency.

ChamberpressureandtemperatureareshowninFigs.5.21and5.22,respectively.Amaximumpressureand temperatureoccurnearthemiddleoftheoperating rangeforagivenmassflowandpowerlevel.Theoperating rangewidenswithincreasingpowerandcontractswithincreasingmassflow.Thisistobeexpected.Thethreshold electricfieldrequiredtosustaintheplasmaincreaseswithincreasingpressureandtheelectricfieldstrengthinthe cavitydecreasesastheoperatingfrequencymovesawayfromtheresonantfrequencyofthecavity.Higherpoweris 76

55 850 1.29mg/s Isp 220s 1.29mg/s 50 1.07mg/s 800 1.07mg/s 0.86mg/s 0.86mg/s 45 750 40 700 35

Temperature(K) 197s 30 650 ChamberPressure(kPa)

25 600 7.45 7.50 7.55 7.60 7.65 7.45 7.50 7.55 7.60 7.65 Frequency(GHz) Frequency(GHz) Fig.5.21 Chamber pressure vs. frequency using N 2 + Fig.5.22 Chamber temperature vs. frequency using N 2 4NH 3, 0.221mm nozzle. Solid points, Pfor = 80 W; open +4NH 3,0.221mmnozzle.Solidpoints, Pfor =80W;open points, Pfor =110W. points, Pfor =110W. necessary to compensate. The results shown here agree 100 95 withtheresultsofnumericalelectromagneticmodelingof 90 this cavity. Secondorder polynomial curvefits were 85 80 applied to the data to clearly demonstrate the trends. 75 70 1.29mg/s Chambertemperaturevariessignificantlywithfrequency 1.07mg/s

opigEfcec(%) CouplingEfficiency 65 0.86mg/s and power, thus having a substantial effect on 60 7.45 7.50 7.55 7.60 7.65 performance.Forexample,withamassflowof1.07mg/s Frequency(GHz) andaforwardpowerlevelofapproximately110W,the Fig.5.23 Coupling efficiency vs. frequency using N 2 + 4NH3,0.221mmnozzle, Pfor =80W. chambertemperaturevariedfromaminimumof669Kto a maximum of 808 K by varying frequency. This temperature increase corresponds to an increase in specific impulseofapproximately10%.Forthatsamemassflow,themaximumtemperatureincreasedfrom747Kto808K byincreasingforwardpowerfrom80Wto110W.Thistemperatureincreasecorrespondstoanincreaseinspecific impulseof4%followinga37%increaseinabsorbedpower.Theuncertaintyofthetemperatureisestimatedtobe

±20–35 K. Two representative values of specific impulse are also shown in Fig. 5.22. Specific impulse was calculatedassumingaperfectexpansiontozeropressure.Theuncertaintyofthespecificimpulseisestimatedtobe

±5s.

Couplingefficiency,showninFig.5.23,alsoshowedmaximaatacertainfrequency;however,themaximum couplingefficiencydidnotoccuratthefrequencyatwhichthemaximumchamberpressureandtemperaturewere observed.Atthefrequencyofmaximumcouplingefficiency,theoccurrenceofionizationcollisionsishigherthanat thefrequencyofmaximumtemperature,wheretheoccurrenceofnonionizationcollisionsthatresultinpropellant 77

45 800 40 1.79mg/s 1.79mg/s I 198s 35 1.19mg/s 700 sp 1.19mg/s 30 0.60mg/s 0.60mg/s 600 192s 25 20 500 15 Temperature(K) 10 400 ChamberPressure(kPa) 5 0 300 7.50 7.55 7.60 7.65 7.70 7.50 7.55 7.60 7.65 7.70 Frequency(GHz) Frequency(GHz) Fig.5.24 Chamber pressure vs. frequency using N 2 + Fig.5.25 Chamber temperature vs. frequency using N 2 2H 2, 0.272mm nozzle. Solid points, Pfor = 80 W; open + 2H 2, 0.272mm nozzle. Solid points, Pfor =80W;open points, Pfor =105W. points, Pfor =105W. heatingishigher.Ingeneral,thefrequencyofmaximum 100 1.79mg/s powerabsorptionwasapproximately40MHzlowerthan 90 1.19mg/s 0.60mg/s the frequency of maximum temperature. The reason for 80 the shift of the curves for different mass flows is the 70 differenceinchamberpressure. 60 opigEfcec(%) CouplingEfficiency

Testing was also performed with a N 2 + 2H 2 50 7.50 7.55 7.60 7.65 7.70 propellant mixture, corresponding to X = 1, using the Frequency(GHz) 0.272mm nozzle. Forward power was held constant at Fig.5.26 Coupling efficiency vs. frequency using N 2 + 2H 2,0.272mmnozzle, Pfor =80W. levelsof80Wand105W,varyingwithin<1%ofthe respectivepowerlevelwithvaryingfrequency.Figures5.24–5.26showtheresults,whichsharesimilartrendswith the X=0flows.Amaximumchamberpressureandtemperatureoccurnearthemiddleoftheoperatingrangefora given mass flowandpower level. Secondorderpolynomialcurvefits wereagainappliedtothedatato clearly demonstratethetrends.Chambertemperatureand,thus,specificimpulsevarywithfrequencyandpower,though less substantially than for the X =0propellant mixture.Besidesbeingadifferentinitial propellant composition, anotherpossiblereasonforthisdecreasedsensitivitycouldbethepressureeffectsassociatedwithusingdifferent nozzles.Forthistesting,thelargernozzlewasused,whichwasshowntobelesseffectiveinheatingthepropellant.

With a mass flow of 1.79 mg/s and a forward power level of 105 W, the chamber temperature varied from a minimumof639Ktoamaximumof679Kbyvaryingfrequency.Thistemperatureincreasecorrespondsto an increaseinspecificimpulseofapproximately3%.Forthatsamemassflow,themaximumtemperatureobservedat 78 eachpowerlevelincreasedfrom628Kto679Kbyincreasingpower.Thistemperatureincreasecorrespondstoan increaseinspecificimpulseof4%followinga26%increaseinabsorbedpower.Theuncertaintyofthetemperature isestimatedtobe±10–15K.TworepresentativevaluesofspecificimpulsearealsoshowninFig.5.25.Specific impulsewascalculatedassumingaperfectexpansiontozeropressure.Theuncertaintyofthespecificimpulseis estimatedtobe±2s.

Couplingefficiency,showninFig.5.26,alsoshowedmaximaatacertainfrequency,butagain,themaximum couplingefficiencydidnotoccuratthefrequencyatwhichthemaximumchamberpressureandtemperaturewere observed.Ingeneral,thefrequencyofmaximumpowerabsorptionwasapproximately20–60MHzlowerthanthe frequencyofmaximumtemperature.

D. EffectsofMicrowavePowerVariationUsingSimulatedHydrazine

Testswereperformedwiththe X=0propellantmixtureand0.221mmnozzletodeterminetheeffectofvarying forwardpoweratconstantmassflowandfrequency. Thefrequencywasheldconstantat7.55GHzforall mass flowsandtheforwardpowerwasdecreaseduntiltheplasmawasextinguished.Figure5.27showstheresults.Fora givenmassflowandfrequency,chamberpressureandtemperatureincreasedsignificantlywithincreasingpower.

Forexample,withamassflowof1.07mg/s,chambertemperatureincreasedfrom649Kto813Kbyincreasingthe absorbedpowerfrom54Wto106W.Thiscorrespondstoanincreaseinspecificimpulseof12%followinga96% increaseinabsorbedpower.Sincepowerwasdecreaseduntiltheplasmaextinguished,thedatasuggestthat,ata givenfrequency,thereexistsaminimumspecificpowernecessarytosustaintheplasma.At7.55GHzusing the

55 2.2 70 1.7 2.68mg/s 50 60 2.38mg/s 1.6 2.1 50 1.5 45 1.29mg/s 1.79mg/s 40 1.4 40 2.0 30 1.3 1.07mg/s 1.19mg/s 35 1.9 PressureRatio 20 0.60mg/s 1.2 PressureRatio

ChamberPressure(kPa) 30 ChamberPressure(kPa) 10 1.1 0.86mg/s 25 1.8 0 1.0 0 20 40 60 80 100 120 140 20 40 60 80 100 120 140 160 180 SpecificPower(MJ/kg) SpecificPower(MJ/kg) Fig.5.27 Chamber pressure and pressure ratio vs. Fig.5.28 Chamber pressure and pressure ratio vs. specific power for various mass flows using N 2 + 4NH 3, specific power for various mass flows using N 2 + 2H 2, 0.221mm nozzle. Solid points, pressure; open points, 0.272mm nozzle. Solid points, pressure; open points, pressureratio. pressureratio. 79

0.221mm nozzle, the minimum specific power was 900 2.68mg/s approximately50MJ/kg. 800 2.38mg/s 700 1.79mg/s Testswerealsoperformedwiththe X=1propellant 600 1.19mg/s mixtureand0.272mmnozzletodeterminetheeffectof 500

Temperature(K) 0.60mg/s varying forward power at constant mass flow and 400 80W 40W 60W 100W frequency.Thefrequencywasheldconstantat7.57GHz 300 35 55 75 95 115 135 155 175 forallmassflowsandtheforwardpowerwasdecreased SpecificPower(MJ/kg) untiltheplasmawasextinguished.Figure5.28showsthe Fig.5.29 Parametric plot of chamber temperature vs. specific power with mass flow (solid lines) and absorbed results. For a given mass flow and frequency, chamber power(dashedlines)asparametersusingN 2+2H 2,0.272 mmnozzle. pressure and temperature increased significantly with increasingpower.Forexample,withamassflowof1.79mg/s,chambertemperatureincreasedfrom580Kto675K byincreasingtheabsorbedpowerfrom65Wto102W.Thiscorrespondstoanincreaseinspecificimpulseof8% followinga57%increaseinabsorbedpower.Sincepowerwasdecreaseduntiltheplasmaextinguished,thedata suggestthat,atagivenfrequency,thereexistsaminimumspecificpowernecessarytosustaintheplasma.At7.57

GHzusingthe0.272mmnozzle,theminimumspecificpowerwasapproximately35MJ/kg.

Specificpowercanbevariedbychangingabsorbedpowerormassflow.Thevariationofeitherparametercan havedifferenteffects.Secondorderpolynomialcurvefitswereappliedtothedatafor X=1showninFig.5.28.The curvefitswerethenusedtogenerateaparametricplotofchambertemperatureasafunctionofspecificpowerwith massflowandabsorbedpowerasparameters.Theparametricplot,showninFig.5.29,representsonlythecurvefit dataandnotanyextrapolatedtrends.Chambertemperaturedoesnotdependsolelyonspecificpower.Foragiven mass flow, chamber temperature increases with increasing absorbed power and, thus, increasing specific power.

Thisistobeexpected.However,foragivenpowerlevel,chambertemperatureincreaseswithincreasingmassflow and, thus, decreasing specific power. This demonstratesanincreasein heatingefficiencydue tothe increase in chamber pressure associated with higher mass flow. Both high pressure and high power are necessary for high performance.

Theminimumoperablespecificpowerforthe X=1flowusingthe0.272mmnozzlewasobservedtobe35

MJ/kg,whereasitwas50MJ/kgforthe X=0flowusingthe0.221mmnozzle.However,datafromothertesting performedwiththeX=0propellantmixtureusingthe0.272mmnozzleshowedthatalowerspecificpowercould, 80 infact,bereached(Fig.5.20).Thiseffectisdue to the 12

) Increasing 1/2 10 decrease in chamber pressure at a given mass flow performance (W 8 1/2 associated with a larger nozzle throat diameter. The Regionoftypical 6 operatingconditionsin threshold electric field required to sustain ionization thisstudy 4 Thresholds becomes proportional to pressure in the pressure range 2 X=0 ForwardPower X=1 relevant to this testing.1 As pressure is increased, 0 1 10 100 electrons participate in elastic and inelastic collisions ChamberPressure(kPa) morefrequentlyandhavelesstimetobeacceleratedby Fig.5.30 Square root of forward power vs. chamber pressure indicating the threshold power required to theelectricfieldtobuildupsufficientkineticenergyfor sustaintheplasmaforeachpropellantmixture. highprobabilityofionization.Energyislostinsteadtoelectronicexcitationofneutralsandinternalenergymodesof molecules.Theresultisthatelectricfieldstrengthmustbeincreasedtomaintainahighprobabilityofparticipation in collisions that result in ionization in order to balance the primary loss mechanism, which is ion–electron recombination. Figure 5.30 shows data indicating the threshold power required to sustain the plasma for each propellant mixture. The data shown are those obtained immediately prior to plasma extinction in response to changing operating conditions. Electric field strength, E, is typically plotted as a function of pressure on a logarithmicscale.Sincepowerisproportionalto E2,thesquarerootofforwardpowerisplottedinstead.Thedata indicatetheexpectedrelationship.Theregionoftypicaloperatingconditionsofthethrusterduringthisstudyisalso denotedinFig.5.30.Atagivenpowerlevel,theperformanceoftheMETincreasedwithincreasingpressureuntil the power threshold was reached and the plasma was extinguished. It is reasonable to conclude that maximum performance is likely to increase as available forward power is increased because the pressure reached before plasma extinction will increase. If the extrapolated trend is valid at atmospheric pressure, the threshold power requiredforoperationwouldbeapproximately130Wfor X=1.

E. ThrustMeasurementsUsingSimulatedHydrazine

ThrustmeasurementswereobtainedusingsimulatedhydrazinewiththeTWTApowersupplysystemandthe

0.272mm nozzle.Theforwardpowerlevelforalltesting was105W,varying<1%. Threedifferentpropellant compositionswerestudiedtodeterminewhichwouldyieldmaximumperformanceandthepropellantwassupplied atroomtemperature.Foreachmixture,threemassflowswerechosentorepresenttheapproximaterangeoverwhich 81

5 190 X=0.0, theor X=0.0,0.4,theor 170 4 X=1.0,theor 150 X=0.4, theor 3 X=1.0,theor 130

2 110

Thrust(mN) X=1.0,exp 90 X=1.0,exp

1 X=0.4,exp SpecificImpulse(s) X=0.4,exp 70 X=0.0,exp X=0.0,exp 0 50 1.0 1.5 2.0 2.5 3.0 0 20 40 60 80 100 MassFlow(mg/s) SpecificPower(MJ/kg) Fig.5.31Thrust vs. mass flow using simulated hydrazine Fig.5.32 Specific impulse vs. specific power using withdifferentvaluesofdegreeofammoniadissociation, X. simulated hydrazine with different values of degree of Forwardpoweris105W,0.272mmnozzle. ammoniadissociation, X.Forwardpoweris105W,0.272 mmnozzle. a plasma could be sustained. Thrust was measured five 5 times at each mass flow. The corresponding specific 4 impulse was then determined using Eq. (1.2) with the X=0.0,0.4, theor 3 experimental values for thrust and mass flow. Figures 2 X=1.0,theor 5.31–5.33 show the average results of the tests. The X=1.0,exp

hutEfcec(%) ThrustEfficiency 1 uncertaintyinthethrustmeasurementsisestimatedtobe X=0.4,exp X=0.0,exp ±0.5 mN or less and the uncertainty in the specific 0 0 10 20 30 40 50 60 70 impulse measurements is estimated to be ±5–40 s. The ChamberPressure(kPa) Fig.5.33 Thrust efficiency vs. chamber pressure using uncertaintiesinthetheoreticalthrustandspecificimpulse simulated hydrazine with different values of degree of ammoniadissociation, X.Forwardpoweris105W,0.272 calculations are estimated to be ±0.1 mN and ±3 s, mmnozzle. respectively.

Themaximummeasuredspecificimpulsewasobtainedusingthe X=1propellantmixture.Usingthisinitial propellantcomposition,aspecificimpulseof140swasmeasuredwithacorrespondingthrustof2.9mNandthrust efficiencyof1.9%.Thelinearityofthethrustasafunctionofchamberpressureisgood,butatrendofincreasing differencebetweencalculatedandexperimentalvaluesforthrustandspecificimpulsecanbeseenas Xdecreases.

Performancemeasurementsdeviatedsignificantlyfromtheoreticalcalculations.Theaveragepercenterrorranged from3–41%.Oneprobablesourceofdiscrepancyistheneglectofchangesinboundarylayerconstrictionatthe nozzlethroatbetweenthehotandcoldstates.Astheboundarylayeratthethroatgrows,theeffectivenozzlearea decreasesandthepressureatagivenmassflowincreases.Thecalculationofchambertemperaturewasbasedonthe observedpressureriseatagivenmassflowbetweenthehotandcoldstates.Itwasassumedthatthepressurerise 82 wasduesolelytotemperatureincreaseandnottothroatareadecrease.LowReynoldsnumbernozzlesexperience significant boundary layer losses. The boundary layerconstitutesasubstantialportionoftheflow,but accurate predictionsofitsgrowthasafunctionoftemperaturecanbedifficult.Anothersourceoferrorisheattransfertothe nozzle wall. This loss is persistent due to the unavoidable temperature gradient that exists between the high temperatureexhaustandthenozzlewall.Othersourcesoferrorincludethepossibilityofgreatererrorsinmeasured parameters,like mass flowandpressure,thanthosestatedinSectionII.A, whicharegiveninthemanufacturer literature.Instrumentationerrorscouldbehigheriftheinstrumentsarenotproperlycalibrated.

Thrustandspecificimpulsearenotablylow.Inadditiontotheinherentthrusterlossesmentionedpreviously, theMETwastestedinavacuumbelljarfacilitywithlimitedpumpingcapabilityleadingtosignificant ambient pressurelosses.Typicalambientpressuresrangedfrom185–325Padependingonmassflow.Iftestinghadbeen performedinafacilitycapableofpumpingdownto negligible ambient pressures, calculated thrust and specific impulse would haveincreasedbyapproximately20%. Additionalincreasesinperformancecouldberealized by using a nozzle with a higher area ratio, Ae/A* . This would allow for further expansion and acceleration of the exhaust flow. Using the chamber temperatures calculatedinthisstudyandassuming exhaustflowexpansion to vacuumpressure,calculatedthrustandspecificimpulsewouldincreasebyapproximately30–40%.

Takenatfacevalue,thesedatadonotindicateaclearadvantagetomicrowaveaugmentationofahydrazine monopropellantthrustersincetheperformanceisatalevelalreadyofferedbytheconventionalthruster.However,it shouldbenotedthat,inthelaboratory,simulatedhydrazinepropellantisinjectedatroomtemperature.IftheMET weretobecombinedwithahydrazinemonopropellantsystem,thepropellantwouldbeinjectedatthehydrazine decompositiontemperature.Thistemperaturerangesfromapproximately1700Kfor X=0to850Kfor X=1.The microwaveenergywouldthenbeusedtofurtherincreasethechamberstagnationenthalpy,thusofferingspecific impulsesubstantiallyhigherthantheconventionalmonopropellantsystem.

IV.SummaryandConclusions

TheeffectsofchangingnozzlethroatdiameterontheperformanceofthelowpowerMEThavebeenobserved usingnitrogenandsimulatedhydrazinepropellants.TheperformanceoftheMETwasinfluencedheavilybythe chamberpressureatwhichitwasoperated.Chambertemperatureandcouplingefficiencyincreasedwithdecreasing nozzlethroatdiameterduetotheassociatedchamberpressureincrease.Highpressureandpositionalstabilityofthe 83 plasma were more important than high specific power for obtaining high performance. Chamber temperature increasedwithdecreasingspecificpowerduetotheincreaseinchamberpressureassociatedwithincreasingmass flow.Significantincreasesinperformancecanberealizedbyproperlydesigningnozzles.Thereisalimitonthe degreetowhichnozzlethroatdiametercanbedecreasedwhile still expecting an increase in performance. Low

Reynoldsnumberlossesbecomeincreasinglysignificantwhiledecreasingnozzlethroatdiameterandatsomepoint dominate,resultinginanetlossofperformance.

TheeffectsoffrequencyandpowervariationontheperformanceofthelowpowerMEThavebeenobserved usingvariouspropellantmixturestosimulateoperationwithdecomposedhydrazine.TheperformanceoftheMET was influenced substantially by the frequency and power level at which it was operated. The power threshold necessarytosustaintheplasmawasestablishedforthetwoammoniadecompositionlimitsofsimulatedhydrazine, X

=0and X=1.Itwasfoundthat,atagivenpowerlevel,performanceincreasedwithincreasingpressureuntilthe powerthresholdwasreachedandtheplasmawasextinguished.Maximumoverallperformancecanthenbeexpected to increase as available forward power increases and the maximum pressure reached before plasma extinction increases.Theoperablefrequencyrangesforbothmixtures,atgivenmassflowratesandforwardpowerlevels,were establishedandfoundtobeinaccordancewiththeresultsofnumericalelectromagneticmodelingofthiscavity.It wasfoundthatincreasingtheforwardpowerlevelatagivenmassflowwidenedtheoperablefrequencyrangeand, conversely, increasing mass flow at a given power level contracted it. Maximum chamber pressures and temperatures were found near the middle of the frequency range, and the points of maximum temperature and coupling efficiency tended to shift toward lower frequency as mass flow was increased. These effects clearly demonstrate the resonant behavior of the cavity. The chamber temperature is not solely dependent on absorbed power.Foragivenmassflowandforwardpowerlevel,thefrequencyofmaximumchambertemperaturewasnot thesameasthefrequencyofmaximumcouplingefficiency.Itwaspossibletotunethecavitysuchthatchamber temperatureincreasedsignificantlywhileabsorbedpowerslightlydecreased.Withincreasingmassflow,notonly does the chamber temperature increase, but the frequency of maximum performance shifts and the operable frequencyrangecontracts.Therefore,theabilitytoaccuratelytunethesystemisnecessarytoreachthemaximum potentialperformanceofthethruster.Otherwise,significantlosseswillbeincurred.

TheperformanceofthelowpowerMEThasbeenexperimentallymeasuredusingthreedifferentmixturesto simulate decomposed hydrazine. The highest measured specific impulse was 140 s, obtained using the X=1 84 propellant mixture, with a thrust efficiency of 1.9%. Error between experimental and theoretical calculations increased as Xdecreased.Thediscrepancybetweenexperimentalandtheoreticalvaluesisattributedprimarilyto changesinboundarylayerconstrictionofthenozzlethroatthatarenotaccountedforinthetheoreticalcalculation.

Significant back pressure losses were also incurred due to the low pumping capability of the vacuum facility.

Calculationsofchambertemperaturesshowthatifbackpressurelossesarenegligibleandahigharearationozzleis used,theperformanceoftheMETusingcoldsimulatedhydrazinedecompositionproductsapproachesthatatypical hydrazinemonopropellantthruster.

Propellants in this study were injected at room temperature. If, instead, propellant were to be injected at hydrazinedecompositiontemperatures,asitwouldbeinaflightversionofthesystem,themicrowaveenergywould increasethechamberstagnationenthalpyandofferspecificimpulsesubstantiallyhigherthanthatofaconventional monopropellant system. Laboratory studies should be conducted using preheated propellants to determine actual operationalcapabilitiesofsuchasystemandtoexamineanychangeinnozzledischargecoefficientasafunctionof propellanttemperature.

References

1Fridman,A.andKennedy,L.A .,PlasmaPhysicsandEngineering ,Taylor&FrancisBooks,Inc.,NewYork,2004.

85

Chapter6 SummaryandConclusions

TheMETisanelectricpropulsiondevicethatuses anelectromagneticresonantcavitywithin whichafree floatingplasmaisignitedandsustainedinapropellantgas.Microwaveenergyiscoupledtothepropellant gas throughcollisionsbetweenfreeelectronsandheavyparticlesintheplasma.Theheatedpropellantis accelerated thoughagasdynamicnozzleandexhaustedtogeneratethrust.Thisheatingmechanismissimilartothatofanarcjet, whichutilizesanarcdischargeformedbetweentwoelectrodestoheatapropellantgas.Themaindifferenceisthat theMETplasmaisfreefloatingandthusthesystemdoesnotsufferfromthelifetimelimitingelectrodeerosion problemsthatarecharacteristicofthearcjet.TheMETpotentiallyoffersthrustandspecificimpulsecomparableto arcjetswithhigherefficiencyatlowpowerlevelsandlongerlifetimes.

Research was initiated to examine the feasibility of operating the MET using the products of hydrazine decomposition as the propellant gas. The goal of this research was to improve the performance of a hydrazine chemicalsystembycombiningitwithanEPsystemthatcanoutperformthearcjetanddoesnotsufferfromerosion problems. Operation with hydrazine propellant allows for integration with a conventional chemical propulsion systemonboardaspacecraft.Inaddition,suchasystemcouldpossiblybeusedformultimodeoperation,thereby enhancing the operational capabilities of the spacecraft. For example, it could be operated in a high Isp mode, suitable for stationkeeping, with microwave energy sustaining a high temperature plasma at moderately low pressures,oroperatedinahighthrustmode,suitableforrapidspacecraftrepositioning,athighpressureswithout microwaveenergyinput.OperationoftheMETusingpureammonia,anotherlightweightliquidstorablepropellant, wasalsoexaminedtodeterminehowwelltheMETperformscomparedtothearcjetusingammonia.Thefeasibility ofoperatingtheMETatvariousfrequenciesandpowerlevelsusingsimulatedhydrazineandammoniahasbeen demonstrated.

IntheMETplasma,microwaveenergyiscoupledtothepropellantgasthroughfreeelectronsintheplasma.

The electric field accelerates free electrons, which then transfer their kinetic energy to heavy particles through collision.Thus,electricfieldstrengthandchamberpressureplayimportantrolesinthepowerdepositionandenergy exchangemechanisms.Theseroleswereexaminedtheoreticallythroughnumericalmodelingofthecavityelectric fieldandexperimentallythroughthevariationofseveralMETcomponentsandparameters.Inthisprogram,testing 86

wasconductedonthe7.5GHzMETatapowerlevelof70–100WusingpurenitrogenandvariousmixturesofN 2,

H2, and NH 3 to simulate decomposed hydrazine. Parametric studies of the effects of nozzle throat diameter, microwavefrequency,andmicrowavepowerwereperformed.Testingwasalsoconductedonthe2.45GHzMETat apowerlevelof1–2kWusingpurenitrogen,simulatedhydrazine,andpureammonia.Parametricstudiesofthe effects of nozzle throat diameter, antenna probe depth, propellant injector diameter, and the inclusion of an impedancematchingunitwereperformed.Thrustand specificimpulsemeasurementsforthe2.45and7.5GHz

METswereobtainedusingthruststands.Numericalelectromagneticmodelingoftheexisting7.5and2.45GHz thrusterswasperformedusingthecommerciallyavailablefiniteelementanalysissoftwareCOMSOLMultiphysics.

Thismodelingyieldedinsightontheeffectsofvariationofantennadepth,microwavefrequency,andmicrowave power. The results agreed well with experimental measurements. Numerical electromagnetic modeling was also performedtodesigna new8GHzMET.Thisthruster was built and a preliminary performance evaluation was conducted.

TheanalyticalsolutionstoMaxwell’sEquationswerederivedfortheemptyMETresonantcavityaswellasthe dielectricloadedcavity.COMSOLMultiphysicswasusedtoperformnumericalelectromagneticmodelingofthe E field in the resonant cavity of previously existing 1kWclass 2.45GHz and 100Wclass 7.5GHz METs.

Parametric studies were performed to determine effects of varying microwave frequency and power, varying antenna depth, and the inclusion of various dielectric materials inside the cavity. The same analysis was then performedtoaidthedesignofanewcavityoperatingatapproximately8.4GHzwith350Winputpower.

Numericalmodelingprovidedquantitativeandqualitativeinsightontheeffectsofthepresenceofdielectric materialinsidethecavity.Thedielectricseparationplatereducedtheresonantfrequency.Loadingthebaseofthe cavitywithadielectricsignificantlyalteredtheEfieldstructureaswellasloweringtheresonantfrequency.This frequencyshiftwasanalyticallypredictedwithaccuracy.Numericalmodelingalsoprovidedinsightontheeffectsof varyingantennadepthandtipshape.Ingeneral,anincreaseinresonantfrequencyandmaximum Efieldstrength, andadecreaseinresonantbandwidth, wereobserved withdecreasingantennadepth. Roundinganantenna of a given depth produced the same effect, most likely due to the removal of material from the cavity, similar to decreasingtheantennadepth.Thesensitivityofthecavitytoinputfrequencywasstudiedindetailforthefirsttime.

Theresultsofthisanalysiswerefoundtobeinagreementwiththeresultsofexperimentalstudieswhereantenna depthwasvariedandstudiesconductedusingaTWTApowersupply withfrequency tuningcapability. Finally, 87 modeling of METs operating at three different powers and frequencies has indicated substantial differences in maximum Efield strength, which has implications for the maximum chamber pressure reached before plasma extinction.Theseresultscanbecomparedtotheresultsofexperimentalstudiesofthresholdpowernecessary to sustainaplasmaatagivenpressure.

Analyticsolutionsthataccuratelyaccountforthepresenceoftheantennaanddielectricmaterialsofallshapes and sizes are difficult, if not impossible, to obtain. Significant discrepancies between analytical and numerical resultsareobservedwhentheanalyticalmodeldoesnotaccountfortheseperturbations.Anumericalmodelthatcan accountforcavityperturbationsisveryhelpful.Theuseofthiscomputationaltooltoguidethedesignofthe8.4

GHz MET represented the first time that detailed numerical modeling had been performed prior to cavity construction.

Theeffectsofantennadepthandpowerlevel were studied experimentally with the 2.45GHz MET using simulated hydrazine. The results of showed that antenna depthandinputpowerhadaneffectonthe maximum chamber pressure and temperature reached before plasma extinction. The experimental results agreed with the resultsofnumericalelectromagneticmodelingthatpredictedelectricfieldstrengthasafunctionofantennadepth.

Theeffectsoffrequencyandpowerwerealsoobservedexperimentallywiththe7.5GHzMETusingsimulated hydrazine.TheperformanceoftheMETwasinfluencedsubstantiallybythefrequencyandpowerlevelatwhichit was operated. The power threshold necessary to sustain the plasma was established for the two ammonia decompositionlimitsofsimulatedhydrazine, X=0and X=1.Itwasfoundthat,atagivenpowerlevel,performance increased with increasing pressure until the power threshold was reached and the plasma was extinguished.

Maximumoverallperformancecanbeexpectedtoincreaseasavailableforwardpowerincreasesandthemaximum pressurereachedbeforeplasmaextinctionincreases.Theoperablefrequencyrangesforbothmixtures,atgivenmass flowratesandforwardpowerlevels,wereestablishedandfoundtobeinaccordancewiththeresultsofnumerical electromagneticmodelingofthiscavity.Itwasfoundthatincreasingtheforwardpowerlevelatagivenmassflow widenedtheoperablefrequencyrangeand,conversely,increasingmassflowatagivenpowerlevelcontractedit.

Maximumchamberpressuresandtemperatureswerefoundnearthemiddleofthefrequencyrange,andthepointsof maximumtemperatureandcouplingefficiencytendedtoshifttowardlowerfrequencyasmassflowwasincreased.

These effects clearly demonstrate the resonant behavior of the cavity. The chamber temperature is not solely dependentonabsorbedpower.Foragivenmassflowandforwardpowerlevel,thefrequencyofmaximumchamber 88 temperaturewasnotthesameasthefrequencyofmaximumcouplingefficiency.Itwaspossibletotunethecavity such that chamber temperature increased significantly while absorbed power slightly decreased. With increasing mass flow, not only does the chamber temperature increase, but the frequency of maximum performance shifts slightlyandtheoperablefrequencyrangecontracts.Therefore,theabilitytoaccuratelytunethesystemisnecessary toreachthemaximumpotentialperformanceofthethruster.Otherwise,significantlosseswillbeincurred.

Theeffectsofchangingnozzlethroatdiameterhavebeenobservedwiththe2.45GHzMETusingammoniaand simulatedhydrazine,andwiththe7.5GHzMETusingnitrogenandsimulatedhydrazine.Pastinvestigationshave revealedthatchambertemperaturetypicallyincreaseswithincreasingmassflow,presumablyduetotheassociated chamber pressure increase. However, in those investigations, the mass flow increase resulted in a decrease in specific power because input power levels typically remained approximately constant. By using nozzles with differentthroatdiametersinthisstudy,thechamberpressurewasdecoupledfromthemassflowandspecificpower sotheeffectsofeachcouldbeisolatedandcharacterized.TheperformanceoftheMETwasinfluencedheavilyby thechamberpressureatwhichitwasoperated.Ithasbeenfoundthathighpressureandhighpowerareessentialfor highperformance.Significantincreasesinperformancemayberealizedbyoptimizingthenozzlethroatsize.

Theinfluenceofinjectorsizewasexaminedwiththe2.45GHzMETusingsimulatedhydrazine.Theresultsof theinjectorstudyshowedthatsubstantialperformanceincreasescouldberealizedthroughoptimizationofinjector diameterand,thus,injectionvelocity.Withaforwardpowerof1kW,themaximumcalculatedspecificimpulse reachedbeforeplasmaextinctionincreasedbyapproximately100sbyusingsmallerinjectors.Significantlyhigher chamberpressuresandtemperaturescanbereachedpriortoplasmaextinctionwithanoptimizedinjectordiameter.

Thisphenomenon,however,isnotyetwellunderstood.

Inordertogaugetheaccuracyoftheperformancecalculatedusinglaboratorymeasurementsofmassflowand chamber pressure, thrust measurements were obtained with the 2.45GHz MET using simulated hydrazine and ammonia, and with the 7.5GHz MET using simulated hydrazine. For the configurations used in this study, calculatedspecificimpulsesofthe2.45GHzthrusterusingammoniaandsimulatedhydrazineapproached400sand

425s,respectively,andthecalculatedspecificimpulseofthe7.5GHzthrusterusingsimulatedhydrazineranged

200–220sdependingoninitialpropellantcomposition.Significantdiscrepancybetweenmeasuredandcalculated performancewasobservedforboththrusterswithmeasuredperformancetypically20–40%lowerthantheoretical calculations.Thediscrepancyisattributedprimarilytochangesinboundarylayerconstrictionofthenozzlethroat 89 that are not accounted for in the theoretical calculation. More sophisticated methods should be explored to accurately predict these changes. Significant back pressure losses were also incurred due to the low pumping capabilityofthevacuumfacility.

Inthelaboratory,simulatedhydrazineisinjectedatroomtemperature.IftheMETweretobecombinedwitha hydrazine monopropellant system, the propellant actually would be injected at the hydrazine decomposition temperature. The microwave energy would then be used to further increase the chamber stagnation enthalpy.

Assuminganinjectiontemperatureof850Kandthesameenthalpyincreasefromtheadditionofmicrowaveenergy, themaximumspecificimpulsefortheconfigurationsusedinthisstudymayincreasefromapproximately425sto

470sforthe2.45GHzthrusterandfrom200sto270sforthe7.5GHzthruster.Laboratorystudiesshouldbe conductedusingpreheatedpropellantstodetermineactualoperationalcapabilitiesofsuchasystem.

KeyFindingsandRecommendations

TheresultspresentedinthisstudyencouragefurtherdevelopmentoftheMETforoperationusinghydrazine andammonia,liquidstorablepropellantswithlowmolecularweightexhaust,withthegoalofoutperformingthe arcjet.Thefollowingisalistofkeyfindingsandrecommendations:

1. TheMETplasmatemperatureissignificantlyhigherthanthemeanexhauststagnationtemperature.

Thisindicatessubstantiallossesduetocoldflowslippageandwallheattransfer.Operatingathighpressure

helpstomitigatecoldflowslippage.Convectiveheattransferlossesmaybemitigatedbyoperatingwithan

experimentalsetupinwhichtheMETispositionedinsidethevacuumchamber.Inaddition,usingmaterials

withlowerthermalconductivityfornozzleconstructionmayhelpreduceheatlossesintheexhauststream.

2. Highpowerandhighpressurearenecessaryforhighperformance. Thepowerdepositionandenergy

exchange mechanisms are collisional and, thus, heavily dependent on chamber pressure. As chamber

pressureincreases,theplasmaandsurroundinggasshifttowardthermalequilibriumduetotheincreased

numberofparticlecollisions.Highpressurealsoforcestheplasmaclosertothenozzle,therebyincreasing

heatingefficiencybydecreasingcoldflowslippage.However,plasmaconductivitymaydecreaseathigh

pressureduetoanincreaseinthenumberofinelasticcollisionsthatresultinion–electronrecombination,

leading ultimately to plasma extinction. High electric field strength, i.e., high power, is required to

compensate.Increasingpowermayalsoincreasethephysicalsizeoftheplasmaandfurtherhelptomitigate 90

coldflowslippage.Thecavitymustbewelltunedinordertoobtainhighelectricfieldstrengthatagiven

power.Numericalmodelingindicatesthatthe2.45GHzcavityispoorlytuned.Inaddition,numericaland

experimental studies have indicated that all MET cavities tested to date may have been underpowered.

Basedonthephysicalsizeoftheplasmaandtheresultsofnumericalmodelingoftheelectricfield,the1

kW 2.45GHz and 100W 7.5GHz METs might be underpowered by an order of magnitude or more.

Presently,thepowerdeliveredtotheMETislimitedprimarilybythemaximumoutputofthepowersupply

andmateriallimitationsoftheantenna.

3. TheMETmustbeoptimizedbasedonpropellantchoice.Keyareasofstudyforoptimizationhavebeen

identifiedincludingcavitytuning,nozzlethroatdiameter,and,perhapsmostimportantly,injectordiameter.

The results of parametric optimization studies with various propellants, including some that were not

reportedhere,haveindicatedthatanoptimizeddesignwouldbepropellantspecific.Currently,theMETis

not optimized for operation with hydrazine or ammonia. Performance increases may be realized if an

optimizeddesignispursued.

4. There appears to be a significant difference between measured and calculated performance. The

discrepancyhasbeenattributedtoneglectingchangesinboundarylayerconstrictionatthenozzlethroat.

Moresophisticatedcalculationofperformanceshouldtakethisintoaccount.

5. A detailed numerical model of the MET using propellants of interest should be developed. The

couplingoffluiddynamicandelectromagneticphenomenaintheMETcavityisnotyetwellunderstood,

particularlytheroleoffluidswirlinpropellantheatingandplasmamaintenance.Numerical modelingof

theplasmadynamicsoftheMETshouldbepursuedinordertopredictthrusterperformanceandperform

parametricanalysisforoptimization.Theultimategoalshouldbeatwotemperaturechemicalkineticscode

thatmodelsnitrogen/hydrogenplasmawithviscous,steady,compressible,axisymmetricflow. Themodel

wouldbeusefulasitwouldyieldinsightintothephysicsofMETplasmasusinghydrazineorammonia,

realisticchoicesforpropellant.Itwouldallowparametricanalysisofthedimensionsoftheresonantcavity,

propellantinjectors,andnozzleforoptimizedperformanceatvariousoperatingconditions.Suchamodel

wouldbeverycomplexandwouldrequireasubstantialtimecommitment. 91

Appendix PreliminaryPerformanceEvaluationofthe8.4GHz MicrowaveElectrothermalThrusterUsingSimulated Hydrazine

Interestwasgeneratedintheconstructionofanewcavitytobeoperatedusinganinputpowerof350Wata frequencyintherangeof7.9–8.4GHz.Thepowerandfrequencyrangecorrespondedtoanavailablespacequalified

TWTA power supply. Analytical and numerical models were usedto guidethedesignofthenewcavity.This representedthefirsttimethatdetailednumericalmodelinghadbeenperformedpriortocavityconstruction.Acavity radius a=14.7mmandheight h=47.775mm( h/a=3.25)werechosenasthedimensionsforthenew8.4GHz

MET.ResearchwasinitiatedtomeasuretheperformanceofthenewMETandtooptimizethevariouscomponent parametersincludingnozzlethroatsize,injectordiameter,andantennadepth.Areportofthepreliminarytestingis givenhere.

TheexperimentalsetupandproceduresweresimilartothosedescribedinCh.5.The8.4GHzMEThasthe sameoutsidecrosssectionasthe7.5GHzMET,makingitpossibletousetheexistingnozzleplates.The0.272mm nozzlewasusedforthistesting.The8.4GHzMEThasremovableinjectorstoallowforparametrictestingofthe effectsofvaryinginjectordiameter.Theinjectordiameterusedforthistestingwas1.59mm.Theantennadepthwas approximately2mmandaTeflonantennacapwitharadiusof6.35mmandaheightof7.11mmwasused.The microwavepowersupplywasaMCLMT3200TWTA.Themicrowavecircuitconsistedofwaveguidecomponents withawaveguidecoaxadapterimmediatelyprecedingtheMET.

Testingwasconductedusingsimulatedhydrazine(N2+2H 2)injectedatroomtemperatureaspropellant.The resonantfrequencywasfoundtobeapproximately8.16GHz,inaccordancewithCOMSOLMultiphysicsmodeling of this particular configuration. The forward power was set to a desired level and mass flow was increased incrementally.FigureA.1showscouplingefficiencyasafunctionofchamberpressureforvariousforwardpowers.

Atagivenpowerlevel,itwaspossibletocoupleover95%oftheforwardpowertotheplasmaoversomerangeof pressure. As the pressure increased, due to increasing mass flow, the coupling efficiency decreased due to ion– electron recombination and a decrease in plasma conductivity. At this point, the forward power was increased bringingthecouplingefficiencybacktoover95%.Increasingforwardpowerincreasedtheelectricfieldstrength 92

100 2.4 2.2 80 2.0 60 1.8 100W 100W 40 1.6 150W 150W

PressureRatio 1.4 20 200W 200W

opigEfcec(%) CouplingEfficiency 1.2 250W 250W 0 1.0 0 50 100 150 200 0 50 100 150 200 ChamberPressure(kPa) ChamberPressure(kPa) Fig.A.1 Coupling efficiency vs. chamber pressure Fig.A.2 Pressureratiovs.chamberpressureusingN 2+ usingN 2+2H 2.Forwardpowerisgiveninlegend. 2H 2.Forwardpowerisgiveninlegend.

1800 600 309s 1600 500 1400 1200 400 1000 300 800 100W 600 150W 200 Temperature(K) 400 200W 100 200 250W 0 VacuumSpecificImpulse(s) 0 0 10 20 30 40 50 60 0 500 1000 1500 2000 2500 SpecificPower(MJ/kg) ForwardPower(W) Fig.A.3 Chambertemperaturevs.specificpowerusing Fig.A.4 Vacuum specific impulse vs. forward power N2 + 2H 2. Forward power is given in legend. Maximum using N 2 + 2H 2 for operating conditions with ~95% vacuumspecificimpulseisshown. couplingefficiency. resulting in an increased number of ionization collisions. The increased electron number density increased the plasmaconductivityand,thus,couplingefficiency.

Pressureratio,showninFig.A.2,andchambertemperature, shown in Fig. A.3, increased with increasing chamberpressureandforwardpower.Themaximumsustainedchamberpressurewas172kPa,substantiallyhigher thanthatofthe2.45or7.5GHzMETs.Aplasmawassustainedatatmosphericpressurewithaforwardpowerof approximately150W,inaccordancewiththepredictionofthresholdpowermadeforthe7.5GHzMETinCh.5.

Noattemptwasmadetoaccuratelydeterminethepowerthresholdforthe8.4GHzthruster.

Themaximumspecificimpulse,calculatedassumingaperfectexpansiontozeropressure,isalsoshowninFig.

A.3. Even though the 8.4GHz thruster reached a chamber pressure higher than previous METs, it did not outperformthe2.45GHzMEToperatingwith1–2kWforwardpower.However,testingwiththisnewMETisonly intheinitialstagesandthedesignhasnotyetbeenoptimized.FigureA.4showsthecalculatedvacuum specific 93 impulseatoperatingconditionswhere~95%couplingefficiencywasobtained.Alineartrendwasappliedtothe data.Iftheextrapolatedtrendisvalid,the8.4GHzMET,inthisunoptimizedconfiguration,willoutperformthe

2.45GHzMETataforwardpowerofapproximately500Wanditwilloutperformthearcjetataforwardpowerof approximately1kW.However,thevalidityofthislineartrendisquestionableandfurthertestingathigherpowersis necessary.Atthistime,forwardpowerislimitedbythemaximumoutputofthepowersupplyandantennamaterial constraints.Anefforttoovercometheselimitationsiscurrentlyunderway.

DANIELE.CLEMENS

Education: • ThePennsylvaniaStateUniversity,UniversityPark,PA  Ph.D. AerospaceEngineering May2008  M.S. AerospaceEngineering Dec.2004  B.S.AerospaceEngineering,MinorinPhysicsAug.2002 EngineeringInterests: • Solidandliquidchemicalrocketsandelectricpropulsionsystems • Spacecraft,spacesystemandspacemissionarchitecture • Hightemperaturegasdynamics,combustion,plasmaphysics RelevantExperience: • Instructor ,AerospaceEngineeringDept.,PSU1/07–5/07  Primary instructor for seniorlevel undergraduate rocket propulsion course titled Space Propulsion and PowerSystems(AERSP430)  Curriculum included fundamental physics, preliminary design, and performance prediction of solid and liquidchemicalrocketsandelectricpropulsionsystems  Responsiblefordevelopingandorganizingallcoursematerialsincludinglectures,homework,andexams  Receivedoutstandingstudentreviews • ResearchAssistant ,AerospaceEngineeringDept.,PSU1/04–12/07  Supportedthedevelopmentofanadvancedpropulsionsystemasamemberofaresearchteamthatincluded experimental and theoretical efforts to measure and model the performance of the Microwave ElectrothermalThruster  Designedandconstructedexperimentalfacilitiesincludingvacuumthruststandsforbothlowandhigh powerthrusters  Plannedandconductedexperimentstocharacterizethrusteroperationusingvariouspropellantsincluding ammoniaandsimulatedhydrazine  Wrotechemicalequilibriumcodetocalculateandpredictchambergascompositionandtemperature  UsedFEAsoftwareforelectromagneticfieldmodelinginsupportofmicrowavecavitydesign  Suggestedandimplementeddesignimprovementsforperformanceenhancementandoptimization • TeachingAssistant ,AerospaceEngineeringDept.,PSU8/02–5/06  OrbitalMechanics;SpacePropulsion;AerospacePropulsion(airbreathingandrocketengines) – Dutiesincludedoccasionallecturing,hostingweeklyreviewsessions,andgrading  CapstoneSpacecraftDesign – Providedtechnicaladviceandguidancetowardresourcestoassistinprojectimplementation – Provided constructive criticism for preliminary and detailed design reports which included mission architectureandspacecraftsubsystemdesign,massandpowerbudgets,andcostestimates Awards: • HaroldF.MartinGraduateAssistantOutstandingTeachingAward,2008 • BestStudentPaper,“MicrowaveElectrothermalThrusterPerformanceUsingNitrogen,SimulatedHydrazine, andAmmoniaPropellants,”54 th JointArmyNavyNASAAirForce(JANNAF)PropulsionMeeting,2007 • PennStateUniversityCollegeofEngineeringGraduateFellowship,2005 Publications: • Clemens,D.E., PerformanceoftheMicrowaveElectrothermalThrusterUsingNitrogen,SimulatedHydrazine, andAmmonia ,Ph.D.Dissertation,DepartmentofAerospaceEngineering,ThePennsylvaniaStateUniversity, UniversityPark,PA,2008. • Clemens, D. E., Micci, M. M., Bilén, S. G., and Chianese, S. G., “Microwave Electrothermal Thruster Performance Using Nitrogen, Simulated Hydrazine, and Ammonia Propellants,” 54 th Joint ArmyNavy NASAAirForce(JANNAF)PropulsionMeeting,May2007. • Clemens, D. E., Micci, M. M., and Bilén, S. G., “Microwave Electrothermal Thruster Using Simulated Hydrazine,”AIAAPaper20065156,July2006. • Clemens,D.E .,PerformanceEvaluationofaLow–PowerMicrowaveElectrothermalThruster ,M.S.Thesis, DepartmentofAerospaceEngineering,ThePennsylvaniaStateUniversity,UniversityPark,PA,2004.