Gases for Electrical Insulation and Arc Interruption: Possible Present and Future Alternatives to Pure Sfe

Total Page:16

File Type:pdf, Size:1020Kb

Gases for Electrical Insulation and Arc Interruption: Possible Present and Future Alternatives to Pure Sfe ; NIST PUBLICATJONS AuiDs 3S5t5p ^^^^H United Ststes Department of Commerce Technology Administration iMisr National Institute of Standards and Technology NIST Technical Note 1425 Gases for Electrical Insulation and Arc Interruption: Possible Present and Future Alternatives to Pure SFe L. G. Christophorou, J. K. Olthoff, and D. S. Green QC 100 1U5753 1997 rhe National Institute of Standards and Technology was established in 1988 by Congress to "assist industry in the development of technology . needed to improve product quality, to modernize manufacturing processes, to ensure product reliability . and to facilitate rapid commercialization . of products based on new scientific discoveries." NIST, originally founded as the National Bureau of Standards in 1901, works to strengthen U.S. industry's competitiveness; advance science and engineering; and improve public health, safety, and the environment. One of the agency's basic functions is to develop, maintain, and retain custody of the national standards of measurement, and provide the means and methods for comparing standards used in science, engineering, manufacturing, commerce, industry, and education with the standards adopted or recognized by the Federal Government. As an agency of the U.S. Commerce Department's Technology Administration, NIST conducts basic and applied research in the physical sciences and engineering, and develops measurement techniques, test methods, standards, and related services. The Institute does generic and precompetitive work on new and advanced technologies. NIST's research facilities are located at Gaithersburg, MD 20899, and at Boulder, CO 80303. Major technical operating units and their principal activities are listed below. For more information contact the Publications and Program Inquiries Desk, 301-975-3058. Office of the Director Physics Laboratory • National Quality Program • Electron and Optical Physics • International and Academic Affairs • Atomic Physics • Optical Technology Technology Services • Ionizing Radiation • Standards Services • Time and Frequency' • Technology Partnerships • Quantum Physics' • Measurement Services • Technology Innovation Materials Science and Engineering • Information Services Laboratory • Intelligent Processing of Materials Advanced Technology Program • Ceramics • Economic Assessment • Materials Reliability' • Information Technology and Applications • Polymers • Chemical and Biomedical Technology • Metallurgy • Materials and Manufacturing Technology • NIST Center for Neutron Research • Electronics and Photonics Technology Manufacturing Engineering Manufacturing Extension Partnership Laboratory Program • Precision Engineering • Regional Programs • Automated Production Technology • National Programs • Intelligent Systems • Program Development • Fabrication Technology • Manufacturing Systems Integration Electronics and Electrical Engineering Laboratory Building and Fire Research • Microelectronics Laboratory • Law Enforcement Standards • Structures • Electricity • Building Materials • Semiconductor Electronics • Building Environment • Electromagnetic Fields' • Fire Safety Engineering • Electromagnetic Technology' • Fire Science • Optoelectronics' Information Technology Laboratory Chemical Science and Technology • Mathematical and Computational Sciences^ Laboratory • Advanced Network Technologies • Biotechnology • Computer Security • Physical and Chemical Properties^ • Information Access and User Interfaces • Analytical Chemistry • High Performance Systems and Services • Process Measurements • Distributed Computing and Information Services • Surface and Microanalysis Science • Software Diagnostics and Conformance Testing 'At Boulder. CO 80303. ^Some elements at Boulder, CO. NIST Technical Note 1425 Gases for Electrical Insulation and Arc Interruption: Possible Present and Future Alternatives to Pure SFe L. G. Christophorou J. K. Olthoff D. S. Green Electricity Division Electronics and Electrical Engineering Laboratory and Process Measurements Division Chemical Science and Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-0001 ^^et^^o^co^^ 1^ ^Q^ "tL ff ^.v -^ % November 1997 U.S. Department of Commerce William M. Daley, Secretary Technology Administration Gary R. Bachula, Acting Under Secretary for Technology National Institute of Standards and Technology Raymond G. Kammer, Director National Institute of Standards U.S. Government Printing Office For sale by the Superintendent of and Technology Washington: 1997 Documents Technical Note 1425 U.S. Government Printing Office Natl. Inst. Stand. Technol. Washington, DC 20402 Tech. Note 1425 48 pages (Nov. 1997) CODEN: NTNOEF Bibliographic Information Abstract The electric power Industry's preferred gaseous dielectric (besides air), sulfur hexafluoride (SFg), has been shown to be a greenhouse gas. In this report we provide information that is useful In Identifying possible replacement gases, in the event that replacement gases are deemed a reasonable approach to reducing the use of SFg in high voltage electrical equipment. The report focuses on the properties of SFg as a dielectric gas and on the data available for possible alternatives to pure SFg (i.e., SFg alone). On the basis of published studies and consultation with experts in the field, it was attempted to identify alternative dielectric gases to pure SFg for possible immediate or future use in existing or modified electrical equipment. The possible alternative gases are discussed as three separate groups: (i) mixtures of SFg and nitrogen for which a large amount of research results are available; (ii) gases and mixtures (e.g., pure Nj, low concentrations of SFg in Ng, and SFg-He mixtures) for which a smaller yet significant amount of data are available; and (iii) potential gases for which little experimental data are available. Keywords gaseous dielectrics; gas mixtures; gas recycling; global warming; nitrogen; SFg; SFg-Ng mixtures; sulfur hexafluoride Ordering Copies of this document are available from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161, at (800) 553-6847 or (703) 487-4650. ACKNOWLEDGMENTS The authors benefitted greatly from the suggestions and comments provided by individuals in industry, academia, and government. Shown below are the individuals who contributed by providing information relevant to the report, or by reviewing and commenting on draft materials. While these individuals influenced the development of this document, the authors are solely responsible for the views expressed in the document. The presence of a reviewer's name here is not intended to suggest endorsement or agreement with all of the views contained in this report. Christophe Boisseau Electricite de France, FRANCE Phil Bolin Mitsubishi Electric Power Products, Inc., USA Lowell Brothers Southern Company Services, Inc., USA John Brunke Bonneville Power Administration, USA Ian Chalmers University of Strathclyde, U.K. Alan Cookson National Institute of Standards and Technology, USA Steinar Dale ABB Power T&D Company, Inc., USA Benjamin Damsky Electric Power Research Institute, USA Armin Diessner Siemens, GERMANY Elizabeth Dutrow US Environmental Protection Agency, USA Lois Ellis Allied Signal, Inc., USA Fumihiro Endo Hitachi, JAPAN Michael Frechette Hydro-Quebec, CANADA Yoshikazu Hoshina Toshiba, JAPAN Edmund Kuffel University of Manitoba, CANADA Richard LaLumondier National Electrical Manufacturers Association, USA Donald Martin G&W Electric Co., USA Hugh Morrison Ontario Hydro, CANADA Koichiro Nakanishi Mitshubishi Electric Corporation, JAPAN C. M. A. Nayar GEC ALSTHOM, FRANCE Lutz Niemeyer ABB Corporate Research, SWITZERLAND Marshall Pace University of Tennessee, USA Reinhold Probst DILO Company, Inc., USA Bryan Smith Cryoquip, Inc., USA Xavier Waymel Electricite de France, FRANCE Howard Withers Air Products and Chemicals , Inc., USA Roy Wootton Formerly at Westinghouse, USA Gases for Electrical Insulation and Arc Interruption: Possible Present and Future Alternatives to Pure SFg / NIST 1 Section 1 - Introduction Gases for Electrical Insulation and Arc Interruption: Possible Present and Future Alternatives to Pure SFg Contents 1. Introduction 1. Introduction 1 Sulfur hexafluoride (SF^), the electric power 1.1 Sulfur Hexafluoride 2 industry's presently preferred gaseous dielectric (besides 1 .2 Principal Uses of SF^ by the Electric air), has been shown to be a greenhouse gas. Concerns Power Industry 2 over its possible impact on the environment have 1.3 Concentrations of SFf,in the Environment ... 3 rekindled interest in finding replacement gases. In this 1 .4 SFf, is a Potent Greenhouse Gas 4 report we provide information that is useful in identifying 1.5 SF(i Substitutes 5 such gases, in the event that replacement gases are 1 .6 Scope of this Report 6 deemed a reasonable approach to controlling emissions of 2. Properties of Gaseous Dielectrics 6 SFft from high voltage electrical equipment. The report 2. Intrinsic Properties 6 focuses on the properties of SF^ as a dielectric gas and on 2.1.1 Basic Physical Properties 7 the data available for possible alternatives to pure SF^ 2.1.2 Basic Chemical Properties 8 (i.e., SFfi alone). On the basis of published studies and 2.2 Extrinsic Properties 8 consultation with experts in the field, we attempt to 2.2.1 Reactions and Byproducts 8 identify alternative dielectric gases to pure SF^ for 2.2.2 Electrical Discharge and Breakdown . 8 possible immediate or future use in existing or modified 2.3 Other
Recommended publications
  • The Electric Arc Plasma Temperature
    DIAGNOSTICS OF MULTICOMPONENT ELECTRIC ARC PLASMA A.I. Cheredarchuk, V.F. Boretskij, A.N. Veklich Taras Shevchenko Kiev National University, Kiev, Ukraine E-mail: [email protected] The plasma parameters of electric arc discharge in a gas flow between copper electrodes were investigated. The electrical conductivity of copper-argon and copper-carbon dioxide plasma was calculated. It was found that at low temperatures (5000 K<T<9000 K) the electrical conductivity considerably depends on the amount of copper in plasma. PACS: 51.20.d 1. INTRODUCTION Ne(r) in discharge at 30 A were obtained from width of The electric arc between evaporated electrodes has spectral lines CuI 448.0 nm, broadened due to the quadratic diverse technological applications. It is well known that Stark effect. In the case of low current (3.5 A) absolute electrode vapours have a determining influence on intensity of CuI 465.1 nm spectral line was used. properties of arc plasma. The insignificant impurity N , m-3 (about 1 %) of electrode metal vapour appreciably j CO 2 changes plasma parameters of the discharge in a rather CO wide temperature range [1]. Unfortunately the influence O O e of metal impurity on the plasma of free burning electric 1E23 2 C arc discharge in different working gases is not O+ experimentally investigated in detail yet. The main aim of this study is a development of complex diagnostics techniques of determination of 1E20 plasma parameters of electric arc discharge in a gas flow between copper electrodes. + CO 2. TRANSPORT PROPERTIES C 2 T, K 1E17 OF THERMAL PLASMA 5000 10000 15000 20000 In calculations of the transport properties of thermal plasma it is necessary to know the proportion between Fig.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0083979 A1 Costello Et Al
    US 2015 0083979A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0083979 A1 Costello et al. (43) Pub. Date: Mar. 26, 2015 (54) FLUORINATED NITRILES AS DELECTRIC Related U.S. Application Data GASES (60) Provisional application No. 61/620,192, filed on Apr. 4, 2012. (71) Applicant: 3M INNOVATIVE PROPERTIES COMPANY, ST. Paul, MN (US) Publication Classification (72) Inventors: Michael G. Costello, Afton, MN (US); (51) Int. C. Richard M. Flynn, Mahtomedi, MN HOIB 3/56 (2006.01) (US); Michael J. Bulinski, Woodbury, HOIB 3/16 (2006.01) MN (US) HOIB 3/24 (2006.01) (52) U.S. C. (21) Appl. No.: 14/388,301 CPC. H01B3/56 (2013.01); H01B3/24 (2013.01); H0IB 3/16 (2013.01) (22) PCT Fled: Mar. 15, 2013 USPC ........................................... 252/571; 558/461 (57) ABSTRACT (86) PCT NO.: PCT/US2O13/031854 An electrical device containing a dielectric fluid, the dielec S371 (c)(1), tric fluid comprising heptafluoroisobutyronitrile or 2,3,3,3- (2) Date: Sep. 26, 2014 tetrafluoro-2-(trifluoromethoxy) propanenitrile. 3 Patent Application Publication Mar. 26, 2015 US 2015/0083979 A1 FIG. I US 2015/008.3979 A1 Mar. 26, 2015 FLUORINATED NITRILES AS DELECTRIC or high-pressure nitrogen. Some other replacement mixtures GASES Suffer from release of free carbon during arcing, increased toxicity during or after arcing, and increased difficulty in gas CROSS REFERENCE TO RELATED handling during storage, recovery and recycling. Also iden APPLICATIONS tified are perfluorocarbon (PFC) gases that might also be 0001. This application claims the benefit of U.S. Provi mixed with nitrogen or helium, like SF.
    [Show full text]
  • !History of Lightingv2.Qxd
    CONTENTS Introduction 3 The role of lighting in modern society 3 1. The oldest light sources 4 Before the advent of the lamp 4 The oldest lamps 4 Candles and torches 5 Further development of the oil lamp 6 2. Gaslight 9 Introduction 9 Early history 9 Gas production 10 Gaslight burners 10 The gas mantle 11 3. Electric lighting before the incandescent lamp 14 Introduction 14 Principle of the arc lamp 15 Further development of the arc lamp 16 Applications of the arc lamp 17 4. The incandescent lamp 20 The forerunners 20 The birth of the carbon-filament lamp 22 Further development of the carbon-filament lamp 25 Early metal-filament lamps 27 The Nernst lamp 28 The birth of the tungsten-filament lamp 29 Drawn tungsten filaments 30 Coiled filaments 30 The halogen incandescent lamp 31 5. Discharge lamps 32 Introduction 32 The beginning 32 High-voltage lamps 33 Early low-pressure mercury lamps 34 The fluorescent lamp 35 High-pressure mercury lamps 36 Sodium lamps 37 The xenon lamp 38 6. Electricity production and distribution 39 Introduction 39 Influence machines and batteries 39 Magneto-electric generators 40 Self-exciting generators 41 The oldest public electricity supply systems 41 The battle of systems 42 The advent of modern a.c. networks 43 The History of Light and Lighting While the lighting industry is generally recognized as being born in 1879 with the introduction of Thomas Alva Edison’s incandescent light bulb, the real story of light begins thousands of years earlier. This brochure was developed to provide an extensive look at one of the most important inventions in mankind’s history: artificial lighting.
    [Show full text]
  • Electric Light Pdf, Epub, Ebook
    ELECTRIC LIGHT PDF, EPUB, EBOOK Seamus Heaney | 96 pages | 19 Mar 2001 | FABER & FABER | 9780571207985 | English | London, United Kingdom Electric Light PDF Book Tour EL: 5 min videos on each light type, followed by a 5 question quiz for each lamp type. Wednesday 17 June In , Thomas Edison began serious research into developing a practical incandescent lamp and on October 14, , Edison filed his first patent application for "Improvement In Electric Lights". Sunday 27 September Wednesday 29 July Wednesday 16 September View all albums. Saturday 10 October View all similar artists. In colder climates where heating and lighting is required during the cold and dark winter months, the heat byproduct has some value. Saturday 15 August Similar To Jeff Lynne. Tuesday 18 August Monday 25 May Wednesday 22 April Play album Buy Loading. Friday 24 April Wednesday 15 July Main article: Incandescent light bulb. Wednesday 14 October Help Learn to edit Community portal Recent changes Upload file. Features Exploring the local sounds and scenes at Noise Pop Fest. Due to the importance of this area of engineering we offer a full course of web pages, videos, and educational tools to communicate to you the world of of the electric light and the engineers and inventors who made it possible. Friday 31 July Monday 8 June Friday 21 August Sunday 18 October Friday 26 June The inside of the tubes are coated with phosphors that give off visible light when struck by ultraviolet photons. Friday 4 September Connect to Spotify Dismiss. Thursday 7 May Sunday 31 May Wednesday 1 July Tuesday 20 October The electric arc is struck by touching the rod tips then separating them.
    [Show full text]
  • Ute Tates Att 1191 Mi... % 35:5
    Ute tates att 1191 [11] . 4,204,084 Mastroia et a1. [451 May 20,1980 [54] APPARATUS WITH DIELECI‘RIC GAS 4,110,580 8/1978 Farish ............................ .. 100/148 G MIXTURES IN SUBSTAN'I'IALLY UNIFORM FIELD OTHER PUBLICATIONS Mulcachy, M. J., et al., A Review of Insulation Break [75] Inventors: Martin J. Mastroianni, East Aurora; Sabatino R. Orfeo, Orchard Park, down and Switching in Gas Insulation, INSULA both of N.Y. TION/CIRCUITS, Aug. 1970, pp. 55 to 61. Bates, R. D., J of Chem. Physics, V. 57, #10, pp. [73] Assignee: Allied Chemical (Desperation, 4174-4190. Morristown, NJ. Khodeeva, S. M., Russian J of Physical Chem, vol. 40, [21] Appl. No.: 919,338 #8, pp. 1061-1063 (Aug. 1966). [22] Filed; Jun, 26, 1978 Primary Examiner-Richard R. Kucia [51] Int. Cl.2 ............................................. .. H01B 3/16 AttFriggger'fsongen .A t, or F‘"m —-A1 an M . Doem b erg ;J ay P. [52] us. (:1. .......................... .. 174/25 G; 174/17 GP; 174/26 G; 200/ 148 G; 252/635; 252/66 [57] ABSTRACT [58] Flew of g‘lgsgfégss Dielectric gas mixtures are described with improved ’ ’ ’ . ' ’ dielectric strength in uniform ?elds compared to pure [56] References Cited sulfur hexa?uoride. Sulfur hexa?uoride is mixed with Us PATENT DOCUMENTS about 1 to about 10 mole % of a noble gas such as he _I z’ _ iium, argon, krypton or neon and used in a device 2,75 7,261 7/3940 Lmgal ........................... .. 252/635 X wherein the dielectric gas is Subjected to a substantially 2,867,679 1/1959 Cobme ..................
    [Show full text]
  • The Electric-Lamp Industry
    Massachusetts Institute of Technology Studies of Innovation • GiSma,..=("EaEssormat THE MACMILLAN COMPANY THE ELECTRIC-LAMP INDUSTRY: NEW YORK a BOSTON a CHICAGO DALLAS • ATLANTA • SAN FRANCISCO MACMILLAN AND CO., LIMITED Technological Change and Economic LONDON a BOMBAY a CALCUTTA MADRAS a MELBOURNE Development from 1800 to 1947 THE MACMILLAN COMPANY OF CANADA, LIMITED TORONTO By ARTHUR A. BRIGHT, Jr. THE MACMILLAN COMPANY • NEW YORK 1949 FOREWORD THIS study of the economic development of the electric- lamp industry is the second volume in a series of studies on the economics of innovation, undertaken at the Massachusetts Insti- tute of Technology. The creative role played by science and technology in modern economic life is apparent to everyone. But we know relatively little about the human factors which condition the introduction of technological change into our environment. Are there barriers to innovation inherent in the increasing concentration of power in a few large concerns? Does the patent system, designed as an incentive to invention, act more often as a brake on new develop- ments? What has been the role of key personalities in creating change? Are there lessons to be drawn from the past on how the innovating process can be more effective, not only from the standpoint of achieving a higher standard of material being but from the point of view of smoother human relations? Certainly, material progress at any price is not a satisfactory goal. On the other hand, freedom for creative action in initiating and carrying out new developments is a basic human drive for many individu- als. I believe, personally, that a great society should strive toward a goal which will give to individuals and groups the maximum opportunities for creative expression; yet this means to me that the State must act to prevent the compulsive pressure of some particular group from overriding others to the destruction of human values.
    [Show full text]
  • Humphry Davy and the Arc Light
    REMAKING HISTORY By William Gurstelle Humphry Davy and the Arc Light » Thomas Edison did not invent the first electric BRILLIANT light.* More than 70 years before Edison’s 1879 MISTAKES: Humphry Davy, incandescent lamp patent, the English scientist chemist, inventor, Humphry Davy developed a technique for produc- and philosopher: ing controlled light from electricity. “I have learned Sir Humphry Davy (1778–1829) was one of the more from my failures than from giants of 19th-century science. A fellow of the my successes.” prestigious Royal Society, Davy is credited with discovering, and first isolating, elemental sodium, potassium, calcium, magnesium, boron, barium, and strontium. A pioneer in electrochemistry, he appeared between the electrode tips, Davy had to also developed the first medical use of nitrous oxide separate the carbon electrodes slightly and care- and invented the miner’s safety lamp. The safety fully in order to sustain the continuous, bright arc lamp alone is directly responsible for saving of electricity. Once that was accomplished, he found hundreds, if not thousands, of miners’ lives. the device could sustain the arc for long periods, But it is his invention of the arc lamp for which we even as the carbon rods were consumed in the heat remember him here. Davy’s artificial electric light of the process. consisted of two carbon rods, made from wood Davy’s arc lamp of 1807 was not economically charcoal, connected to the terminals of an enormous practical until the cost of producing a 50V-or-so collection of voltaic cells. (In Davy’s day, thousands power supply became reasonable.
    [Show full text]
  • History of Electric Light
    SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 76. NUMBER 2 HISTORY OF ELECTRIC LIGHT BY HENRY SGHROEDER Harrison, New Jersey PER\ ^"^^3^ /ORB (Publication 2717) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION AUGUST 15, 1923 Zrtie Boxb QSaftitnore (prcee BALTIMORE, MD., U. S. A. CONTENTS PAGE List of Illustrations v Foreword ix Chronology of Electric Light xi Early Records of Electricity and Magnetism i Machines Generating Electricity by Friction 2 The Leyden Jar 3 Electricity Generated by Chemical Means 3 Improvement of Volta's Battery 5 Davy's Discoveries 5 Researches of Oersted, Ampere, Schweigger and Sturgeon 6 Ohm's Law 7 Invention of the Dynamo 7 Daniell's Battery 10 Grove's Battery 11 Grove's Demonstration of Incandescent Lighting 12 Grenet Battery 13 De Moleyns' Incandescent Lamp 13 Early Developments of the Arc Lamp 14 Joule's Law 16 Starr's Incandescent Lamp 17 Other Early Incandescent Lamps 19 Further Arc Lamp Developments 20 Development of the Dynamo, 1840-1860 24 The First Commercial Installation of an Electric Light 25 Further Dynamo Developments 27 Russian Incandescent Lamp Inventors 30 The Jablochkofif " Candle " 31 Commercial Introduction of the Differentially Controlled Arc Lamp ^3 Arc Lighting in the United States 3;^ Other American Arc Light Systems 40 " Sub-Dividing the Electric Light " 42 Edison's Invention of a Practical Incandescent Lamp 43 Edison's Three-Wire System 53 Development of the Alternating Current Constant Potential System 54 Incandescent Lamp Developments, 1884-1894 56 The Edison " Municipal
    [Show full text]
  • The Invention of the Electric Light
    The Invention of the Electric Light B. J. G. van der Kooij This case study is part of the research work in preparation for a doctorate-dissertation to be obtained from the University of Technology, Delft, The Netherlands (www.tudelft.nl). It is one of a series of case studies about “Innovation” under the title “The Invention Series”. About the text—This is a scholarly case study describing the historic developments that resulted in the steam engine. It is based on a large number of historic and contemporary sources. As we did not conduct any research into primary sources, we made use of the efforts of numerous others by citing them quite extensively to preserve the original character of their contributions. Where possible we identified the individual authors of the citations. As some are not identifiable, we identified the source of the text. Facts that are considered to be of a general character in the public domain are not cited. About the pictures—Many of the pictures used in this case study were found at websites accessed through the Internet. Where possible they were traced to their origins, which, when found, were indicated as the source. As most are out of copyright, we feel that the fair use we make of the pictures to illustrate the scholarly case is not an infringement of copyright. Copyright © 2015 B. J. G. van der Kooij Cover art is a line drawing of Edison’s incandescent lamp (US Patent № 223.898) and Jablochkoff’s arc lamp (US Patent № 190.864) (courtesy USPTO). Version 1.1 (April 2015) All rights reserved.
    [Show full text]
  • Understanding the Benefits of Electric Arc Furnace Technology
    Industry Focus #mullite #alumina #silica #refractories #furnaces Understanding the Benefits of Electric Arc Furnace Technology Minerals processed via electric arc furnace technology provide optimal purity, porosity and crystal size to meet the increasingly stringent needs of a range of industries. hether a finishing process uses sandpaper or a grinding wheel, pres- sure blasting or thermal spraying, abrasive and ceramic grains and powders play an integral role in the appearance and performance of thousands of products that are used every day all over the world. WThese minerals, which are also used to produce ceramic parts and kiln furniture, through various size reduction and among other refractory products, undergo a meticulous production process in order powder processing steps to achieve the to meet the increasingly stringent requirements of various end-use applications. A material’s desired finished properties. vital aspect of that process is the electric arc furnace, which helps ensure the miner- Virtually any oxide material can be als’ optimal purity, porosity, and crystal size. processed in an electric arc furnace. Because the materials are melted and The Fusion Process actually reach the liquid state, the end Simply put, an electric arc furnace is a vessel that uses electricity to melt miner- result is a near-perfect fusion. Let’s take als or other materials. The process begins when the dry minerals are weighed and a look at mullite as an example. To pro- mixed together, then evenly distributed throughout the furnace via feed chutes. duce mullite, alumina and silica are put Power is supplied to the furnace by a transformer and graphite electrodes.
    [Show full text]
  • Head Protection
    EYE AND HEAD PROTECTION ARC FLASH SHIELD WITH HEAD BAND EN 166 / EN 170 IEC 61482-1-2 / GS-ET29 / ANSI Z87.1 Protective face shield to be used without a helmet. Normative marking : 2C-1.2 CATU 1B8-1-03CE 1883 Polycarbonate face shield. - Arc protection class against short-circuit electric arcs. - Head fit adjustment by milled wheel. - Anti-scratch and anti-fogging treatments. CAUTION: DO NOT USE FOR WELDING OPERATIONS. (mm) Reference Characteristics Dimensions Weight MO-286 Clear face shield L 230 x H 290 400 MO-286 M-883209 Replacement face shield M-883298 Sweatband BENEFITS • Insulating up to 1000 V. • Arc Flash APC 1 (Box test) EN 166 / EN 170 IEC 61482-1-2 / GS-ET29 / ANSI Z87.1 FACE SHIELDs Normative marking : FRAME: CATU 166 8 B CE 1883 Protection against short-circuit electric arcs. Face shield adjustable SCREEN: 2C-1.2 CATU 1B8-1-03CE 1883 on MO-182 helmet. CAUTION: DO NOT USE FOR WELDING OPERATIONS. (mm) Reference Fitting Dimensions Weight MO-284 Rubber headband L 200 x H 470 170 MO-284 MO-284-C Side clips L 200 x H 470 170 Accessories Reference Characteristics M-883210 Replacement face shield for MO-284 Spare hardware kit M-883295 (Screen milled wheel adjustment) BENEFITS • Fit with most type of helmet (MO-284). • Arc Flash APC 1 (Box test). • Insulating up to 1000 V. MO-284-C 18 PPE - CPE / Eye and head protection HEAD PROTECTION Insulated safety HELMETs EN 397 EN 50365 Safety industrial helmet. Standard sizes 53 to 62. ANSI Z89.1 Trim along the inside for added comfort.
    [Show full text]
  • Modelling of Electrode-Arc Coupling in Electric Arc Welding
    MODELLING OF ELECTRODE-ARC COUPLING IN ELECTRIC ARC WELDING Alireza Javidi Shirvan1, Isabelle Choquet1, Håkan Nilsson2 1University West, Dept. of Engineering Science, Trollhättan, Sweden, 2Chalmers University of Technology, Dept. of Applied Mechanics, Gothenburg, Sweden [email protected] Abstract: Modelling of the arc in electric arc welding is significant to achieve a better pro- cess understanding, thus gain better weld quality and a more efficient production process. It requires knowing the conditions at the surfaces of the anode and cathode. These condi- tions are very difficult to set from measurements and should be calculated. This requires modelling the complex physics of the electrode layer coupling electrode and arc. This paper presents a self-consistent electrode layer model that 1) is suited to welding applica- tions, 2) accounts for the known physics taking place, and 3) satisfies the basic conservation requirements. The model is tested for different conditions. Its potentiality for welding ap- plications is shown through calculations coupling plasma arc, electrode and cathode layer models. The calculations are done for both tungsten and thoriated tungsten electrode. Keywords: thermal plasma, arc welding, electrode layer, sheath, electrode surface temper- ature, numerical simulation, OpenFOAM. 1. INTRODUCTION An important issue in welding manufacturing is to avoid the formation of defects during production. Some of the most common weld defects are lack of fusion, porosity, solidification cracks and spatters. They weaken the welded component thus increasing the risk of failure. When detected during production additional repairing processing can be needed. To minimize welding defects and make the process more resource efficient and sustainable many research studies have been done, most of them being experimental.
    [Show full text]