(12) Patent Application Publication (10) Pub. No.: US 2006/0116335 A1 Chang Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2006/0116335 A1 Chang Et Al US 2006O116335A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0116335 A1 Chang et al. (43) Pub. Date: Jun. 1, 2006 (54) READY-FOR-COMPLEXATION Publication Classification COMPOSITION (51) Int. Cl. (75) Inventors: William T. H. Chang, Taipei (TW); A6II 3L/724 (2006.01) James H. Y. Chen, Taipei (TW); Wen A6II 3 L/7048 (2006.01) Pin Yeh, Taipei County (TW) (52) U.S. Cl. ................................................. 514/28: 514/58 Correspondence Address: Ladas & Parry (57) ABSTRACT 26 West 61st Street Newew York,York, NY 10O23 (US)US The invention relates to a ready-for-complexation (RFC) (73) Assignee: Lytone Enterprise, Inc. composition, comprising a polyene antimycotic and a cyclo dextrin or the derivatives thereof. Also disclosed is a method (21) Appl. No.: 10/998,257 of using the ready-for-complexation (RFC) composition of the invention to improve the solubility of polyene antimy (22) Filed: Nov. 26, 2004 cotic. US 2006/01 16335 A1 Jun. 1, 2006 READY-FOR-COMPLEXATION COMPOSITION tural products, said composition comprises polyene antimy cotic and a cyclodextrin or the derivatives thereof. FIELD OF THE INVENTION 0008 Another further object of the invention is to pro 0001. The present invention relates to a ready-for-com vide a method of using a ready-for-complexation composi plexation (RFC) composition, comprising a polyene anti tion in culture Substrate against fungal infection, comprising mycotic and a cyclodextrin or the derivatives thereof. providing said composition and applying said composition to a culture Substrate, said composition comprises polyene BACKGROUND OF THE INVENTION antimycotic and a cyclodextrin or the derivatives thereof. 0002 Many polyene antimycotics are known to have antifungal properties useful for treating fungal infections. DETAILED DESCRIPTION OF THE The polyene antimycotics are basically and uniquely char INVENTION acterized by a large lactone ring which includes a chain of 0009. The present invention provides a ready-for-com conjugated double bonds, specifically comprising 4, 5, 6 or plexation (RFC) composition, comprising a polyene anti 7 Such linkages, whereby the compounds are correspond mycotic and a cyclodextrin or the derivatives thereof. ingly known as tetraenes, pentaenes, hexaenes and hep taenes and are collectively called polyenes. EP0434943 0010. According to the invention, the polyene antimy indicates that the polyene antimycotics have a low or almost cotics used in the ready-for-complexation (RFC) composi absent water solubility, which is a common characteristic of tion of the invention are a group of macrocyclic polyketides all the polyenes and causes a strong hindrance to diffusion that interact with membrane sterols and are, therefore, active after application. against fungi but not bacteria. The macrollide rings of polyene antimycotics are larger than those of standard 14- or 0003 Natamycin, an example of polyene antimycotic, is 16-membered nonpolyene macrollides. The latter rings provided to illustrate the solubility defects of the polyene include a chromophore of conjugated double bonds, which antimycotic. Natamycin is a member of the polyene family, are the characteristic polyene structure. According to the and has been used to prevent fungal growth on foods for invention, the polyene antimycotic refers to the polyene more than 30 years. It is common in the surface treatment of macrollides and their derivatives. The polyene macrollide cheese and sausage and can also be used to prevent spoilage derivatives of the invention comprise a main polyene mac of juice and fermented milk by yeast (N. J. Russell and G. rollide backbone derived from any of a variety of polyene W. Gould, Kluewer Academic/Plenum Publishers, New macrollides. Examples of these polyene macrollides include, York, pp. 179-195.) However, due to the amphoteric char but not limited to, natamycin, amphotericin B. aureofacin, acter of the natamycin, it has a low solubility in most candicidin, candidin, levorin, mycoheptin, nystatin, partricin solvents. U.S. Pat. No. 6,156,362 indicates that natamycin is A, partricin B, perimycin, pimaricin, polyfungin, rimocidin relatively insoluble in water, in which its solubility is of the and trichomycin. order 0.005-0.010 weight/weighdditionally; even in solu tion, natamycin is rather unstable. The low solubility of 0011 Natamycin is one preferred embodiment of polyene natamycin also limits its application in food process. An antimycotic of the invention. Natamycin is a commonly enhanced antimycotic activity could be achieved by improv used polyene antimycotic in preventing fungal growth on ing solubility of natamycin, thus making it more available to foods. Natamycin is a creamy white, odorless, tasteless, the food environment. The solubility of natamycin in water especially insoluble crystalline amphoteric powder. The can be increased using alkaline, acidic conditions or organic natamycin Suitable for use in the invention is a known and solvents. However, the dissolved natamycin molecule is commercially available yeast and mold inhibitor that has sensitive to light, oxygen, or extreme pH value. It is well been used to prevent the growth of yeasts and molds in known that dissolved natamycin would rapidly decompose various products. Natamycin also refers to other names Such as pimaricin, antibiotic A 5283, tennecetin, CL 12625, in water. Mycophyt, Myprozine, Natacyn and Pimafucin, all of which 0004. Accordingly, it would be desirable to solve the are collectively referred to as “natamycin' for the purposes problem of poor solubility and solution stability of polyene of the invention. According to the invention, natamycin also antimycotics. includes any compounds having Substantially the same chemical structure as natamycin, e.g., compounds produced SUMMARY OF THE INVENTION by chemical synthesis or biotechnology, provided such com pounds have essentially the same mold and yeast inhibition 0005. An object of the invention is to provide a ready properties. Natamycin, Such as those from Gist-Brocades for-complexation (RFC) composition, comprising a polyene Food Ingredients, Inc. of King of Prussia, Pa. (DELVO antimycotic and a cyclodextrin or the derivatives thereof. CID.RTM) and Cultor Food Science Inc., Roseville, Calif. 0006 Another object of the invention is to provide a (NATAMAX.RTM), is commercially available. method of using the ready-for-complexation (RFC) compo 0012. According to the invention, the cyclodextrins used sition of the invention to improve the solubility of polyene in the ready-for-complexation (RFC) composition of the antimycotics, comprising dissolving the ready-for-complex invention are a group of structurally related Saccharides ation composition in water or buffer solution to form a which are formed by enzymatic cyclization of starch by a cyclodextrin-polyene antimycotic inclusion complex. group of amylases termed glycosyltransferases. The most 0007 Another object of the invention is to provide a common naturally occurring cyclodextrins are C-cyclodex method of using a ready-for-complexation composition for trin, B-cyclodextrin and Y-cyclodextrin consisting of 6, 7 and postharvest treatment, comprising providing said composi 8glucopyranose units, respectively. The most notable feature tion and applying said composition to postharvest agricul of cyclodextrin is their ability to form solid inclusion US 2006/01 16335 A1 Jun. 1, 2006 complexes (host-guest complexes) with a very wide range of For example, the RFC composition of the invention can be Solid, liquid and gaseous compounds by a phenomenon of used for the treatment of postharvest agricultural products molecular complexation. In these complexes, a guest mol and culture substrate. Preferably, the agricultural products ecule is held within the cavity of the cyclodextrin host comprises but not limited to vegetables, fruits and meats. molecule. The term “guest' is used to refer to the compound which is trapped and complexed within the cyclodextrin 0017. The following examples further illustrate the molecule. Cyclodextrins are cyclic oligosaccharides, con present invention, but are not intended to limit the scope of sisting of (C-1,4)-linked C-D-glucopyranose units, with a the present invention. The modifications and Substitutions Somewhat lipophilic central cavity and a hydrophilic outer known to those skilled in the art are still within the scope and Surface. The materials such as natamycin to be complexed spirit of the present invention. are trapped within the cavity of the cyclodextrin molecules and held there through a number of different binding mecha EXAMPLE nisms. According to the invention, appropriate cyclodextrin derivatives can also be used to complex with the natamycin. Example 1 The term “cyclodextrin derivative' refers to modified cyclo dextrin, branched cyclodextrin and their mixtures. Accord ing to the invention, cyclodextrin derivatives include, but Preparation of Ready-for-Complexation (RFC) not limited to, the hydroxypropyl derivatives of C, B and Composition Y-cyclodextrin, Sulfoalkylether cyclodextrins such as Sul fobutylether f3-cyclodextrin, alkylated cyclodextrins such as 0018. The example describes the preparation of RFC the randomly methylated B-cyclodextrin, and various composition of the invention. B-cyclodextrin (B-CD) was branched cyclodextrins such as glucosyl- and maltosyl-3- mixed with the polyene antimycotic powder in a molar ratio cyclodextrin. from 1:1 to 4:1 by hand or mixing devices. The resultant samples were stored at low temperature
Recommended publications
  • Systemic Antifungal Drug Use in Belgium—
    Received: 7 October 2018 | Revised: 28 March 2019 | Accepted: 14 March 2019 DOI: 10.1111/myc.12912 ORIGINAL ARTICLE Systemic antifungal drug use in Belgium—One of the biggest antifungal consumers in Europe Berdieke Goemaere1 | Katrien Lagrou2,3* | Isabel Spriet4,5 | Marijke Hendrickx1 | Eline Vandael6 | Pierre Becker1 | Boudewijn Catry6,7 1BCCM/IHEM Fungal Collection, Service of Mycology and Aerobiology, Sciensano, Summary Brussels, Belgium Background: Reports on the consumption of systemic antifungal drugs on a national 2 Department of Microbiology and level are scarce although of high interest to compare trends and the associated epi- Immunology, KU Leuven, Leuven, Belgium 3Clinical Department of Laboratory demiology in other countries and to assess the need for antifungal stewardship Medicine, National Reference Centre for programmes. Mycosis, University Hospitals Leuven, Leuven, Belgium Objectives: To estimate patterns of Belgian inpatient and outpatient antifungal use 4Department of Pharmaceutical and and provide reference data for other countries. Pharmacological Sciences, KU Leuven, Methods: Consumption records of antifungals were collected in Belgian hospitals Leuven, Belgium between 2003 and 2016. Primary healthcare data were available for the azoles for 5Pharmacy Department, University Hospitals Leuven, Leuven, Belgium the period 2010-2016. 6 Healthcare‐Associated Infections and Results: The majority of the antifungal consumption resulted from prescriptions of Antimicrobial Resistance, Sciensano, Brussels, Belgium fluconazole and itraconazole in the ambulatory care while hospitals were responsible 7Faculty of Medicine, Université Libre de for only 6.4% of the total national consumption and echinocandin use was limited. Bruxelles (ULB), Brussels, Belgium The annual average antifungal consumption in hospitals decreased significantly by Correspondence nearly 25% between 2003 and 2016, due to a decrease solely in non-university hos- Berdieke Goemaere, Sciensano, Mycology pitals.
    [Show full text]
  • IJP: Drugs and Drug Resistance 8 (2018) 246–264
    IJP: Drugs and Drug Resistance 8 (2018) 246–264 Contents lists available at ScienceDirect IJP: Drugs and Drug Resistance journal homepage: www.elsevier.com/locate/ijpddr Genomic and transcriptomic alterations in Leishmania donovani lines T experimentally resistant to antileishmanial drugs Alberto Rastrojoa,1, Raquel García-Hernándezb,1, Paola Vargasb, Esther Camachoa, Laura Corvoa, Hideo Imamurac, Jean-Claude Dujardinc, Santiago Castanysb, Begoña Aguadoa, ∗∗ ∗ Francisco Gamarrob, , Jose M. Requenaa, a Centro de Biología Molecular “Severo Ochoa” (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain b Instituto de Parasitología y Biomedicina ‘‘López-Neyra’’ (IPBLN-CSIC), Granada, Spain c Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium ARTICLE INFO ABSTRACT Keywords: Leishmaniasis is a serious medical issue in many countries around the World, but it remains largely neglected in Leishmania donovani terms of research investment for developing new control and treatment measures. No vaccines exist for human Genome use, and the chemotherapeutic agents currently used are scanty. Furthermore, for some drugs, resistance and Transcriptome treatment failure are increasing to alarming levels. The aim of this work was to identify genomic and tran- Trivalent antimony criptomic alterations associated with experimental resistance against the common drugs used against VL: tri- Amphotericin B valent antimony (SbIII, S line), amphotericin B (AmB, A line), miltefosine (MIL, M line) and paromomycin (PMM, Miltefosine ff fi Paromomycin P line). A total of 1006 di erentially expressed transcripts were identi ed in the S line, 379 in the A line, 146 in 24-Sterol methyltransferase the M line, and 129 in the P line. Also, changes in ploidy of chromosomes and amplification/deletion of par- D-lactate dehydrogenase ticular regions were observed in the resistant lines regarding the parental one.
    [Show full text]
  • Nystatin and Triamcinolone Acetonide Cream, USP Nystatin And
    FRONT BACK Nystatin and Triamcinolone Acetonide Cream, USP PK-1111-3 corticosteroids. 45 Children may absorb proportionally larger amounts of topical corticosteroids and thus be more susceptible to Nystatin and Triamcinolone Acetonide Ointment, USP systemic toxicity (see PRECAUTIONS, Pediatric Use). Rx only If irritation or hypersensitivity develops with the combination nystatin and triamcinolone acetonide, treatment should be discontinued and appropriate therapy instituted. FOR EXTERNAL USE ONLY. NOT FOR OPHTHALMIC USE Information for the Patient: Patients using this medication should receive the following information and DESCRIPTION: Nystatin and Triamcinolone Acetonide Cream and Ointment for dermatologic use contain the instructions: antifungal agent nystatin and the synthetic corticosteroid triamcinolone acetonide. 1. This medication is to be used as directed by the physician. It is for external use only. Avoid contact with the eyes. Nystatin is a polyene antimycotic obtained from Streptomyces noursei. It is a yellow to light tan powder with a 2. Patients should be advised not to use this medication for any disorder other than for which it was prescribed. cereallike odor, very slightly soluble in water, and slightly to sparingly soluble in alcohol. Structural formula: 3. The treated skin area should not be bandaged or otherwise covered or wrapped as to be occluded (see CH3 DOSAGE AND ADMINISTRATION). O H CH3 4. Patients should report any signs of local adverse reactions. O H HO OH H2N 5. When using this medication in the inguinal area, patients should be advised to apply the cream or ointment OH OH sparingly and to wear loose fitting clothing. CH3 H H H3C 6. Parents of pediatric patients should be advised not to use tight-fitting diapers or plastic pants on a child being OH O COOH treated in the diaper area, as these garments may constitute occlusive dressings.
    [Show full text]
  • WO 2017/009265 Al 19 January 2017 (19.01.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/009265 Al 19 January 2017 (19.01.2017) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A01N 31/06 (2006.01) A01N 37/04 (2006.01) kind of national protection available): AE, AG, AL, AM, A0 37/00 (2006.01) A01P 1/00 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A0 37/02 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, PCT/EP2016/066368 KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (22) International Filing Date: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, 8 July 2016 (08.07.2016) PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (25) Filing Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 15 12 135.3 10 July 2015 (10.07.2015) GB GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: IPABC LTD [GB/GB]; The Die-Pat Centre, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, Broad March, Broad March, Daventry, Northamptonshire DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, NN1 1 4HE (GB).
    [Show full text]
  • Amphotericin B Amphocil
    Public Assessment Report for paediatric studies submitted in accordance with Article 45 of Regulation (EC) No1901/2006, as amended Amphotericin B Amphocil Abelcet DE/W/009/pdWS/001 Rapporteur: Germany Finalisation procedure (day 120): 24.11.2017 Amphotericin B DE/W/009/pdWS/001 Seite 1 TABLE OF CONTENTS I. Executive Summary ....................................................................................................... 4 II. RecommendatioN .......................................................................................................... 4 III. INTRODUCTION ............................................................................................................. 6 IV. SCIENTIFIC DISCUSSION .............................................................................................. 7 IV.1 Information on the pharmaceutical formulation used in the clinical studies .............. 7 IV.2 Non-clinical aspects ................................................................................................................... 9 IV.3 Clinical aspects .......................................................................................................................... 10 V. MEMBER STATES Overall Conclusion AND RECOMMENDATION ........................... 31 VI. List of Medicinal products and marketing authorisation holders involved ............. 33 Amphotericin B DE/W/009/pdWS/001 Page 2/33 ADMINISTRATIVE INFORMATION Invented name of the medicinal See section VI product(s): INN (or common name) of the active Amphotericin B substance(s):
    [Show full text]
  • Adaptation of Aspergillus Niger to Multiple Agents Whose Action Mechanisms Are Different
    Jpn. J. Med. Mycol. Vol. 36, 19-24, 1995 ISSN 0916-4804 Original Article Adaptation of Aspergillus niger to Multiple Agents Whose Action Mechanisms are Different Hideaki Matsuoka1, Jong-Chul Park1, Yasuyuki Nemoto1, Satoru Yamada2, Weimin Jing3, Yuansong Chen3, Kosuke Takatori4, Hiroshi Kurata5 1Department of Biotechnology, Faculty of Technology, Tokyo University of Agriculture and Technology, 2-24-16, Nakamachi, Koganei, Tokyo 184, Japan 2Research and Development Division, Bio-Liken Inc., 1-5-8, Iwamotocho, Chiyoda-ku, Tokyo 101, Japan 3Research and Development Division, Hidan Co. Ltd., 627, Hananoi, Kashiwa, Chiba 277, Japan 4Hatano Research Institute, Food & Drug Safety Center, 729-5, Ochiai, Hadano, Kanagawa 257, Japan 5The Tokyo Kembikyoin Foundation, 4-8-32, Kudanminami, Chiyoda-ku, Tokyo 102, Japan (Received: 9, August 1994. Accepted: 9, September 1994] Abstract Adaptation of Aspergillus niger to amphotericin B (AMPH) and two imidazoles (miconazole (MCZ) and ketoconazole (KCZ)) was observed at a single hypha level with a continuous measurement system. It was found that a test hypha adapted to MCZ or KCZ was also adapted to AMPH but that a hypha adapted to AMPH was not adapted either to MCZ or KCZ. These adaptation phenomena to respective agents did not occur after incubation in the medium supplemented with ergosterol. The cross adaptation phenomena were suspected to be due to modification of the synthesis pathway of ergosterol and related derivatives. Key words: adaptation, hyphal growth rate, Aspergillus niger, amphotericin B, miconazole, ketoconazole. rienced by many mycologists and microbiologists Introduction 5-9). The newly developed BCT system has dem- A single hypha-based microbioassay has recently onstrated those adaptation phenomena much more been proposed and applied to the evaluation of clearly by tracing the same hypha throughout.
    [Show full text]
  • Nystatin Cream USP, 100,000 Units Per Gram Rx Only
    NYSTATIN- nystatin cream Rebel Distributors Corp ---------- Nystatin Cream USP, 100,000 units per gram Rx only DESCRIPTION Nystatin Cream is for dermatologic use. Nystatin is a polyene antimycotic obtained from Streptomyces noursei. It is a yellow to light tan powder with a cereal-like odor, very soluble in water, and slightly to sparingly soluble in alcohol. Structural formula: Nystatin Cream contains the antifungal antibiotic nystatin at a concentration of 100,000 USP Nystatin Units per gram in an aqueous, perfumed cream base containing purified water, propylene glycol, methylparaben, propylparaben, white petrolatum, glyceryl monostearate, polyethylene glycol 400 monostearate, ceteareth-15, medical antifoam AF emulsion, aluminum hydroxide gel, titanium dioxide, sorbitol solution, and, if necessary, sodium hydroxide for pH adjustment. CLINICAL PHARMACOLOGY Nystatin is an antifungal antibiotic which is both fungistatic and fungicidal in vitro against a wide variety of yeasts and yeast-like fungi. It probably acts by binding to sterols in the cell membrane of the fungus with a resultant change in membrane permeability allowing leakage of intracellular components. Nystatin is the first well tolerated antifungal antibiotic of dependable efficacy for the treatment of cutaneous, oral and intestinal infections caused by Candida (Monilia) albicans and other Candida species. It exhibits no appreciable activity against bacteria. Nystatin provides specific therapy for all localized forms of candidiasis. Symptomatic relief is rapid, often occurring within 24 to 72 hours after the initiation of treatment. Cure is effected both clinically and mycologically in most cases of localized candidiasis. INDICATIONS AND USAGE Nystatin Cream is indicated in the treatment of cutaneous or mucocutaneous mycotic infections caused by Candida (Monilia) albicans and other Candida species.
    [Show full text]
  • Impact of Antibiotics on the Proliferation and Differentiation of Human Adipose-Derived Mesenchymal Stem Cells
    Article Impact of Antibiotics on the Proliferation and Differentiation of Human Adipose-Derived Mesenchymal Stem Cells Aleksandra Skubis 1,*, Joanna Gola 1, Bartosz Sikora 1, Jolanta Hybiak 2, Monika Paul-Samojedny 3, Urszula Mazurek 1 and Marek J. Łos 4,5,6,*. 1 Department of Molecular Biology, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; [email protected] (J.G.); [email protected] (B.S.); [email protected] (U.M.) 2 Department of Pathology, Pomeranian Medical University, 70-204 Szczecin, Poland; [email protected] 3 Department of Medical Genetics, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; [email protected] 4 Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A str., 30-387 Krakow, Poland 5 LinkoCare Life Sciences AB, 583 30 Linköping, Sweden 6 Centre de Biophysique Moléculaire, UPR4301 CNRS CS80054, Rue Charles Sadron, 45071 Orleans CEDEX 2, France * Correspondence: [email protected] (A.S.); [email protected] or [email protected] (M.J.Ł.); Tel.: +48-32-364-1020 (A.S.); +46-766-531-168 (M.J.Ł.); Received: 10 November 2017; Accepted: 20 November 2017; Published: 24 November 2017 Abstract: Adipose tissue is a promising source of mesenchymal stem cells. Their potential to differentiate and regenerate other types of tissues may be affected by several factors. This may be due to in vitro cell-culture conditions, especially the supplementation with antibiotics. The aim of our study was to evaluate the effects of a penicillin-streptomycin mixture (PS), amphotericin B (AmB), a complex of AmB with copper (II) ions (AmB-Cu2+) and various combinations of these antibiotics on the proliferation and differentiation of adipose-derived stem cells in vitro.
    [Show full text]
  • Methods and Kits for Detecting Fungal Infection Verfahren Und Kits Zum Nachweis Einer Pilzinfektion Procédés Et Trousses Pour Détecter Une Infection Fongique
    (19) TZZ_Z_T (11) EP 1 955 069 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61K 9/127 (2006.01) G01N 21/00 (2006.01) 18.03.2015 Bulletin 2015/12 G01N 33/53 (2006.01) G01N 33/569 (2006.01) (21) Application number: 06821559.9 (86) International application number: PCT/IL2006/001318 (22) Date of filing: 15.11.2006 (87) International publication number: WO 2007/057891 (24.05.2007 Gazette 2007/21) (54) METHODS AND KITS FOR DETECTING FUNGAL INFECTION VERFAHREN UND KITS ZUM NACHWEIS EINER PILZINFEKTION PROCÉDÉS ET TROUSSES POUR DÉTECTER UNE INFECTION FONGIQUE (84) Designated Contracting States: • TEJADA-SIMON M V ET AL: "Production of AT BE BG CH CY CZ DE DK EE ES FI FR GB GR polyclonal antibody against ergosterol HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI hemisuccinate using Freund’s and Titermax SK TR adjuvants" JOURNAL OF FOOD PROTECTION, DES MOINES, IO, US, vol. 61, no. 8, 1 August 1998 (30) Priority: 15.11.2005 US 736814 P (1998-08-01) , pages 1060-1063, XP009125825 ISSN: 0362-028X (43) Date of publication of application: • WALKER-CAPRIOGLIO H M ET AL: 13.08.2008 Bulletin 2008/33 "ANTIBODIES TO NYSTATIN DEMONSTRATE POLYENE STEROL SPECIFICITY AND ALLOW (73) Proprietor: Semorex Inc. IMMUNOLABELING OF STEROLS IN North Brunswick, NJ 08902 (US) SACCHAROMYCES CEREVISIAE" ANTIMICROBIAL AGENTS AND (72) Inventors: CHEMOTHERAPY, AMERICAN SOCIETY FOR • GREEN, Bernard, S. MICROBIOLOGY, WASHINGTON, DC, US, vol. 33, 76229 Rechovot (IL) no. 12, 1 December 1989 (1989-12-01), pages • TZOMIK, Inna 2092-2095, XP000999504 ISSN: 0066-4804 97299 Modiin (IL) • PALLAVI R M V ET AL: "Synthesis of the antigen • ARAD-YELLIN, Rina bovine serum albumin-ergosterol and its 76603 Rechovot (IL) immunocharacterization" FOOD AND AGRICULTURAL IMMUNOLOGY, XX, XX, vol.
    [Show full text]
  • Pharmaceutical Compositions Containing Oligomeric
    (19) TZZ ___T (11) EP 2 872 117 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A61K 9/00 (2006.01) A61K 9/20 (2006.01) 27.09.2017 Bulletin 2017/39 A61K 31/19 (2006.01) A61K 31/765 (2006.01) A61P 15/02 (2006.01) C07C 69/68 (2006.01) (2006.01) (2006.01) (21) Application number: 13737191.0 C08L 67/04 A61K 9/08 A61K 47/38 (2006.01) A61K 9/70 (2006.01) A61K 31/225 (2006.01) (22) Date of filing: 05.07.2013 (86) International application number: PCT/EP2013/064265 (87) International publication number: WO 2014/012805 (23.01.2014 Gazette 2014/04) (54) PHARMACEUTICAL COMPOSITIONS CONTAINING OLIGOMERIC LACTIC ACID PHARMAZEUTISCHE ZUSAMMENSETZUNGEN MIT OLIGOMERER MILCHSÄURE COMPOSITIONS PHARMACEUTIQUES CONTENANT DE L’ACIDE LACTIQUE OLIGOMÉRIQUE (84) Designated Contracting States: • SCHUBERT, Werner AL AT BE BG CH CY CZ DE DK EE ES FI FR GB S-436 44 Askim (SE) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR (74) Representative: Chas. Hude A/S H.C. Andersens Boulevard 33 (30) Priority: 16.07.2012 DK 201270431 1780 Copenhagen V (DK) (43) Date of publication of application: (56) References cited: 20.05.2015 Bulletin 2015/21 WO-A1-2008/119518 WO-A2-03/016259 (73) Proprietor: Laccure Ab • SCHLIECKER G ET AL: "Characterization of a 252 20 Helsingborg (SE) homologous series of d,l-lactic acid oligomers; a mechanistic study on the degradation kinetics in (72) Inventors: vitro", BIOMATERIALS, ELSEVIER SCIENCE • STERNER, Olov PUBLISHERS BV., BARKING, GB, vol.
    [Show full text]
  • Functional Characterization of Leishmania Throughout in Vitro Biological Cycle: the Quest for a Quiescent Stage Among Amastigotes
    Faculty of Pharmacy, Biomedical and Veterinary Sciences Department of Biomedical Sciences Functional characterization of Leishmania throughout in vitro biological cycle: the quest for a quiescent stage among amastigotes Dissertation for the degree of Doctor in Biomedical Sciences at the University of Antwerp to be defended by Marlene Jara Portocarrero Promoters: Prof. Dr Jean-Claude Dujardin Prof. Dr. Jorge Arevalo Antwerp, 2019 Doctoral committee Chair Prof. Dr. Marleen Verhoye (University of Antwerp, Belgium) Member Prof. Dr. Paul Cos (University of Antwerp, Belgium) Prof. Dr. Kris Laukens (University of Antwerp, Belgium) Prof. Dr. Luc Kestens (University of Antwerp, Belgium) Prof. Dr. Michael Barrett (University of Glasgow) Prof. Dr. Michael Miles (London Centre for Neglected Tropical Disease Research) Promotors Prof. Dr. Jean-Claude Dujardin (Institute of Tropical Medicine, University of Antwerp, Belgium) Prof. Dr. Jorge Arevalo (Institute of tropical Medicine Alexander von Humboldt, UCPH, Lima, Peru) COLOFON Cover picture: Live cell imaging of peritoneal mouse macrophages infected with Leishmania mexicana. Dutch title Functionele karakterisering van Leishmania gedurende de gehele in vitro biologische cyclus: de zoektocht naar een slaaptoestand fase onder amastigoten. Acknowledgements I would like to thank my co-promotor Jorge Arevalo for fostering my interest in this peculiar pathogen called Leishmania throughout the years with interesting discussion and intriguing questions. However, doing a PhD was not on my mind therefore I would like to specially thank him and also to Manu Vanaerschot for encouraging me to pursue a PhD between the Institute of tropical Medicine Alexander von Humboldt (ITM AvH) and the Institute of Tropical Medicine of Antwerp (ITM) in the laboratory of Jean Claude.
    [Show full text]
  • TRANSPARENCY COMMITTEE OPINION 27 January 2010
    The legally binding text is the original French version TRANSPARENCY COMMITTEE OPINION 27 January 2010 ONYTEC 80 mg/g, medicated nail lacquer B/1 glass vial of 3.3 ml (CIP: 395 010-4) B/1 glass vial of 6.6 ml (CIP: 395 011-0) Applicant: BAILLEUL-BIORGA ciclopirox ATC code: D01AE14 Date of Marketing Authorisation: 01/07/2009 Reason for request : inclusion on the list of medicines reimbursed by National Health Insurance and approved for hospital use. Medical, Economic and Public Health Assessment Division 1 1 CHARACTERISTICS OF THE MEDICINAL PRODUCT 1.1. Active ingredient ciclopirox 1.2. Originality ONYTEC is a water-soluble nail lacquer formulation based on ciclopirox. It rinses off in water. 1.3. Indication "Mild to moderate onychomycosis caused by dermatophytes and/or other ciclopirox-sensitive fungi, without lunula involvement. » 1.4. Dosage "Topical use on fingernails and toenails and immediately adjacent skin (perionychium, hyponychium). Unless otherwise specified, ONYTEC nail lacquer should be applied to the clean, dry affected nail(s) in a thin layer once a day. The medicated nail lacquer must be applied to the entire nail plate, 5 mm of surrounding skin and, if possible, to the free edge of the nail. ONYTEC nail lacquer takes about thirty seconds to dry. Treated nails must not be washed for at least six hours, and patients are therefore advised to apply the product in the evening before retiring. After this time the normal hygiene routine can be resumed. There is no need to use a solvent or abrasive (i.e. a nail file) to remove ONYTEC nail lacquer; washing the nails is sufficient.
    [Show full text]