Moraxellaceae and Moraxella Interact with the Altered Airway Mycobiome in Asthma
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Biofilm Formation by Moraxella Catarrhalis
BIOFILM FORMATION BY MORAXELLA CATARRHALIS APPROVED BY SUPERVISORY COMMITTEE Eric J. Hansen, Ph.D. ___________________________ Kevin S. McIver, Ph.D. ___________________________ Michael V. Norgard, Ph.D. ___________________________ Philip J. Thomas, Ph.D. ___________________________ Nicolai S.C. van Oers, Ph.D. ___________________________ BIOFILM FORMATION BY MORAXELLA CATARRHALIS by MELANIE MICHELLE PEARSON DISSERTATION Presented to the Faculty of the Graduate School of Biomedical Sciences The University of Texas Southwestern Medical Center at Dallas In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY The University of Texas Southwestern Medical Center at Dallas Dallas, Texas March, 2004 Copyright by Melanie Michelle Pearson 2004 All Rights Reserved Acknowledgements As with any grand endeavor, there was a large supporting cast who guided me through the completion of my Ph.D. First and foremost, I would like to thank my mentor, Dr. Eric Hansen, for granting me the independence to pursue my ideas while helping me shape my work into a coherent story. I have seen that the time involved in supervising a graduate student is tremendous, and I am grateful for his advice and support. The members of my graduate committee (Drs. Michael Norgard, Kevin McIver, Phil Thomas, and Nicolai van Oers) have likewise given me a considerable investment of time and intellect. Many of the faculty, postdocs, students and staff of the Microbiology department have added to my education and made my experience here positive. Many members of the Hansen laboratory contributed to my work. Dr. Eric Lafontaine gave me my first introduction to M. catarrhalis. I hope I have learned from his example of patience, good nature, and hard work. -
Neisseria Acinetobacter, Moraxella ? and Kingella Based on Partial 16S Ribosomal DNA Sequence Analysis4
INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, July 1994, p. 387-391 Vol. 44, No. 3 0020-7713/94/$04.00 + 0 Copyright 0 1994, International Union of Microbiological Societies Phylogenetic Relationships between Some Members of the Genera Neisseria Acinetobacter, Moraxella ? and Kingella Based on Partial 16s Ribosomal DNA Sequence Analysis4. M. C. ENRIGHT,” P. E. CARTER, I. A. MACLEAN,AND H. McKENZIE Department of Medical Microbiology, Faculty of Medicine, University of Aberdeen, Foresterhill, Aberdeen, Scotland AB9 220 We obtained 16s ribosomal DNA (rDNA) sequence data for strains belonging to 11 species of Proteobacteria, including the type strains of Kingella kingae, Neisseria lactamica, Neisseria meningitidis, Moraxella lacunata subsp. lacunata, [Neisseria] ovis, Moraxella catarrhalis, Moraxella osloensis, [Moraxella] phenylpyruvica, and Acineto- bacter lwo$i, as well as strains of Neisseria subflava and Acinetobacter calcoaceticus. The data in a distance matrix constructed by comparing the sequences supported the proposal that the genera Acinetobacter and Moraxella and [N.] ovis should be excluded from the family Neisseriaceae. Our results are consistent with hybridization data which suggest that these excluded taxa should be part of a new family, the Moraxellaceae. The strains that we studied can be divided into the following five groups: (i) M. lacunata subsp. lacunata, [N.] ovis, and M. catarrhalis; (ii) M. osloensis; (iii) [M.]phenylpyruvica; (iv) A. calcoaceticus and A. lwofii; and (v) N. meningitidis, N. subflava, N. lactamica, and K. kingae. We agree with the previous proposal that [N.] ovis should be renamed Moraxella ovis, as this organism is closely related to Moraxella species and not to Neisseria species. The generically misnamed taxon [M.] phenylpyruvica belongs to the proposed family Moraxellaceae, but it is sufficiently different to warrant exclusion from the genus Moraxella. -
Acinetobacter Baumannii – a Neglected Pathogen in Veterinary and Environmental Health in Germany
Veterinary Research Communications (2019) 43:1–6 https://doi.org/10.1007/s11259-018-9742-0 REVIEW ARTICLE Acinetobacter baumannii – a neglected pathogen in veterinary and environmental health in Germany Gamal Wareth1 & Heinrich Neubauer1 & Lisa D. Sprague1 Received: 25 October 2018 /Accepted: 6 December 2018 /Published online: 27 December 2018 # The Author(s) 2018 Abstract The emergence and global spread of drug resistant Acinetobacter (A.) baumannii is a cause of great concern. The current knowledge on antibiotic resistance in A. baumannii from animal origin is mostly based on few internationally published case reports, investigations of strain collections and several whole genome analyses. This lack of data results in a somewhat sketchy picture on how to assess the possible impact of drug resistant A. baumannii strains on veterinary and public health in Germany. Consequently, there is an urgent need to intensify the surveillance of A. baumannii in pet animals, the farm animal population and wildlife. Keywords Acinetobacter baumannii . Review . Antibiotic resistance . Germany Introduction limited number of widespread clones appear to be responsible for hospital outbreaks in many countries (Diancourt et al. Acinetobacter (A.) baumannii is a gram-negative opportunis- 2010). Eight international clonal lineages have been described tic nosocomial pathogen belonging to the genus Acinetobacter so far and comparative typing of outbreak strains obtained all and a member of the family Moraxellaceae. Acinetobacter over Europe revealed the dominance of three clones, original- spp. are non-motile, non-fastidious Gram-negative, non- ly named European clones I-III (Dijkshoorn et al. 1996; Karah fermenting, catalase positive, oxidase negative, strictly aero- et al. -
Linking the Resistome and Plasmidome to the Microbiome
The ISME Journal (2019) 13:2437–2446 https://doi.org/10.1038/s41396-019-0446-4 ARTICLE Linking the resistome and plasmidome to the microbiome 1,2 3 3 3 1,2 Thibault Stalder ● Maximilian O. Press ● Shawn Sullivan ● Ivan Liachko ● Eva M. Top Received: 15 February 2019 / Revised: 2 May 2019 / Accepted: 10 May 2019 / Published online: 30 May 2019 © The Author(s) 2019. This article is published with open access Abstract The rapid spread of antibiotic resistance among bacterial pathogens is a serious human health threat. While a range of environments have been identified as reservoirs of antibiotic resistance genes (ARGs), we lack understanding of the origins of these ARGs and their spread from environment to clinic. This is partly due to our inability to identify the natural bacterial hosts of ARGs and the mobile genetic elements that mediate this spread, such as plasmids and integrons. Here we demonstrate that the in vivo proximity-ligation method Hi-C can reconstruct a known plasmid-host association from a wastewater community, and identify the in situ host range of ARGs, plasmids, and integrons by physically linking them to their host chromosomes. Hi-C detected both previously known and novel associations between ARGs, mobile genetic elements and host genomes, thus validating this method. We showed that IncQ plasmids and class 1 integrons had the broadest host range in this wastewater, and identified bacteria belonging to Moraxellaceae, Bacteroides,andPrevotella, and 1234567890();,: 1234567890();,: especially Aeromonadaceae as the most likely reservoirs of ARGs in this community. A better identification of the natural carriers of ARGs will aid the development of strategies to limit resistance spread to pathogens. -
Cave-73-02-Fullr.Pdf
EDITORIAL Production Changes for Future Publication of the Journal of Cave and Karst Studies SCOTT ENGEL Production Editor The Journal of Cave and Karst Studies has experienced December 2011 issue, printed copies of the Journal will be budget shortfalls for the last several years for a multitude automatically distributed to paid subscribers, institutions, of reasons that include, but are not limited to, increased and only those NSS members with active Life and cost of paper, increased costs of shipping through the Sustaining level memberships. The remainder of the NSS United State Postal Service, increased submissions, and membership will be able to view the Journal electronically stagnant funding from the National Speleological Society online but will not automatically receive a printed copy. Full (NSS). The cost to produce the Journal has increased 5 to content of each issue of the Journal will be available for 20 percent per year for the last five years, yet the budget for viewing and downloading in PDF format at no cost from the the Journal has remained unchanged. To offset rising costs, Journal website www.caves.org/pub/journal. the Journal has implemented numerous changes over recent Anyone wishing to receive a printed copy of the Journal years to streamline the production and printing process. will be able to subscribe for an additional cost separate However, the increasing production costs, combined with from normal NSS dues. The cost and subscription process the increasing rate of good-quality submissions, has were still being determined at the time of this printing. resulted in the number of accepted manuscripts by the Once determined, the subscription information will be Journal growing faster than the acquisition of funding to posted on the Journal website. -
Characterization of Environmental and Cultivable Antibiotic- Resistant Microbial Communities Associated with Wastewater Treatment
antibiotics Article Characterization of Environmental and Cultivable Antibiotic- Resistant Microbial Communities Associated with Wastewater Treatment Alicia Sorgen 1, James Johnson 2, Kevin Lambirth 2, Sandra M. Clinton 3 , Molly Redmond 1 , Anthony Fodor 2 and Cynthia Gibas 2,* 1 Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected] (A.S.); [email protected] (M.R.) 2 Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected] (J.J.); [email protected] (K.L.); [email protected] (A.F.) 3 Department of Geography & Earth Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-704-687-8378 Abstract: Bacterial resistance to antibiotics is a growing global concern, threatening human and environmental health, particularly among urban populations. Wastewater treatment plants (WWTPs) are thought to be “hotspots” for antibiotic resistance dissemination. The conditions of WWTPs, in conjunction with the persistence of commonly used antibiotics, may favor the selection and transfer of resistance genes among bacterial populations. WWTPs provide an important ecological niche to examine the spread of antibiotic resistance. We used heterotrophic plate count methods to identify Citation: Sorgen, A.; Johnson, J.; phenotypically resistant cultivable portions of these bacterial communities and characterized the Lambirth, K.; Clinton, -
Moraxella Species: Infectious Microbes Identified by Use of Time-Of
Japanese Journal of Ophthalmology (2019) 63:328–336 https://doi.org/10.1007/s10384-019-00669-4 CLINICAL INVESTIGATION Moraxella species: infectious microbes identifed by use of time‑of‑fight mass spectrometry Shunsuke Takahashi1 · Kazuhiro Murata1 · Kenji Ozawa1 · Hiroki Yamada2 · Hideaki Kawakami3 · Asami Nakayama4 · Yuko Asano5 · Kiyofumi Mochizuki1 · Hiroshige Mikamo6 Received: 14 August 2018 / Accepted: 2 April 2019 / Published online: 4 July 2019 © Japanese Ophthalmological Society 2019 Abstract Purpose To report the clinical manifestations, identifcation, antimicrobial susceptibilities, and treatment outcomes of ocular infections caused by Moraxella species. Study design Retrospective study. Patients and methods The medical records of all patients treated at the Departments of Ophthalmology of the Ogaki Munici- pal Hospital and the Gifu University Graduate School of Medicine for ocular infections caused by Moraxella species between January 2011 and June 2017 were examined. The stored Moraxella species isolated from ocular samples were identifed by matrix-assisted laser desorption/ionization time-of-fight mass spectrometry (MALDI-TOF MS), molecular identifcation, and the biochemical properties. Results Sixteen eyes of 16 patients were treated for Moraxella ocular infections. The patients’ median age was 72 years. A predisposing systemic or ocular condition was identifed in 15 of the patients. Nine of the patients developed keratitis; four, conjunctivitis; and three, blebitis. M lacunata (6 eyes), M catarrhalis (6), M nonliquefaciens (3), and M osloensis (1) were identifed by MALDI-TOF MS. All isolates were sensitive to levofoxacin, tobramycin, ceftazidime, ceftriaxone, and cefa- zolin. Twelve patients with keratitis or blebitis were treated with various topical antimicrobial combinations, and systemic antibiotics were used in 10 of the 12 patients. -
Characterization of Bacterial Communities Associated
www.nature.com/scientificreports OPEN Characterization of bacterial communities associated with blood‑fed and starved tropical bed bugs, Cimex hemipterus (F.) (Hemiptera): a high throughput metabarcoding analysis Li Lim & Abdul Hafz Ab Majid* With the development of new metagenomic techniques, the microbial community structure of common bed bugs, Cimex lectularius, is well‑studied, while information regarding the constituents of the bacterial communities associated with tropical bed bugs, Cimex hemipterus, is lacking. In this study, the bacteria communities in the blood‑fed and starved tropical bed bugs were analysed and characterized by amplifying the v3‑v4 hypervariable region of the 16S rRNA gene region, followed by MiSeq Illumina sequencing. Across all samples, Proteobacteria made up more than 99% of the microbial community. An alpha‑proteobacterium Wolbachia and gamma‑proteobacterium, including Dickeya chrysanthemi and Pseudomonas, were the dominant OTUs at the genus level. Although the dominant OTUs of bacterial communities of blood‑fed and starved bed bugs were the same, bacterial genera present in lower numbers were varied. The bacteria load in starved bed bugs was also higher than blood‑fed bed bugs. Cimex hemipterus Fabricus (Hemiptera), also known as tropical bed bugs, is an obligate blood-feeding insect throughout their entire developmental cycle, has made a recent resurgence probably due to increased worldwide travel, climate change, and resistance to insecticides1–3. Distribution of tropical bed bugs is inclined to tropical regions, and infestation usually occurs in human dwellings such as dormitories and hotels 1,2. Bed bugs are a nuisance pest to humans as people that are bitten by this insect may experience allergic reactions, iron defciency, and secondary bacterial infection from bite sores4,5. -
Moraxella Bacteremia in Cancer Patients
Open Access Case Report DOI: 10.7759/cureus.15316 Moraxella Bacteremia in Cancer Patients Shamra Zaman 1 , John Greene 2 1. Medicine, University of South Florida, Tampa, USA 2. Internal Medicine, Moffitt Cancer Center, Tampa, USA Corresponding author: John Greene, [email protected] Abstract Moraxella is a gram-negative bacterium part of the Moraxellaceae family. It is a pathogen that is commonly found in the upper respiratory tract of humans. It is a rare cause of community-acquired pneumonia and can be found in immunocompromised individuals, especially those with impaired humoral immunity such as hypogammaglobulinemia and those with lung diseases. We present three cases of Moraxella infections at the Moffitt Cancer Center between the years 2011 and 2017. We performed a literature review of Moraxella bacteremia in cancer patients and included three patients, two with a history of multiple myeloma and one undergoing radiation therapy for non-small cell lung carcinoma. None of the patients died as a result of the infection. Moraxella infections can result in a range of severity with increasing resistance to antibiotic therapy. Categories: Infectious Disease, Oncology Keywords: moraxella, myeloma, respiratory tract, pneumonia, immunocompromised patient Introduction Moraxella is a gram-negative bacterium that has a coccobacillus shape [1]. Originally considered normal flora in the human respiratory system, it can cause respiratory tract infections [2]. It primarily affects adults with prior chronic lung disease and the immunosuppressed. The most common immunodeficiency is hypogammaglobulinemia, which is found in patients with multiple myeloma and chronic lymphocytic leukemia (CLL). Invasive infections include meningitis, pneumonia, and endocarditis [3,4]. We present the cases of three cancer patients with Moraxella infections that illustrate the most common risk factors that predispose to this infection. -
Microbiome Disturbance and Resilience Dynamics of the Upper Respiratory Tract During Influenza a Virus Infection
ARTICLE https://doi.org/10.1038/s41467-020-16429-9 OPEN Microbiome disturbance and resilience dynamics of the upper respiratory tract during influenza A virus infection Drishti Kaul1,12, Raveen Rathnasinghe2,12, Marcela Ferres2, Gene S. Tan1,3, Aldo Barrera2,4, Brett E. Pickett5,6, Barbara A. Methe5,7, Suman Das5, Isolda Budnik2, Rebecca A. Halpin5, David Wentworth5,10, Mirco Schmolke 8,11, Ignacio Mena 8, Randy A. Albrecht 8, Indresh Singh5, Karen E. Nelson5, ✉ ✉ Adolfo García-Sastre 8,9, Chris L. Dupont 1 & Rafael A. Medina 2,4,8 1234567890():,; Infection with influenza can be aggravated by bacterial co-infections, which often results in disease exacerbation. The effects of influenza infection on the upper respiratory tract (URT) microbiome are largely unknown. Here, we report a longitudinal study to assess the temporal dynamics of the URT microbiomes of uninfected and influenza virus-infected humans and ferrets. Uninfected human patients and ferret URT microbiomes have stable healthy ecostate communities both within and between individuals. In contrast, infected patients and ferrets exhibit large changes in bacterial community composition over time and between individuals. The unhealthy ecostates of infected individuals progress towards the healthy ecostate, coinciding with viral clearance and recovery. Pseudomonadales associate statistically with the disturbed microbiomes of infected individuals. The dynamic and resilient microbiome during influenza virus infection in multiple hosts provides a compelling rationale for the maintenance of the microbiome homeostasis as a potential therapeutic target to prevent IAV associated bacterial co-infections. 1 J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA 92037, USA. 2 Departmento de Enfermedades Infecciosas e Inmunología Pediátrica, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile. -
Component Causes of Infectious Bovine Keratoconjunctivitis - the Role of Moraxella Species in the Epidemiology of Infectious Bovine Keratoconjunctivitis
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Veterinary and Biomedical Sciences, Papers in Veterinary and Biomedical Science Department of 5-2021 Component Causes of Infectious Bovine Keratoconjunctivitis - The Role of Moraxella Species in the Epidemiology of Infectious Bovine Keratoconjunctivitis John Dustin Loy Matthew Hille Gabriele Maier Michael L. Clawson Follow this and additional works at: https://digitalcommons.unl.edu/vetscipapers Part of the Biochemistry, Biophysics, and Structural Biology Commons, Cell and Developmental Biology Commons, Immunology and Infectious Disease Commons, Medical Sciences Commons, Veterinary Microbiology and Immunobiology Commons, and the Veterinary Pathology and Pathobiology Commons This Article is brought to you for free and open access by the Veterinary and Biomedical Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Veterinary and Biomedical Science by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Component Causes of Infectious Bovine Keratoconjunctivitis - The Role of Moraxella Species in the Epidemiology of Infectious Bovine Keratoconjunctivitis a, a John Dustin Loy, DVM, PhD, DACVM *, Matthew Hille, DVM , b c Gabriele Maier, DVM, MPVM, PhD, DACVPM , Michael L. Clawson, PhD KEYWORDS Infectious bovine keratoconjunctivitis Moraxella bovis Moraxella bovoculi Moraxella ovis MALDI-TOF MS Genomics Pathogenesis KEY POINTS Moraxella bovis can cause infectious bovine keratoconjunctivitis (IBK). The role of M bovoculi in IBK is not fully understood. M bovis and M bovoculi appear to undergo genetic recombination with each other or other members of the Moraxellaceae. Recombination complicates their classification and potential role(s) in IBK pathogenesis. MALDI-TOF MS is used to identify M bovis, 2 major strains or genotypes of M bovoculi, M ovis, and other members of the Moraxellaceae. -
Moraxella Nonliquefaciens and M. Osloensis Are Important Moraxella Species That Cause Ocular Infections
microorganisms Article Moraxella nonliquefaciens and M. osloensis Are Important Moraxella Species That Cause Ocular Infections Samantha J. LaCroce 1, Mollie N. Wilson 2, John E. Romanowski 3, Jeffrey D. Newman 4 , Vishal Jhanji 3, Robert M. Q. Shanks 3 and Regis P. Kowalski 3,* 1 Department of Ophthalmology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; [email protected] 2 Clinical Laboratory—Microbiology, University of Pittsburgh Medical Center, Pittsburgh, PA 16148, USA; [email protected] 3 The Charles T. Campbell Ophthalmic Microbiology Laboratory, Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; [email protected] (J.E.R.); [email protected] (V.J.); [email protected] (R.M.Q.S.) 4 Department of Biology, Lycoming College, Williamsport, PA 17701, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-(412)-647-7211; Fax: +1-(412)-647-5331 Received: 1 February 2019; Accepted: 31 May 2019; Published: 4 June 2019 Abstract: Moraxella is an ocular bacterial pathogen isolated in cases of keratitis, conjunctivitis, and endophthalmitis. Gram-negative brick-shaped diplobacilli from ocular specimens, and slow growth in culture, are early indications of Moraxella ocular infection; however, identifying Moraxella to species can be complex and inconsistent. In this study, bacteria consistent with Moraxella were identified to species using: (1) DNA sequencing coupled with vancomycin susceptibility, (2) MALDI-TOF mass spectrometry, and (3) the Biolog ID system. Study samples consisted of nine ATCC Moraxella controls, 82 isolates from keratitis, 21 isolates from conjunctivitis, and 4 isolates from endophthalmitis. The ATCC controls were correctly identified. For keratitis, 66 (80.5%) were identified as M.