Bbm:978-3-319-31984-1/1.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Bbm:978-3-319-31984-1/1.Pdf Index A Biddulphiales order and family Achnanthes lanceolata , 206 Biddulphiaceae Achnanthidium minutissima , 206 Hydrosera , 104 Acidophiles , 210 Terpsinoë , 104 Aegagropila , 40 , 50–52 Cocconeis , 111 Algal biofi lm , 207 Coscinodiscophyceae , 102 Alkaliphiles , 210 Cyclotella , 103 Amphipleura pellucida , 206 Fragilariophyceae Anabaena , 2 6 Ctenophora , 104–105 Anteroxanthin/zeaxanthin , 199 Fragilaria , 105 Aphanocapsa , 10–12 Hannaea , 105 Aphanochaete , 38 , 41 Pseudostaurosira , 105 Aphanothece , 10–12 Punctastriata , 106 Arnoldiella , 40 , 51 Stauroforma , 106 Arthrospira , 17 , 18 Staurosira , 106 Ascorbate peroxidase (APX) , 199 Staurosirella , 106 Audouinella , 74 , 75 Tabularia , 107 Audouinella hermannii , 7 4 Ulnaria , 107 Melosiraceae , 103 Melosirales order , 103 B morphology , 104 Bacillariophyta (diatoms) . See Diatoms Naviculales order, family (Bacillariophyta) Catenulaceae , 112 Bacillariophyta phylum , 106–121 Naviculales order, family Cymbellaceae Achnanthales order and family Cymbella , 112 Achnanthidiaceae Cymbopleura , 113 Achnanthidium , 110 Didymosphenia , 113 Karayevia , 110 Encyonema , 113 Planothidium , 111 Encyonopsis , 114 Psammothidium , 111 Reimeria , 114 Bacillariales order and family Naviculales order, family Bacillariaceae Gomphonemataceae Nitzschia , 120 Gomphoneis , 114 Tryblionella , 121 Gomphonema , 115 Bacillariophyceae , 110 Naviculales order, family Naviculaceae Actinella , 109 Amphipleura , 116 Eunotia , 110 Brachysira , 116–117 © Springer International Publishing Switzerland 2016 273 O. Necchi Jr. (ed.), River Algae, DOI 10.1007/978-3-319-31984-1 274 Index Bacillariophyta phylum (cont.) invasive , 224 Frustulia , 117 mechanisms , 222 Geissleria , 117 metacommunity structure , 222 Gyrosigma , 117 numerous aquatic organisms , 223 Kobayasiella , 117–118 structures and contamination , 223 Luticola , 118 freshwater macroalgae , 221 , 228 Mastogloia , 118 freshwater rhodophyta , 232–236 Navicula , 118 generalist taxa , 229 , 230 Neidium , 118 in-depth surveys , 227 Pinnularia , 119 intensive surveys , 227 Placoneis , 119 macroalgal fl ora , 225 Pleurosigma , 119 microorganisms , 220 Sellaphora , 119–120 nonnative invasives , 231–232 Stauroneis , 120 phylogeography , 220 Naviculales order, family phytoplankton research , 221 Rhoicospheniaceae specialist taxa , 228 , 229 Gomphosphenia , 115 survey research , 225 Rhoicosphenia , 115 taxonomic groups , 226 Rhopalodiales order and family “true” disjunct taxa , 230–231 Rhopalodiaceae unique habitats , 227 Epithemia , 121 Bioindicators (diatoms) Rhopalodia , 121 Asia and Oceania , 257–258 Surirellales order, family Surirellaceae , Europe 121–122 ecological condition , 256 Tabellariales order and family ecological tool , 255 Diatomaceae environmental impact , 255 Diatoma , 107 pollution , 255 Fragilariforma , 108 genetic tools , 260 , 262 Meridion , 108 , 109 river ecosystems , 257 Tabellariales order and family saprobic index (SI) and water quality , 246 Tabellariaceae , 108–109 South/Central America Pleurosira , 103–104 aquatic environments , 260 subclass Coscinodiscophyceae , 102 biotic indices , 259 Balbiania Sirodot , 74–76 eutrophication and organic Bangia , 7 3 , 7 4 pollution , 258 Bangia atropurpurea , 180 saprobic system , 259 Bangiophyceae , 66 streams and rivers , 260 Batrachospermum , 74 , 76–78 water quality , 258 Benthic , 154 USA Benthic algae , 1 , 3 , 69 abnormal valves , 253 Benthic algae stoichiometry , 205–206 ecosystem , 254 Benthic habit , 134 , 137 environmental conditions , 253 Binuclearia , 40 , 52–53 river pollution , 253 Biofi lm fragmentation , 205 sedimentation index , 253 Biogeography, river algae , 222–224 USA rivers , 254 continents , 226 Biotic indices diatom fl oras , 220 fl oristic and faunistic data , 249 dispersal, freshwater organisms pollution effects , 249 airborne , 223 river ecosystems , 249 aquatic organisms , 224 rivers , 251 chlorophytes and cyanobacteria , 222 rivers and streams , 249 heterotrophic and autotrophic saprobic index , 250 organisms , 223 Blue-green algae (cyanobacteria ) , 5 , 6 human transport , 224 coccoid genera , 11 , 16 Index 275 diffi culties with identifi cations , 7 Chemotaxonomic approach , 201 fi lamentous genera without heterocytes , 19 Chlorogloea , 1 0 , 1 3 fi lamentous heterocytous genera , 21 , 25 Chlorophyta , 223 , 226 general orders and main features , 9 Chlorophyta phylum habitats , 7–8 Chlorophyceae class, order Chaetophorales identifi cation , 8–9 Aphanochaete A , 41 lotic cyanobacterial references , 9–31 Chaetonema , 41–42 systematics and taxonomy , 6–7 Chaetophora , 43 Bodanella lauterborni , 145–147 Draparnaldia , 4 3 Boldia , 71–73 Gongrosira , 43 Bostrychia , 86–88 Schizomeris , 4 4 Brown algae (Phaeophyceae) Stigeoclonium , 44 classifi cation , 131–140 Chlorophyceae class, order distribution patterns , 137–139 Chlamydomonadales diversity , 131–140 Tetraspora , 4 5 Ectocarpales, Ectocarpaceae , 141–143 Chlorophyceae class, order Oedogoniales freshwater members , 138 Bulbochaete , 45 freshwater phaeophytes , 139 Oedocladium , 45 , 46 Heribaudiellales, Heribaudiellaceae , Oedogonium , 46 145–147 Chlorophyceae class, order Sphaeropleales in rivers , 139–140 Hydrodictyon , 4 6 light , 137 Microspora , 47 macroscopic appearance , 134 Pediastrum , 4 7 morphology and reproduction , 132–134 Scenedesmus , 47–48 phaeophytes , 130 Trebouxiophyceae class , 49 , 50 plastids , 130 Chlorellales , 49 Ralfsiales, Ralfsiaceae , 147–148 Microthamniales , 50 salinity , 135–136 Prasiolales , 50 Sphacelariales, Sphacelariaceae , 143–144 Ulvophyceae class , 50–53 streams and rivers , 137 Cladophorales order , 50–52 substrata , 134–135 Ulotrichales , 52–53 substrata , 134–135 Ulvales , 53 water quality and nutrients , 136–137 Chroococcus , 10 , 13 Bulbochaete , 3 9 , 4 5 Chroodactylon , 70–72 Chroothece , 71 , 72 Chrysophyceae (golden algae) C chloroplasts , 154 CaCO3 -formaldehyde , 67 freshwater habitats , 154 Caloglossa , 8 8 taxonomy , 154–155 Caloglossa leprieurii , 140 Cladophora , 4 0 , 5 1 Calothrix , 24 , 26–27 , 211 Cladophora glomerata , 174 , 175 , 185 Canonical correspondence analyses (CCA) , Cladophora in Lake Michigan , 135 175 Cladophora networks , 163 Carbonate-bicarbonate buffering system , 210 Clastidium , 10 , 13–14 Carotenoids , 200 , 201 Clastidium setigerum , 185 Carposporophytes , 66 , 74 , 75 Cloniophora , 4 0 , 5 3 Chaetonema , 38 , 41–42 Closteriopsis , 38 , 49 Chaetophora , 40 , 43 Cocconeis placentula , 206 Chaetosphaeridium , 38 , 55–56 Coleochaete , 37 , 38 , 56 Chamaesiphon , 10 , 12–13 , 170 Coleodesmium , 26 , 27 Chamaesiphon fuscus , 175 Complex species , 185–188 Chantransia , 74 Compsopogon , 72 , 73 Chara , 39 , 53–55 Compsopogonophyceae , 66 276 Index Contorta and Hybrida , 7 7 Green algae (Chlorophyta and Streptophyta) Cyanobacteria (blue-green algae) . See classifi cation , 37 Blue-green algae (cyanobacteria) Phyla Chlorophyta (see Chlorophyta Cyanobacteria identifi cation , 163 phyla ) Cyanocystis , 1 0 , 1 4 Phyla Streptophyta (see Streptophyta Cylindrocystis , 38 , 57–59 phyla ) Cymbella affi nis , 206 collecting and preserving samples , 37 distribution in streams , 38–41 features of taxonomic importance , 36 D phylogenetic scope and Desmidium , 41 , 54 , 57 features , 35–36 Diatom ecological , 251–253 Diatoms (Bacillariophyta) , 102–122 classifi cation system , 98 H collection and processing , 97 Habitat preferences, SBM environmental conditions , 94 from Austria , 186 opaline silica , 94 from southeaster New York State , 187 phylum (see Bacillariophyta phylum ) Hapalosiphon , 2 9 , 3 0 primary production , 94 Harmful algal blooms (HABs) , 6 Stramenopiles , 93 Herbicides , 211 strategies , 95–97 Heribaudiella , 135 structure and features , 94–95 Heribaudiella fl uviatilis , 138 , 145 , 146 taxonomy , 98–101 Heterokontophyta phylum , 155–157 Dichothrix , 2 4 , 2 8 class Chrysophyceae , 158 Dictyosphaerium , 39 , 49 class Xanthophyceae Dissolved inorganic carbon (DIC) , 210 (= Tribophyceae) , 157 Draparnaldia , 4 0 , 4 3 Bumilleria , 155 , 156 Draparnaldia acuta , 188 Tribonema , 155 Dunaliella , 210 Xanthonema , 156–157 Heterokonts , 155–158 Chrysophyceae , 154 E phylogenetic relationships , 154 Ecoregional scale phylum (see Heterokontophyta phylum ) longitudinal differentiation , 174 sample collection and preservation , 154 river type features , 171 taxonomy , 154–155 spatial drivers for datasets , 175 Xanthophyceae , 153 spatial variability , 175 Heteroleibleinia , 1 7 Ectocarpus , 135 Heteroleiblenia , 2 0 Ectocarpus confervoides , 135 Hildenbrandia , 86 , 87 Ectocarpus subulatus , 140 Hildenbrandia rivularis , 136 Homoeothrix , 17 , 20 , 211 Homoeothrix janthina , 189 F Hyalotheca , 41 , 57 Fischerella , 29 , 30 Hydrodictyon , 3 9 , 4 6 Florideophyceae , 66–67 Hydrogen ion concentration , 210–211 Functional species groups , 188–189 Hydrurus , 190 Hydrurus foetidus , 171 , 174 , 175 G Geitleribactron , 10 , 14 I Geitlerinema , 7 , 18–20 International Code of Botanical Nomenclature Geminella , 40 , 49 (ICBN) , 6 Gloeocapsa , 10 , 14–15 , 211 International Code of Nomenclature of Gongrosira , 39 , 43 Bacteria (ICNB) , 6 Index 277 K Nostochopsis , 29 , 30 Klebsormidium , 40 , 56–57 Nothocladus , 8 0 Kumanoa , 7 8 , 7 9 Nutrient uptake , 203 , 204 Kyliniella , 7 1 O L Oedocladium , 39 , 45 , 46 Leibleinia , 17 , 20–22 Oedogonium , 40 , 46 Lemanea , 68 , 78–80 Oscillatoria , 1 8 , 2 3 Lemanea fl uviatilis , 174 , 188 Leptolyngbya , 18 , 22 Light-harvesting complex (LHC) , 199 P Lyngbya , 7 , 1 8 , 2 2 Paralemanea , 80–81 Pediastrum , 3 9 , 4 7 Petrohua
Recommended publications
  • Universidad Autónoma De Nuevo León Facultad De Ciencias Biológicas
    UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE CIENCIAS BIOLÓGICAS TESIS TAXONOMÍA, DISTRIBUCIÓN E IMPORTANCIA DE LAS ALGAS DE NUEVO LEÓN POR DIANA ELENA AGUIRRE CAVAZOS COMO REQUISITO PARCIAL PARA OBTENER EL GRADO DE DOCTOR EN CIENCIAS CON ACENTUACIÓN EN MANEJO Y ADMINISTRACIÓN DE RECURSOS VEGETALES MAYO, 2018 TAXONOMÍA, DISTRIBUCIÓN E IMPORTANCIA DE LAS ALGAS DE NUEVO LEÓN Comité de Tesis Presidente: Dr. Sergio Manuel Salcedo Martínez. Secretario: Dr. Sergio Moreno Limón. Vocal 1: Hugo Alberto Luna Olvera. Vocal 2: Dr. Marco Antonio Alvarado Vázquez. Vocal 3: Dra. Alejandra Rocha Estrada. TAXONOMÍA, DISTRIBUCIÓN E IMPORTANCIA DE LAS ALGAS DE NUEVO LEÓN Dirección de Tesis Director: Dr. Sergio Manuel Salcedo Martínez. AGRADECIMIENTOS A Dios, por guiar siempre mis pasos y darme fortaleza ante las dificultades. Al Dr. Sergio Manuel Salcedo Martínez, por su disposición para participar como director de este proyecto, por sus consejos y enseñanzas que siempre tendré presente tanto en mi vida profesional como personal; pero sobre todo por su dedicación, paciencia y comprensión que hicieron posible la realización de este trabajo. A la Dra. Alejandra Rocha Estrada, El Dr. Marco Antonio Alvarado Vázquez, el Dr. Sergio Moreno Limón y el Dr. Hugo Alberto Luna Olvera por su apoyo y aportaciones para la realización de este trabajo. Al Dr. Eberto Novelo, por sus valiosas aportaciones para enriquecer el listado taxonómico. A la M.C. Cecilia Galicia Campos, gracias Cecy, por hacer tan amena la estancia en el laboratorio y en el Herbario; por esas pláticas interminables y esas “riso terapias” que siempre levantaban el ánimo. A mis entrañables amigos, “los biólogos”, “los cacos”: Brenda, Libe, Lula, Samy, David, Gera, Pancho, Reynaldo y Ricardo.
    [Show full text]
  • Flagellar, Cellular and Organismal Polarity in Volvox Carteri
    SUNY Geneseo KnightScholar Biology Faculty/Staff Works Department of Biology 1993 Flagellar, cellular and organismal polarity in Volvox carteri Harold J. Hoops SUNY Geneseo Follow this and additional works at: https://knightscholar.geneseo.edu/biology Recommended Citation Hoops H.J. (1993) Flagellar, cellular and organismal polarity in Volvox carteri. Journal of Cell Science 104: 105-117. doi: This Article is brought to you for free and open access by the Department of Biology at KnightScholar. It has been accepted for inclusion in Biology Faculty/Staff Works by an authorized administrator of KnightScholar. For more information, please contact [email protected]. Journal of Cell Science 104, 105-117 (1993) 105 Printed in Great Britain © The Company of Biologists Limited 1993 Flagellar, cellular and organismal polarity in Volvox carteri Harold J. Hoops Department of Biology, 1 Circle Drive, SUNY-Genesco, Genesco, NY 14454, USA SUMMARY It has previously been shown that the flagellar appara- reorientation of flagellar apparatus components. This tus of the mature Volvox carteri somatic cell lacks the reorientation also results in the movement of the eye- 180˚ rotational symmetry typical of most unicellular spot from a position nearer one of the flagellar bases to green algae. This asymmetry has been postulated to be a position approximately equidistant between them. By the result of rotation of each half of the flagellar appa- analogy to Chlamydomonas, the anti side of the V. car - ratus. Here it is shown that V. carteri axonemes contain teri somatic cell faces the spheroid anterior, the syn side polarity markers that are similar to those found in faces the spheroid posterior.
    [Show full text]
  • RED ALGAE · RHODOPHYTA Rhodophyta Are Cosmopolitan, Found from the Artic to the Tropics
    RED ALGAE · RHODOPHYTA Rhodophyta are cosmopolitan, found from the artic to the tropics. Although they grow in both marine and fresh water, 98% of the 6,500 species of red algae are marine. Most of these species occur in the tropics and sub-tropics, though the greatest number of species is temperate. Along the California coast, the species of red algae far outnumber the species of green and brown algae. In temperate regions such as California, red algae are common in the intertidal zone. In the tropics, however, they are mostly subtidal, growing as epiphytes on seagrasses, within the crevices of rock and coral reefs, or occasionally on dead coral or sand. In some tropical waters, red algae can be found as deep as 200 meters. Because of their unique accessory pigments (phycobiliproteins), the red algae are able to harvest the blue light that reaches deeper waters. Red algae are important economically in many parts of the world. For example, in Japan, the cultivation of Pyropia is a multibillion-dollar industry, used for nori and other algal products. Rhodophyta also provide valuable “gums” or colloidal agents for industrial and food applications. Two extremely important phycocolloids are agar (and the derivative agarose) and carrageenan. The Rhodophyta are the only algae which have “pit plugs” between cells in multicellular thalli. Though their true function is debated, pit plugs are thought to provide stability to the thallus. Also, the red algae are unique in that they have no flagellated stages, which enhance reproduction in other algae. Instead, red algae has a complex life cycle, with three distinct stages.
    [Show full text]
  • The Hawaiian Freshwater Algae Biodiversity Survey
    Sherwood et al. BMC Ecology 2014, 14:28 http://www.biomedcentral.com/1472-6785/14/28 RESEARCH ARTICLE Open Access The Hawaiian freshwater algae biodiversity survey (2009–2014): systematic and biogeographic trends with an emphasis on the macroalgae Alison R Sherwood1*, Amy L Carlile1,2, Jessica M Neumann1, J Patrick Kociolek3, Jeffrey R Johansen4, Rex L Lowe5, Kimberly Y Conklin1 and Gernot G Presting6 Abstract Background: A remarkable range of environmental conditions is present in the Hawaiian Islands due to their gradients of elevation, rainfall and island age. Despite being well known as a location for the study of evolutionary processes and island biogeography, little is known about the composition of the non-marine algal flora of the archipelago, its degree of endemism, or affinities with other floras. We conducted a biodiversity survey of the non-marine macroalgae of the six largest main Hawaiian Islands using molecular and microscopic assessment techniques. We aimed to evaluate whether endemism or cosmopolitanism better explain freshwater algal distribution patterns, and provide a baseline data set for monitoring future biodiversity changes in the Hawaiian Islands. Results: 1,786 aquatic and terrestrial habitats and 1,407 distinct collections of non-marine macroalgae were collected from the islands of Kauai, Oahu, Molokai, Maui, Lanai and Hawaii from the years 2009–2014. Targeted habitats included streams, wet walls, high elevation bogs, taro fields, ditches and flumes, lakes/reservoirs, cave walls and terrestrial areas. Sites that lacked freshwater macroalgae were typically terrestrial or wet wall habitats that were sampled for diatoms and other microalgae. Approximately 50% of the identifications were of green algae, with lesser proportions of diatoms, red algae, cyanobacteria, xanthophytes and euglenoids.
    [Show full text]
  • Chilling Out: the Evolution and Diversification of Psychrophilic Algae with a Focus on Chlamydomonadales
    Polar Biol DOI 10.1007/s00300-016-2045-4 REVIEW Chilling out: the evolution and diversification of psychrophilic algae with a focus on Chlamydomonadales 1 1 1 Marina Cvetkovska • Norman P. A. Hu¨ner • David Roy Smith Received: 20 February 2016 / Revised: 20 July 2016 / Accepted: 10 October 2016 Ó Springer-Verlag Berlin Heidelberg 2016 Abstract The Earth is a cold place. Most of it exists at or Introduction below the freezing point of water. Although seemingly inhospitable, such extreme environments can harbour a Almost 80 % of the Earth’s biosphere is permanently variety of organisms, including psychrophiles, which can below 5 °C, including most of the oceans, the polar, and withstand intense cold and by definition cannot survive at alpine regions (Feller and Gerday 2003). These seemingly more moderate temperatures. Eukaryotic algae often inhospitable places are some of the least studied but most dominate and form the base of the food web in cold important ecosystems on the planet. They contain a huge environments. Consequently, they are ideal systems for diversity of prokaryotic and eukaryotic organisms, many of investigating the evolution, physiology, and biochemistry which are permanently adapted to the cold (psychrophiles) of photosynthesis under frigid conditions, which has (Margesin et al. 2007). The environmental conditions in implications for the origins of life, exobiology, and climate such habitats severely limit the spread of terrestrial plants, change. Here, we explore the evolution and diversification and therefore, primary production in perpetually cold of photosynthetic eukaryotes in permanently cold climates. environments is largely dependent on microbes. Eukaryotic We highlight the known diversity of psychrophilic algae algae and cyanobacteria are the dominant photosynthetic and the unique qualities that allow them to thrive in severe primary producers in cold habitats, thriving in a surprising ecosystems where life exists at the edge.
    [Show full text]
  • Number of Living Species in Australia and the World
    Numbers of Living Species in Australia and the World 2nd edition Arthur D. Chapman Australian Biodiversity Information Services australia’s nature Toowoomba, Australia there is more still to be discovered… Report for the Australian Biological Resources Study Canberra, Australia September 2009 CONTENTS Foreword 1 Insecta (insects) 23 Plants 43 Viruses 59 Arachnida Magnoliophyta (flowering plants) 43 Protoctista (mainly Introduction 2 (spiders, scorpions, etc) 26 Gymnosperms (Coniferophyta, Protozoa—others included Executive Summary 6 Pycnogonida (sea spiders) 28 Cycadophyta, Gnetophyta under fungi, algae, Myriapoda and Ginkgophyta) 45 Chromista, etc) 60 Detailed discussion by Group 12 (millipedes, centipedes) 29 Ferns and Allies 46 Chordates 13 Acknowledgements 63 Crustacea (crabs, lobsters, etc) 31 Bryophyta Mammalia (mammals) 13 Onychophora (velvet worms) 32 (mosses, liverworts, hornworts) 47 References 66 Aves (birds) 14 Hexapoda (proturans, springtails) 33 Plant Algae (including green Reptilia (reptiles) 15 Mollusca (molluscs, shellfish) 34 algae, red algae, glaucophytes) 49 Amphibia (frogs, etc) 16 Annelida (segmented worms) 35 Fungi 51 Pisces (fishes including Nematoda Fungi (excluding taxa Chondrichthyes and (nematodes, roundworms) 36 treated under Chromista Osteichthyes) 17 and Protoctista) 51 Acanthocephala Agnatha (hagfish, (thorny-headed worms) 37 Lichen-forming fungi 53 lampreys, slime eels) 18 Platyhelminthes (flat worms) 38 Others 54 Cephalochordata (lancelets) 19 Cnidaria (jellyfish, Prokaryota (Bacteria Tunicata or Urochordata sea anenomes, corals) 39 [Monera] of previous report) 54 (sea squirts, doliolids, salps) 20 Porifera (sponges) 40 Cyanophyta (Cyanobacteria) 55 Invertebrates 21 Other Invertebrates 41 Chromista (including some Hemichordata (hemichordates) 21 species previously included Echinodermata (starfish, under either algae or fungi) 56 sea cucumbers, etc) 22 FOREWORD In Australia and around the world, biodiversity is under huge Harnessing core science and knowledge bases, like and growing pressure.
    [Show full text]
  • JJB 079 255 261.Pdf
    植物研究雑誌 J. J. Jpn. Bo t. 79:255-261 79:255-261 (2004) Phylogenetic Phylogenetic Analysis of the Tetrasporalean Genus Asterococcus Asterococcus (Chlorophyceae) sased on 18S 18S Ribosomal RNA Gene Sequences Atsushi Atsushi NAKAZA WA and Hisayoshi NOZAKI Department Department of Biological Sciences ,Graduate School of Science ,University of Tokyo , Hongo Hongo 7-3-1 ,Bunkyo-ku ,Tokyo ,113 ・0033 JAPAN (Received (Received on October 30 ,2003) Nucleotide Nucleotide sequences (1642 bp) from 18S ribosomal RNA genes were analyzed for 100 100 strains of the clockwise (CW) group of Chlorophyceae to deduce the phylogenetic position position of the immotile colonial genus Asterococcus Scherffel , which is classified in the Palmellopsidaceae Palmellopsidaceae of Tetrasporales. We found that the genus Asterococcus and two uni- cellular , volvocalean genera , Lobochlamys Proschold & al. and Oogamochlamys Proschold Proschold & al., formed a robust monophyletic group , which was separated from two te 位asporalean clades , one composed of Tetraspora Link and Paulschulzia Sk 吋a and the other other containing the other palme l1 0psidacean genus Chlamydocaps αFot t. Therefore , the Tetrasporales Tetrasporales in the CW group is clearly polyphyletic and taxonomic revision of the order order and the Palmellopsidaceae is needed. Key words: 18S rRNA gene ,Asterococcus ,Palmellopsidaceae ,phylogeny ,Tetraspor- ales. ales. Asterococcus Asterococcus Scherffel (1908) is a colo- Recently , Ettl and Gartner (1 988) included nial nial green algal genus that is characterized Asterococcus in the family Palmello- by an asteroid chloroplast in the cell and psidaceae , because cells of this genus have swollen swollen gelatinous layers surrounding the contractile vacuoles and lack pseudoflagella immotile immotile colony (e. g.
    [Show full text]
  • Lobo MTMPS (2019) First Record of Tetraspora Gelatinosa (Vaucher) Desvaux (Tetrasporales, Chlorophyceae) in the State of Goiás, Central-Western Brazil
    15 1 NOTES ON GEOGRAPHIC DISTRIBUTION Check List 15 (1): 143–147 https://doi.org/10.15560/15.1.143 First record of Tetraspora gelatinosa Link ex Desvaux (Tetrasporales, Chlorophyceae) in the state of Goiás, Central-Western Brazil Weliton José da Silva1, Ina de Souza Nogueira2, Maria Tereza Morais Pereira Souza Lobo3 1 Universidade Estadual de Londrina, Centro de Ciências Biológicas, Departamento de Biologia Animal e Vegetal, Laboratório de Microalgas Continentais, Rodovia Celso Garcia Cid, Pr 445 Km 380, CEP 86057-970, Londrina, PR, Brazil. 2 Universidade Federal de Goiás, Instituto de Ciências Biológicas, Departamento de Botânica, Laboratório de Análise de Gerenciamento Ambiental de Recursos Hídricos, Alameda Palmeiras Quadra I - Lote i2, CEP 74690-900, Goiânia, GO, Brazil. 3 Universidade Federal de Goiás, Programa de Pós-graduação em Ciências Ambientais, Laboratório de Análise de Gerenciamento Ambiental de Recursos Hídricos, Alameda Palmeiras Quadra I - Lote i2, CEP 74690-900, Goiânia, GO, Brazil. Corresponding author: Weliton José da Silva, [email protected] Abstract Tetraspora gelatinosa is rare and has been recorded only in 3 Brazilian states since the 2000s. The flora of the state of Goiás is incipiently known, but there is no record of Tetraspora thus far. We record the occurrence of T. gelatinosa in Goiás and characterize this species’ morphology and ecological preferences. Specimens were found in the Samambaia Reservoir, Goiânia, Goiás. Physical and chemical characteristics of the water were measured. Where T. gelatinosa was found, the water was shallow and characterized as ultraoligotrophic. These conditions agree with those reported for other environments in Brazil. Key words Algae, Meia Ponte river basin, new record, rare species, ultraoligotrophic.
    [Show full text]
  • Divergence Time Estimates and the Evolution of Major Lineages in The
    www.nature.com/scientificreports OPEN Divergence time estimates and the evolution of major lineages in the florideophyte red algae Received: 31 March 2015 Eun Chan Yang1,2, Sung Min Boo3, Debashish Bhattacharya4, Gary W. Saunders5, Accepted: 19 January 2016 Andrew H. Knoll6, Suzanne Fredericq7, Louis Graf8 & Hwan Su Yoon8 Published: 19 February 2016 The Florideophyceae is the most abundant and taxonomically diverse class of red algae (Rhodophyta). However, many aspects of the systematics and divergence times of the group remain unresolved. Using a seven-gene concatenated dataset (nuclear EF2, LSU and SSU rRNAs, mitochondrial cox1, and plastid rbcL, psaA and psbA genes), we generated a robust phylogeny of red algae to provide an evolutionary timeline for florideophyte diversification. Our relaxed molecular clock analysis suggests that the Florideophyceae diverged approximately 943 (817–1,049) million years ago (Ma). The major divergences in this class involved the emergence of Hildenbrandiophycidae [ca. 781 (681–879) Ma], Nemaliophycidae [ca. 661 (597–736) Ma], Corallinophycidae [ca. 579 (543–617) Ma], and the split of Ahnfeltiophycidae and Rhodymeniophycidae [ca. 508 (442–580) Ma]. Within these clades, extant diversity reflects largely Phanerozoic diversification. Divergences within Florideophyceae were accompanied by evolutionary changes in the carposporophyte stage, leading to a successful strategy for maximizing spore production from each fertilization event. Our research provides robust estimates for the divergence times of major lineages within the Florideophyceae. This timeline was used to interpret the emergence of key morphological innovations that characterize these multicellular red algae. The Florideophyceae is the most taxon-rich red algal class, comprising 95% (6,752) of currently described species of Rhodophyta1 and possibly containing many more cryptic taxa2.
    [Show full text]
  • Evolution and Comparative Morphology of the Euglenophyte
    EVOLUTION AND COMPARATIVE MORPHOLOGY OF THE EUGLENOPHYTE PLASTID by PATRICK JERRY PAUL BROWN (Under the Direction of Mark A. Farmer) ABSTRACT My doctoral research centered on understanding the evolution of the euglenophyte protists, with special attention paid to their plastids. The euglenophytes are a widely distributed group of euglenid protists that have acquired a chloroplast via secondary symbiogenesis. The goals of my research were to 1) test the efficacy of plastid morphological and ultrastructural characters in phylogenetic analysis; 2) understand the process of plastid development and partitioning in the euglenophytes; 3) to use a plastid- encoded protein gene to determine a euglenophyte phylogeny; and 4) to perform a multi- gene analysis to uncover clues about the origins of the euglenophyte plastid. My work began with an alpha-taxonomic study that redefined the rare euglenophyte Euglena rustica. This work not only validly circumscribed the species, but also noted novel features of its habitat, cyclic migration habits, and cellular biology. This was followed by a study of plastid morphology and development in a number of diverse euglenophytes. The results of this study showed that the plastids of euglenophytes undergo drastic changes in morphology and ultrastructure over the course of a single cell division cycle. I concluded that there are four main classes of plastid development and partitioning in the euglenophytes, and that the class a given species will use is dependant on its interphase plastid morphology and the rigidity of the cell. The discovery of the class IV partitioning strategy in which cells with only one or very few plastids fragment their plastids prior to cell division was very significant.
    [Show full text]
  • Mannitol Biosynthesis in Algae : More Widespread and Diverse Than Previously Thought
    This is a repository copy of Mannitol biosynthesis in algae : more widespread and diverse than previously thought. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/113250/ Version: Accepted Version Article: Tonon, Thierry orcid.org/0000-0002-1454-6018, McQueen Mason, Simon John orcid.org/0000-0002-6781-4768 and Li, Yi (2017) Mannitol biosynthesis in algae : more widespread and diverse than previously thought. New Phytologist. pp. 1573-1579. ISSN 1469-8137 https://doi.org/10.1111/nph.14358 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 Mannitol biosynthesis in algae: more widespread and diverse than previously thought. Thierry Tonon1,*, Yi Li1 and Simon McQueen-Mason1 1 Department of Biology, Centre for Novel Agricultural Products, University of York, Heslington, York, YO10 5DD, UK. * Author for correspondence: tel +44 1904328785; email [email protected] Key words: Algae, primary metabolism, mannitol biosynthesis, mannitol-1-phosphate dehydrogenase, mannitol-1-phosphatase, haloacid dehalogenase, histidine phosphatase, evolution of metabolic pathways.
    [Show full text]
  • Marine Macroalgal Biodiversity of Northern Madagascar: Morpho‑Genetic Systematics and Implications of Anthropic Impacts for Conservation
    Biodiversity and Conservation https://doi.org/10.1007/s10531-021-02156-0 ORIGINAL PAPER Marine macroalgal biodiversity of northern Madagascar: morpho‑genetic systematics and implications of anthropic impacts for conservation Christophe Vieira1,2 · Antoine De Ramon N’Yeurt3 · Faravavy A. Rasoamanendrika4 · Sofe D’Hondt2 · Lan‑Anh Thi Tran2,5 · Didier Van den Spiegel6 · Hiroshi Kawai1 · Olivier De Clerck2 Received: 24 September 2020 / Revised: 29 January 2021 / Accepted: 9 March 2021 © The Author(s), under exclusive licence to Springer Nature B.V. 2021 Abstract A foristic survey of the marine algal biodiversity of Antsiranana Bay, northern Madagas- car, was conducted during November 2018. This represents the frst inventory encompass- ing the three major macroalgal classes (Phaeophyceae, Florideophyceae and Ulvophyceae) for the little-known Malagasy marine fora. Combining morphological and DNA-based approaches, we report from our collection a total of 110 species from northern Madagas- car, including 30 species of Phaeophyceae, 50 Florideophyceae and 30 Ulvophyceae. Bar- coding of the chloroplast-encoded rbcL gene was used for the three algal classes, in addi- tion to tufA for the Ulvophyceae. This study signifcantly increases our knowledge of the Malagasy marine biodiversity while augmenting the rbcL and tufA algal reference libraries for DNA barcoding. These eforts resulted in a total of 72 new species records for Mada- gascar. Combining our own data with the literature, we also provide an updated catalogue of 442 taxa of marine benthic
    [Show full text]