Acholeplasma Bactoclasticum Sp. N., an Anaerobic Mycoplasma from the Bovine Rumen JOHN P

Total Page:16

File Type:pdf, Size:1020Kb

Acholeplasma Bactoclasticum Sp. N., an Anaerobic Mycoplasma from the Bovine Rumen JOHN P INTERNATIONAL JOURNAL of SYSTEMATIC BACTERIOLOGY Vol. 23, No. 2 April 1973, p. 171-181 Printed in U.S.A. Copyright 0 1973 International Association of Microbiological Societies Acholeplasma bactoclasticum sp. n., an Anaerobic Mycoplasma from the Bovine Rumen JOHN P. ROBINSON' and R. E. HUNGATE Department of Bacteriology, University of California, Davis, California 9561 6 A strain of a strictly anaerobic, filterable, bacteriolytic microorganism has been isolated from the bovine rumen. It has the microscopic and colonial morphology characteristic of mycoplasmas and is resistant to penicillin G. Sterols are not required for growth, and physiological properties show it to be distinct from Acholeplasma laidlawii, A. granularum, and A. axanthum. It is proposed that the organism be named Acholeplasma bactoclasticum sp. n. The type strain is ATCC 271 12. Microorganisms causing a partial digestion of A mineral salts basal medium was prepared by rumen bacterial cells included in an agar culture adding four volumes of deionized water to one volume medium were initially thought to meet their each of mineral solutions A (0.3% KH,PO,, 0.6% energy needs by a fermentation of protein (6, NaC1, 0.3% (NH, ), SO,, 0.06% MgSO, -7H, 0, 0.06% p. 79). A rapid digestion of the casein in skim CaC1, *2H, 0) and B (0.3% K, HPO, 1, all w/v. milk was observed, and addition of glucose to Minfav medium. Minerals salts-volatile fatty acid- the medium did not greatly increase the size of vitamin (Minfav) medium was prepared by adding vitamins and volatile fatty acids to the mineral salts the colonies. medium. The vitamin solution contained the follow- The work reported here describes the results ing, dissolved in 500 ml of water: biotin, 1 mg; of experiments and observations identifying a calcium pantothenate, 200 mg; folic acid, 1 mg; similar microorganism as a new species of inositol, 1,000 mg; niacin, 200 mg; riboflavine, 100 AchoZeplasma establishing some of its charac- mg; and thiamine hydrochloride, 200 mg. Each 10 ml t erist ics. of medium contained 10 pliters of this solution. The volatile acid mixture contained 17 ml of acetic acid, 6 MATERIALS AND METHODS ml of propionic acid, 4 ml of butyric acid, 1 ml of n-valeric acid, 1 ml of isovaleric acid, and 1 ml of Bacterial strain. The strain reported here was DL-methyl butyric acid; 0.03 ml of the mixture was isolated from rumen fluid siphoned from a fistulated neutralized with NaOH and added to each 10 ml of Jersey heifer. It was deposited in the American Type culture. Culture Collection, Rockville, Md. as ATCC 27 112. CRF medium. Clarified rumen fluid (CRF) medium Preparation of media and supplements. The orga- was similar to the mineral salts medium except that nism was cultured anaerobically under 100% CO, by two volumes of rumen fluid freed of cells by the roll-tube technique (7). Cysteine (0.03%) and centrifugation were substituted for two volumes of NaHCO, (0.05%) (both wt/vol in final concentration) deionized water. Rumen fluid was centrifuged at were added anaerobically with a syringe before 25,000 X g for 15 min, and the supernatant fluid was autoclaving. The 3% Na, S.9H2 0 solution routinely added to the cooled mineral salts solution. Rumen added to provide a low redox potential was prepared fluid medium (RF medium) was prepared by using by dissolving the crystals in boiled deionized water uncentrifuged rumen fluid freed of protozoa and plant cooled under 0, -free N, , tubed anaerobically under material. N,, and autoclaved. Final concentration in the Skim milk medium. This medium, used for viable medium was 0.03% Na, S-9H20. Carbohydrate solu- counts, contained 0.2 ml of sterile skim milk added to tions were autoclaved under CO, to minimize alkaline 4.25 ml of rumen fluid-agar medium. destruction during sterilization. Sulfide and carbohy- CC medium. Concentrated cells medium (CC me- drate solutions were injected aseptically and anaer- dium), relatively free of protozoa and plant material, obically into the melted medium held at 48 C. The was prepared by allowing the rumen liquor, as osmotic pressure of the media used was about 7 collected, to incubate at 38 C. Fermentation gases atmospheres, and the pH was 6.8. carried plant matter to the surface, the protozoa sank Skim milk was autoclaved in 10-ml volumes under to the bottom, and the rumen fluid containing N, in butyl-stoppered tubes. bacteria was drawn off from the middle part of the container with a 50-ml pipette. ' Present address: Department of Plant Biology and This rumen fluid was centrifuged at 25,000 X g for Microbiology, Queen Mary College, Mile End Road, 15 min. The pellet was suspended with CRF medium London El, England. to one-tenth the original volume, and one part of this 171 172 ROBINSON AND HUNGATE INT. J. SYST. BACTERIOL. 1OX concentrated bacterial suspension was added to gas was helium at a flow rate of 13 mllmin. The one part of mineral salt solution and one part of column temperature was 160 C. deionized water. Determination of fermentation products with uni- Tryptone (176, Difco), 3% tryptone-soy broth formly labeled C-galactose. The ’ C-galactose was (Oxoid), 1.3% nutrient broth (Oxoid), and 3.7% brain supplied in 20% ethanol solution. A 12-pliter amount heart infusion (Oxoid) were prepared under 100% was transferred with a micro-syringe to each of two CO, and buffered with 0.5% NaHCO,. culture tubes. The ethanol was evaporated in a stream Isolation procedures. Samples of rumen fluid were of air, and 0.6 ml of 9% galactose was added to each siphoned from a fistulated Jersey heifer and poured tube under CO,. Sterile, anaerobic RF medium was into a flask until it was almost full. The flask was prepared, and 9.4 ml of the medium was added to the stoppered, insulated, and quickly transferred to the galactose which had been sterilized under CO,. laboratory. Oxygen-free CO, was bubbled through the Control tubes lacked the Cgalactose. Initial 1-ml sample to displace the air above it, and 0.5 ml of the samples were removed after inoculation with 0.1 ml of stirred fluid was diluted with 1-ml syringes through a CRF/milk culture, and the cultures were incubated tubes of anaerobic medium. Lower dilutions were in at 43 C for 1 week. sterile 33% RF medium and higher ones were in the A 1-ml amount of 10 N sulfuric acid was injected CC medium containing 1.5% agar, which was melted through the stopper of the culture tube, and the tube and held at 48 C. The viable count was not detectably was shaken. The released CO, was collected in a changed by holding as long as 2 h at this temperature water-lubricated 10-ml syringe while the tube and before rolling the tubes in ice water. Tubes were syringe were shaken to insure equilibrium of CO, always rolled within 30 min after inoculation. The between gas and liquid. The volume of gas in the cultures were incubated at 39 C or 45 C and examined syringe as well as the pressure were noted at room periodically for clear zones due to partial digestion of temperature, and the gas was injected into a stoppered the rumen bacteria in the medium. flask containing 10 ml of 2,2,2-nitrilotriethanolamine, Pure cultures were obtained by picking individual a sample of which was assayed with the scintillation colonies with a Pasteur pipette drawn out to a thin counter . capillary and subculturing in agar medium until, in Samples of the acidified culture (0.5 or 1.0 ml) two successive dilution series from a colony in high were chromatographed on a Celite column by the dilution, only the clearing colonies appeared and their method of Wiseman and Irvin (13). Samples of the numbers in successive tubes decreased in approximate eluant were assayed for 4C in a liquid scintillation agreement with the dilution. There were no problems counter (Nuclear-Chicago Mk 11). with contamination. The C in trichloroacetic acid-insoluble material Hydrogen measurement. Hydrogen was measured was assayed by collecting the 5% cold trichloroacetic on a Perkin-Elmer thermal conductivity vapor frac- acid precipitate from a sample of culture on a 0.45-pm tometer 154B with a silica gel column and N, carrier membrane filter (Millipore Corp.). The filter was gas. The instrument detected lo3 pmol of H, in a washed with 5% trichloroacetic acid, dried, and 0.5-ml sample. dissolved in the counting fluid, 0.4 g of 1,4 bis[2-(5 The volume of excess gas in the culture and control phenyloxazolyl)] -benzene (POPOP, Packard Corp.) tubes was measured at atmospheric pressure with a 5- and 4 g of 2,5 diphenyloxazole in 1 liter of toluene. or 10-ml syringe and injected back into the tube after Preparation of samples for electron microscopy. each measurement. A sample in excess of 0.5 ml was Colonies in CRF-agar were prefixed for 1 h in a then drawn into a water-lubricated, sterile 1-ml glass Kellenberger buffer containing 0.2% glu tar aldehyde, syringe through a 2lgauge needle. The tip of the 0.1 g of OsO,/lO ml, and sufficient sucrose to make needle was drawn into the rubber of the stopper to the buffer and the medium isotonic. The buffer allow the gas to come to atmospheric pressure. The contained 5 ml of Verona1 acetate (2.94 g of sodium volume was noted, the needle was withdrawn, the barbiturate, 1.94 g of hydrated sodium acetate, and volume was reduced to 0.5 ml, and the gas was 3.4 g of NaCl in 300 mI), 13 ml of water, 0.25 mi of injected into the fractometer.
Recommended publications
  • Acholeplasma Florum, a New Species Isolated from Plants? R
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Jan. 1984, p. 11-15 Vol. 34, No. 1 0020-7713/84/010011-05$02.OO/O Copyright 0 1984, International Union of Microbiological Societies Acholeplasma florum, a New Species Isolated from Plants? R. E. McCOY,l* H. G. BASHAM,' J. G. TULLY,* D. L. ROSE,2 P. CARLE,3 AND J. M. BOVE3 University of Florida Agricultural Research and Education Center, Fort Lauderdale, Florida 33314'; Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, Frederick, Maryland 21 70i2;and lnstitut National de la Recherche Agronomique, Pont de la Maye 33140, France3 Three acholeplasmas isolated from floral surfaces of healthy plants in Florida were found to be similar in their biochemical and serological properties. These organisms did not require serum or cholesterol for growth, although addition of some supplementary fatty acids (as represented by Tween 80) was necessary for growth to occur in serum-free medium. The three strains possessed biochemical properties typical of the Acholeplasmataceae and were distinguished from the nine previously recognized Acholeplasma species by serological and deoxyribopucleic acid-deoxyribonucleic acid hybridization techniques. The genome molec- ular weight of the three Acholeplasma strains was lo9, and the guanine-plus-cytosine content of the deoxyribonucleic acid was 27 to 28 mol%. On the basis of these results and other morphological, biological, and serological properties, we propose that these organisms represent a new species, Acholeplasmaflorurn. Strain L1 (= ATCC 33453) is the type strain. Plant surfaces, particularly flowers, have recently been Media and cultivation procedures. Isolates were routinely proven to be fertile sites for isolation of members of the grown in MC broth or in the serum fraction medium de- Mycoplasrnatales (5, 11-13, 26).
    [Show full text]
  • Genomic Islands in Mycoplasmas
    G C A T T A C G G C A T genes Review Genomic Islands in Mycoplasmas Christine Citti * , Eric Baranowski * , Emilie Dordet-Frisoni, Marion Faucher and Laurent-Xavier Nouvel Interactions Hôtes-Agents Pathogènes (IHAP), Université de Toulouse, INRAE, ENVT, 31300 Toulouse, France; [email protected] (E.D.-F.); [email protected] (M.F.); [email protected] (L.-X.N.) * Correspondence: [email protected] (C.C.); [email protected] (E.B.) Received: 30 June 2020; Accepted: 20 July 2020; Published: 22 July 2020 Abstract: Bacteria of the Mycoplasma genus are characterized by the lack of a cell-wall, the use of UGA as tryptophan codon instead of a universal stop, and their simplified metabolic pathways. Most of these features are due to the small-size and limited-content of their genomes (580–1840 Kbp; 482–2050 CDS). Yet, the Mycoplasma genus encompasses over 200 species living in close contact with a wide range of animal hosts and man. These include pathogens, pathobionts, or commensals that have retained the full capacity to synthesize DNA, RNA, and all proteins required to sustain a parasitic life-style, with most being able to grow under laboratory conditions without host cells. Over the last 10 years, comparative genome analyses of multiple species and strains unveiled some of the dynamics of mycoplasma genomes. This review summarizes our current knowledge of genomic islands (GIs) found in mycoplasmas, with a focus on pathogenicity islands, integrative and conjugative elements (ICEs), and prophages. Here, we discuss how GIs contribute to the dynamics of mycoplasma genomes and how they participate in the evolution of these minimal organisms.
    [Show full text]
  • Strains Associated with Oil Palm Lethal Wilt in Colombia
    Page 1 of 37 1 ‘Candidatus Phytoplasma asteris’ strains associated with oil palm lethal wilt in Colombia 2 3 Elizabeth Alvarez , Plant Pathology Program, International Center for Tropical Agriculture 4 (CIAT), Cali, Valle del Cauca, Colombia; Juan F. Mejía , CIAT and Department of 5 Agricultural Sciences and Technologies (DipSA), Alma Mater Studiorum , University of 6 Bologna, Italy; Nicoletta Contaldo and Samanta Paltrinieri , DipSA; Bojan Duduk , 7 Institute of Pesticides and Environmental Protection, Belgrade, Serbia; and Assunta 8 Bertaccini , DipSA. 9 10 Corresponding author: Elizabeth Alvarez 11 Email: [email protected] 12 13 GenBank accession numbers: JX681021, JX681022, JX681023, KF434318, KF434319, 14 KF434320 15 16 All authors have reviewed the manuscript and have approved its submission to the journal 17 Plant Disease . The manuscript is not being submitted elsewhere. 18 19 Plant Disease "First Look" paper • http://dx.doi.org/10.1094/PDIS-12-12-1182-RE posted 10/10/2013 20 This paper has been peer reviewed and accepted for publication but not yet copyedited or proofread. The final published version may differ. Alvarez et al. 1 Plant Disease Page 2 of 37 21 22 Abstract 23 24 Alvarez, E., Mejía, J. F., Contaldo, N., Paltrinieri, S., Duduk, B., and Bertaccini, A. 25 ‘Candidatus Phytoplasma asteris’ strains associated with oil palm lethal wilt in 26 Colombia . Plant Dis. xx: xxx-xxx. 27 28 The distribution of lethal wilt, a severe disease of oil palm, is spreading throughout South 29 America. An incidence of about 30% was recorded in four commercial fields in Colombia. In 30 this study, phytoplasmas were detected in symptomatic oil palms by using specific primers, 31 based on 16S rDNA sequences, in nested polymerase chain reaction assays.
    [Show full text]
  • The Metabolic Pathways of Acholeplasma and Mycoplasma: an Overview
    THE YALE JOURNAL OF BIOLOGY AND MEDICINE 56 (1983), 709-716 The Metabolic Pathways of Acholeplasma and Mycoplasma: An Overview J.D. POLLACK, Ph.D, V.V. TRYON, B.S., AND K.D. BEAMAN, Ph.D. Department ofMedical Microbiology and Immunology, The Ohio State University College of Medicine, Columbus, Ohio Received April 21, 1983 The metabolism of the Mollicutes Acholeplasma and Mycoplasma may be characterized as restricted, for example, by virtue of the apparent absence of cytochrome pigments. Some Mollicutes have lowered ECA values during their logarithmic growth phase, which we speculate may be related to insufficient substrate phosphorylation or insufficient ATP synthesis linked to glycolysis. We found that PEP is carboxylated by preparations of A. laidlawii, but not by other Mollicutes; thus in this organism oxaloacetate from PEP may be a link to other pathways. We found phosphoribosylpyrophosphate in A. laidlawii, which suggests that ribosylation of purines and pyrimidines occurs in Mollicutes other than M. mycoides. The concept that microorganisms have considerable metabolic flexibility is in- grained in the study of biology, and this impression conjures the image of detailed metabolic maps and charts depicting many pathways by which these little engines can metabolize. It is not so certain to us that the class Mollicutes, excluding the Thermoplasma, has this metabolic flexibility. The metabolism of the Mollicutes, to our minds, is becoming, as Lewis Carroll's Alice in Wonderland said, "curiouser and curiouser." We are getting the impression that in Mollicutes catabolism and anabolism are limited; limited by virtue of the absence of, or gaps in, metabolic pathways. As an example, consider the apparent absence of cytochrome pigments, an observation which may serve as one distinguishing feature of the Mollicutes in the microbial world.
    [Show full text]
  • Downloaded from Genome Website
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.18.388454; this version posted November 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Characterization of the first cultured free-living representative of 2 Candidatus Izimaplasma uncovers its unique biology 3 Rikuan Zheng1,2,3,4, Rui Liu1,2,4, Yeqi Shan1,2,3,4, Ruining Cai1,2,3,4, Ge Liu1,2,4, Chaomin Sun1,2,4* 1 4 CAS Key Laboratory of Experimental Marine Biology & Center of Deep Sea 5 Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China 2 6 Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory 7 for Marine Science and Technology, Qingdao, China 3 8 College of Earth Science, University of Chinese Academy of Sciences, Beijing, 9 China 10 4Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China 11 12 * Corresponding author 13 Chaomin Sun Tel.: +86 532 82898857; fax: +86 532 82898857. 14 E-mail address: [email protected] 15 16 17 Key words: Candidatus Izimaplasma, uncultivation, biogeochemical cycling, 18 extracellular DNA, in situ, deep sea 19 Running title: Characterization of the first cultured Izimaplasma 20 21 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.11.18.388454; this version posted November 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 22 Abstract 23 Candidatus Izimaplasma, an intermediate in the reductive evolution from Firmicutes 24 to Mollicutes, was proposed to represent a novel class of free-living wall-less bacteria 25 within the phylum Tenericutes found in deep-sea methane seeps.
    [Show full text]
  • A Phylogenetic Analysis of the Mycoplasmas: Basis for Their Lc Assification W
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DigitalCommons@University of Nebraska University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Public Health Resources Public Health Resources 9-1989 A Phylogenetic Analysis of the Mycoplasmas: Basis for Their lC assification W. G. Weisburg University of Illinois J. G. Tully National Institute of Allergy and Infectious Diseases D. L. Rose National Institute of Allergy and Infectious Diseases J. P. Petzel Iowa State University H. Oyaizu University of Illinois See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/publichealthresources Weisburg, W. G.; Tully, J. G.; Rose, D. L.; Petzel, J. P.; Oyaizu, H.; Yang, D.; Mandelco, L.; Sechrest, J.; Lawrence, T. G.; Van Etten, James L.; Maniloff, J.; and Woese, C. R., "A Phylogenetic Analysis of the Mycoplasmas: Basis for Their lC assification" (1989). Public Health Resources. 310. https://digitalcommons.unl.edu/publichealthresources/310 This Article is brought to you for free and open access by the Public Health Resources at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Public Health Resources by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors W. G. Weisburg, J. G. Tully, D. L. Rose, J. P. Petzel, H. Oyaizu, D. Yang, L. Mandelco, J. Sechrest, T. G. Lawrence, James L. Van Etten, J. Maniloff, and C. R. Woese This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ publichealthresources/310 JOURNAL OF BACTERIOLOGY, Dec. 1989, p. 6455-6467 Vol. 171, No.
    [Show full text]
  • Complete Genome Determination and Analysis Of
    Siewert et al. BMC Genomics 2014, 15:931 http://www.biomedcentral.com/1471-2164/15/931 RESEARCH ARTICLE Open Access Complete genome determination and analysis of Acholeplasma oculi strain 19L, highlighting the loss of basic genetic features in the Acholeplasmataceae Christin Siewert1, Wolfgang R Hess2, Bojan Duduk3, Bruno Huettel4, Richard Reinhardt4, Carmen Büttner1 and Michael Kube1* Abstract Background: Acholeplasma oculi belongs to the Acholeplasmataceae family, comprising the genera Acholeplasma and ‘Candidatus Phytoplasma’. Acholeplasmas are ubiquitous saprophytic bacteria. Several isolates are derived from plants or animals, whereas phytoplasmas are characterised as intracellular parasitic pathogens of plant phloem and depend on insect vectors for their spread. The complete genome sequences for eight strains of this family have been resolved so far, all of which were determined depending on clone-based sequencing. Results: The A. oculi strain 19L chromosome was sequenced using two independent approaches. The first approach comprised sequencing by synthesis (Illumina) in combination with Sanger sequencing, while single molecule real time sequencing (PacBio) was used in the second. The genome was determined to be 1,587,120 bp in size. Sequencing by synthesis resulted in six large genome fragments, while thesinglemoleculerealtimesequencingapproachyieldedone circular chromosome sequence. High-quality sequences were obtained by both strategies differing in six positions, which are interpreted as reliable variations present in the culture population. Our genome analysis revealed 1,471 protein-coding + genes and highlighted the absence of the F1FO-type Na ATPase system and GroEL/ES chaperone. Comparison of the four available Acholeplasma sequences revealed a core-genome encoding 703 proteins and a pan-genome of 2,867 proteins.
    [Show full text]
  • Materiales Y Métodos
    1 Characterization of a Phytoplasma Associated with Frogskin Disease in Cassava 2 3 Elizabeth Alvarez1, Juan F. Mejía1, Germán A. Llano1, John B. Loke1, Alberto Calari2 4 Bojan Duduk3, 2 and Assunta Bertaccini2. 5 1Plant Pathology Program, Tropical Fruit Project. International Center for Tropical 6 Agriculture (CIAT), Phone: 572-4450000, ext. 3385, P.O. Box 6713, Cali, Valle del 7 Cauca, Colombia. 2DiSTA, Patologia Vegetale, Alma Mater Studiorum, University of 8 Bologna, viale Fanin 42, 40127 Bologna, Italy. 3Institute of Pesticides and Environmental 9 Protection, Banatska 31b, 11080 Belgrade-Zemun, Serbia 10 Accepted for publication ____________. 11 12 13 Corresponding author: E. Alvarez; E-mail address: [email protected] 14 Current address of E. Alvarez: CIAT, Km 17 recta Cali-Palmira, Valle del Cauca, 15 Colombia, air mail 6713. 16 GenBank[AY737646, AY737647, EU346761] Accession numbers 17 18 19 All authors have reviewed the manuscript and approved its submission to Plant Diseases. 20 The manuscript is not being submitted elsewhere. 21 22 E. Alvarez Page 1 Plant Disease 23 ABSTRACT 24 Alvarez, E., Mejía, J.F., Llano, G.A., Loke, J.B., Calari, A., Duduk, B. and Bertaccini, A. 25 2007. Characterization of a Phytoplasma Associated with Frogskin Disease in Cassava. 26 Plant Dis. xx: xxx-xxx. 27 28 Cassava frogskin (CFSD) is an economically important root disease of cassava (Manihot 29 esculenta) in Colombia and other South American countries including Brazil, Venezuela, 30 Peru, Costa Rica, and Panama. The roots of severely affected plants are thin, making 31 them unsuitable for consumption. In Colombia, phytoplasma infections were confirmed 32 in 35 out of 39 genotypes exhibiting mild or severe CFSD symptoms either by direct or 33 nested-PCR assays employing rRNA operon primer pairs.
    [Show full text]
  • A Convolutional Code-Based Sequence Analysis Model and Its Application
    Int. J. Mol. Sci. 2013, 14, 8393-8405; doi:10.3390/ijms14048393 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article A Convolutional Code-Based Sequence Analysis Model and Its Application Xiao Liu * and Xiaoli Geng College of Communication Engineering, Chongqing University, 174 ShaPingBa District, Chongqing 400044, China; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +86-133-6819-8323. Received: 19 February 2013; in revised form: 28 March 2013 / Accepted: 10 April 2013 / Published: 16 April 2013 Abstract: A new approach for encoding DNA sequences as input for DNA sequence analysis is proposed using the error correction coding theory of communication engineering. The encoder was designed as a convolutional code model whose generator matrix is designed based on the degeneracy of codons, with a codon treated in the model as an informational unit. The utility of the proposed model was demonstrated through the analysis of twelve prokaryote and nine eukaryote DNA sequences having different GC contents. Distinct differences in code distances were observed near the initiation and termination sites in the open reading frame, which provided a well-regulated characterization of the DNA sequences. Clearly distinguished period-3 features appeared in the coding regions, and the characteristic average code distances of the analyzed sequences were approximately proportional to their GC contents, particularly in the selected prokaryotic organisms, presenting the potential utility as an added taxonomic characteristic for use in studying the relationships of living organisms. Keywords: convolutional code; degeneracy; codon; informational unit; code distance; characteristic average code distance; GC content; taxonomy 1.
    [Show full text]
  • Analysis of the Complete Genomes of Acholeplasma Brassicae, A. Palmae
    Research Article J Mol Microbiol Biotechnol 2014;24:19–36 Published online: October 18, 2013 DOI: 10.1159/000354322 Analysis of the Complete Genomes of Acholeplasma brassicae , A. palmae and A. laidlawii and Their Comparison to the Obligate Parasites from ‘Candidatus Phytoplasma’ a a c g Michael Kube Christin Siewert Alexander M. Migdoll Bojan Duduk a d e g b, f Sabine Holz Ralf Rabus Erich Seemüller Jelena Mitrovic Ines Müller a b, f Carmen Büttner Richard Reinhardt a Division Phytomedicine, Department of Crop and Animal Sciences, Humboldt-Universität zu Berlin, and b c Max Planck Institute for Molecular Genetics, Berlin , National Center for Tumor Diseases (NCT) Heidelberg, d Heidelberg , Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of e Oldenburg, Oldenburg , Julius Kuehn Institute, Federal Research Centre for Cultivated Plants, Institute for f Plant Protection in Fruit Crops and Viticulture, Dossenheim , and Max Planck Genome Centre Cologne, g Cologne , Germany; Institute of Pesticides and Environmental Protection, Belgrade , Serbia Key Words encoding the cell division protein FtsZ, a wide variety of ABC Complete genomes · Acholeplasma palmae · Acholeplasma transporters, the F0 F1 ATP synthase, the Rnf -complex, SecG brassicae · Candidatus phytoplasma of the Sec -dependent secretion system, a richly equipped repertoire for carbohydrate metabolism, fatty acid, isopren- oid and partial amino acid metabolism. Conserved metabol- Abstract ic proteins encoded in phytoplasma genomes such as the Analysis of the completely determined genomes of the malate dehydrogenase SfcA, several transporters and pro- plant-derived Acholeplasma brassicae strain O502 and A. pal- teins involved in host-interaction, and virulence-associated mae strain J233 revealed that the circular chromosomes are effectors were not predicted for the acholeplasmas.
    [Show full text]
  • Ureaplasma Diversum Genome Provides New Insights About the Interaction of the Surface Molecules of This Bacterium with the Host
    RESEARCH ARTICLE Ureaplasma diversum Genome Provides New Insights about the Interaction of the Surface Molecules of This Bacterium with the Host Lucas M. Marques1,2,3*, Izadora S. Rezende1,2, Maysa S. Barbosa1,2, Ana M. S. Guimarães4,5, Hellen B. Martins2,3, Guilherme B. Campos1, Naíla C. do Nascimento5, Andrea P. dos Santos5, Aline T. Amorim1, Verena M. Santos1, Sávio T. Farias6, Fernanda Â. C. Barrence7, Lauro M. de Souza8, Melissa Buzinhani1, Victor E. Arana-Chavez7,9, Maria E. Zenteno10, Gustavo P. Amarante-Mendes10, Joanne B. Messick5, Jorge Timenetsky1 ã ã a11111 1 Department of Microbiology, Institute of Biomedical Science, University of S o Paulo, S o Paulo, Brazil, 2 Multidisciplinary Institute of Health, Universidade Federal da Bahia, Vitória da Conquista, Brazil, 3 University of Santa Cruz (UESC), Campus Soane Nazaré de Andrade, lhéus, Brazil, 4 Department of Animal Health and Preventive Veterinary Medicine, College of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil, 5 Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana, United States of America, 6 Evolutionary Genetics Laboratory, Department of Molecular Biology, Federal University of Paraíba, João Pessoa, Paraíba, Brazil, 7 Laboratory of Biology of Mineralized Tissues, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil, 8 Instituto de Pesquisa Pelé Pequeno Príncipe—Faculdades Pequeno Príncipe, Curitiba, Brazil, 9 Department of OPEN ACCESS Dental Materials, School of Dentistry, University of São Paulo, São Paulo, Brazil, 10 Laboratory of Cellular and Molecular Biology, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil Citation: Marques LM, Rezende IS, Barbosa MS, Guimarães AMS, Martins HB, Campos GB, et al.
    [Show full text]
  • Effects of Mycoplasmas on the Host Cell Signaling Pathways
    pathogens Review Effects of Mycoplasmas on the Host Cell Signaling Pathways Sergei N. Borchsenius 1,*, Innokentii E. Vishnyakov 1 , Olga A. Chernova 2, Vladislav M. Chernov 2 and Nikolai A. Barlev 1,3,* 1 Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; [email protected] 2 Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, 420111 Kazan, Russia; [email protected] (O.A.C.); [email protected] (V.M.C.) 3 Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Moscow Region, Russia * Correspondence: [email protected] (S.N.B.); [email protected] (N.A.B.) Received: 26 February 2020; Accepted: 19 April 2020; Published: 22 April 2020 Abstract: Mycoplasmas are the smallest free-living organisms. Reduced sizes of their genomes put constraints on the ability of these bacteria to live autonomously and make them highly dependent on the nutrients produced by host cells. Importantly, at the organism level, mycoplasmal infections may cause pathological changes to the host, including cancer and severe immunological reactions. At the molecular level, mycoplasmas often activate the NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) inflammatory response and concomitantly inhibit the p53-mediated response, which normally triggers the cell cycle and apoptosis. Thus, mycoplasmal infections may be considered as cancer-associated factors. At the same time, mycoplasmas through their membrane lipoproteins (LAMPs) along with lipoprotein derivatives (lipopeptide MALP-2, macrophage-activating lipopeptide-2) are able to modulate anti-inflammatory responses via nuclear translocation and activation of Nrf2 (the nuclear factor-E2-related anti-inflammatory transcription factor 2).
    [Show full text]