Purple Corn Anthocyanins: Chemical Structure, Chemoprotective Activity and Structure/Function Relationships

Total Page:16

File Type:pdf, Size:1020Kb

Purple Corn Anthocyanins: Chemical Structure, Chemoprotective Activity and Structure/Function Relationships PURPLE CORN ANTHOCYANINS: CHEMICAL STRUCTURE, CHEMOPROTECTIVE ACTIVITY AND STRUCTURE/FUNCTION RELATIONSHIPS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy the Graduate School of The Ohio State University By Pu Jing, M.S. * * * * * The Ohio State University 2006 Dissertation Committee: Professor Steven J. Schwartz, Adviser Approved by Assistant Professor M. Mónica Giusti, Co-Adviser Professor Valente Alvarez ___________________________________ Assistant Joshua A. Bomser Adviser ___________________________________ Co-Adviser Food Science and Nutrition Graduate Program © Copyright by PU JING 2006 ABSTRACT Interest in purple corn (Zea mays L.) as a natural colorant has increased because of their potential health benefits. This study evaluated an anthocyanin-based purple corn extract as a natural colorant and chemoprotective source as compared to other anthocyanin sources. The structure/function relationship between anthocyanins and relative biological activity were investigated. Purple corncob contained high monomeric anthocyanins concentration (290 to 1323 mg/100g DW) and acylated anthocyanins (35 to 54%). Obtaining a colorant from purple corn produces large amounts of a highly colored purple corn waste (PCW) with limited solubility. The limited solubility was associated with the complexation of anthocyanins with macromolecules (tannins and proteins) abundant in PCW. The purple corn pigment extraction procedure was modified to minimize waste production. Deionized water at 50 °C yielded high anthocyanin concentration with relatively low tannin and protein content. Application of a neutral protease during processing might decrease the level of the major protein (29KD) in purple corn and further reduce PCW. PCW was soluble in neutral environment and tested as a natural colorant for milk. PCW provided an attractive purple color (hue: 324-347°) to milk. This color was ii more stable in milk than in a pH6.8 buffer, suggesting that milk components protected anthocyanins and color in an accelerated model (70 ºC). Purple corn colorant showed higher inhibition of human colon carcinoma HT29 cell proliferation (GI50=~14µg/ml) than other six (chokeberry, bilberry, grape, purple carrot, radish, and elderberry) anthocyanin-rich extracts (ARE) (GI50 =31~130µg/ml). Anthocyanin-rich (2.29g/100g) PCW showed high antiproliferation (GI50 =21µg/ml), but lower than the purple corn colorant, suggesting that macromolecular complexes might trap monomeric anthocyanins reducing their bioavailability. An anthocyanin fraction separated from other phenolics in ARE played a major role on ARE’s chemoprotection. The interaction between anthocyanin and other ARE phenolics on chemoprotection was additive. Anthocyanin chemical structure affected chemoprotection: cyanidin 3- glucoside had higher inhibitory effect than pelargonidin 3-glucoside. Anthocyanin monoglucosylation showed a higher inhibitory activity than the corresponding 3,5- triglucoside. Effect of acylation on chemoprotection was dependant on the type of aglycone and acylating acid. More research is needed to better understand the impact of anthocyanin structure on chemoprotection. iii Dedicated to my mom and Yan iv ACKNOWLEDGMENTS My first, and most earnest, acknowledgment must go to my advisor Dr M. Monica Giusti. Your expertise, diligence, patience, encouragement, enthusiasm and open-mindedness raised me up to this mountain and benefited me throughout my life. Thanks are given to my dissertation committee: Dr Steven J. Schwartz, Dr Joshua A. Bomser and Dr Valente Alvarez for providing me with your invaluable academic offerings, which solidly grounded me with the completion of my PhD education. Thanks particularly to Dr Steven J. Schwartz, Dr Joshua A. Bomser, and Dr Luis E. Rodriguez-Saona for providing convenient access to experimental facilities and continually supporting to my research and study. None of this work would have been possible without you. Tons of thanks to Dr Magnuson, her lab group and other friends in Maryland. I still remember the simplest but the best farewell party in my life. I am grateful to all my lab colleagues for your numerous help and support during my study and research. Thanks to my friends here. With you, life could not be sweeter! We are also grateful to the USDA NRI competitive grants program and the Alumni Grants for Graduate Research and Scholarship (AGGRS) from The Ohio State v University for providing financial support. We thank Artemis International, Inc., Polyphenolics, Inc., RFI Ingredients, Globenatural International S.A., Overseal Foods Ltd for their providing samples. vi VITA May 27, 1972………… Born – Sichuan, China 1996……………………B.E. Food Science and Engineering, Sichuan Institute of Light Industry and Chemistry Technology 1996 - 1998 ……………Quality supervisor Sichuan King Food Co., Ltd. Chengdu, China 2001……………………M.S. Food Science, Southwest Agricultural University 2001…………………… Adjunct Lecturer Fujian Agricultural University, Fujian, China 2002 - 2004…………….Graduate Research Assistant University of Maryland, College park, Maryland 2004 – Present …………Graduate Research and Teaching Assistant The Ohio State University PUBLICATIONS Research Publication 1. Wyzgoski, F.J., Rinaldi, P.L., Reese, R.N., Scheerens, J.C., Miller, A.R., Bishop, B.L., Giusti, M.M., Bomser, J.L., Ozgen, M., Tulio Jr., A.Z. and Jing, P. (2006). Using high field cryoprobe NMR experiments and multivariate analysis to vii identify bioactive components in black raspberries. American Chemical Society National Meeting. 2. Jing, P., and Giusti, M. M. (2005). Characterization of Anthocyanin-Rich Waste from Purple Corncobs (Zea mays L.) and Its Application to Color Milk. J Agric Food Chem 53, 8775-8781. 3. Jing, P., Ding, X.W., and Su, Y. (2000). Scavenging effect of extract of citrus peel on •OH. Journal of Southwest Agricultural University. 22, 416-418. 4. Jing, P. and Su, Y. (2000). Development of sports drinks. Beverage Industry, China, 3, 7-9. 5. Jing, P. (1999). Development of functional food in China. Chinese Animal Product and Food, 6, 233-234. 6. Xiang Y.F. Jing, P., and Chen, M. (1996). Improvement of Bennett Test. Studies in Higher Education, 7, 61-62. 7. Xiang, Y.F., Jing, P., and Liu, D.Y. 1996. Study on microencapsulation process of Zanthoxylum oleoresin. Journal of Sichuan University (Natural Science Edition), 33, 760-764. FIELD OF STUDY Major Field: Food Science and Nutrition viii TABLE OF CONTENTS Page Abstract……………………………………………………………………………….ii Dedication…………………………………………………………………………….iv Acknowledgments…………………………………………………………………...v Vita…………………………………………………………………………………vii List of Tables……………………………………………………………………....xviii List of Figures………………………………………………………………………xx List of Abbreviations….............................................................................................xxiii Chapters: 1. Introduction………………………....……………….…………………………1 2. Literature review………….…………………………………………………....5 2.1. Purple corn (Zea mays L.)…………………………………………………….5 2.2. Anthocyanin distribution in edible plants………………………………….6 2.3. Anthocyanin chemistry…………………………………………...………….9 2.3.1. Structure and chemistry……………………………………………9 2.3.2. Anthocyanin stability……………………………………………18 2.3.3. The influence of pH………………………………………………19 2.3.4. Acylation…………………………………………………………21 2.3.5. Copigmentation……………………………………………………23 2.3.6. Anthocyanins degradation kinetics………………………………..24 2.4. Extraction of Anthocyanins………………………………………………….24 2.5. Health benefits of anthocyanin-rich commodities…………………………26 ix 2.5.1. Epidemiological study……...………………………………………26 2.5.2. Antioxidants……..… …………………………………………….28 2.5.3. Cancer chemoprotective studies……………………………………33 2.5.3.1. Antioxidative activity……………………………………33 2.5.3.2. Detoxification activity……………………………………35 2.5.3.3. Antiproliferation and apoptosis induction……………….…35 2.5.3.4. Anti-angiogenic activity……………………………....……43 2.5.3.5. Animal studies……………………………………….……..44 2.5.4. Cardiovasular Diseases ……………………………………………45 2.5.5. Anti-inflammation…………………………………………………48 2.5.6. Antimutation………………………………………………………49 2.5.7. Obesity…………………………………………………………….50 2.5.8. Immune System……………………………………………………50 2.5.9. Eye Health………………………………………………………..51 2.5.10. Neurological Function…………………………………………..52 2.6. Bioavailability……………………………………………………………….52 2.7. Anthocyanin-rich commodities and colorectal cancer……………………….56 2.8. Health benefits of anthocyanin-rich colorant of purple corn………………60 2.9. Toxicology…………………………………………………………………61 2.10. Potential application………………………………………………………62 2.10.1. Natural colorants…………………………………………………62 2.10.2. Value-added functional food…….………..………………………63 2.11. References…………………………………………………………………..65 3. Anthocyanins in purple corncob (Zea mays L.)………………….……...…..91 3.1. Abstract………………………………………………………………………91 3.2. Introduction…………………………………………………………………92 3.3. Materials and methods……………………………………………………….94 x 3.3.1. Material and reagents…………………………………………….94 3.3.2. Anthocyanin extraction…………………………………………….95 3.3.3. Monomeric anthocyanins and polymeric anthocyanins………….95 3.3.4. Total phenolics……………………………………………………..96 3.3.5. Analytical chromatography………………………………………..96 3.3.6. LC/MS/MS ………………………………………………………97 3.3.7. Statistical design and analysis……………………………………97 3.4. Results and discussion……………………………………………………….98 3.4.1. Anthocyanins and total phenolics in purple corncobs……………98 3.4.2. Anthocyanin profiles in purple corns……………………………102 3.5. Conclusions…………………………………………………………………105 3.6. Acknowledgments…………………………………………………………105 3.7. References…………………………………………………………………106
Recommended publications
  • Identification of Compounds with Potential Therapeutic Uses From
    International Journal of Molecular Sciences Article Identification of Compounds with Potential Therapeutic Uses from Sweet Pepper (Capsicum annuum L.) Fruits and Their Modulation by Nitric Oxide (NO) Lucía Guevara 1, María Ángeles Domínguez-Anaya 1, Alba Ortigosa 1, Salvador González-Gordo 1 , Caridad Díaz 2 , Francisca Vicente 2 , Francisco J. Corpas 1 , José Pérez del Palacio 2 and José M. Palma 1,* 1 Group of Antioxidant, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; [email protected] (L.G.); [email protected] (M.Á.D.-A.); [email protected] (A.O.); [email protected] (S.G.-G.); [email protected] (F.J.C.) 2 Department of Screening & Target Validation, Fundación MEDINA, 18016 Granada, Spain; [email protected] (C.D.); [email protected] (F.V.); [email protected] (J.P.d.P.) * Correspondence: [email protected]; Tel.: +34-958-181-1600; Fax: +34-958-181-609 Abstract: Plant species are precursors of a wide variety of secondary metabolites that, besides being useful for themselves, can also be used by humans for their consumption and economic benefit. Pepper (Capsicum annuum L.) fruit is not only a common food and spice source, it also stands out for containing high amounts of antioxidants (such as vitamins C and A), polyphenols and capsaicinoids. Citation: Guevara, L.; Particular attention has been paid to capsaicin, whose anti-inflammatory, antiproliferative and Domínguez-Anaya, M.Á.; Ortigosa, A.; González-Gordo, S.; Díaz, C.; analgesic activities have been reported in the literature.
    [Show full text]
  • RP HPLC Determination of Some Uncommon Anthocyanins
    360 УДК 543.54:547.814.5 RP HPLC determination of some uncommon anthocyanins Deineka V.I., Vu Thi Ngoc Anh, Deineka L.A. Federal State Autonomous Educational Institution of Higher Professional Education «Belgorod National Research University» RF, Belgorod Received 12.02.2014 Abstract Anthocyanins of Catharanthus roseus petals were found to be composed of pairs (3-galactosides and 3-rhamnosylgalactosides) mainly of 7-methylated anthocyanidins of “dephinidin series” (7-methyldelphinidin, 7-methylpetunidin and hirsutidin); though the same derivatives of “cyanidin series” are present in low concentrations. Flowers of Caesalpinia pulcherrima contain two 3-glucosides: of cyanidin and 5-methylcyanidin. The migration of CH 3-radical from 3’-OH group to 7-OH position results in increase of retention, while for the migration to 5-OH group a decrease of retention was observed. Different position of ring A OH-groups methylation can be predicted also by controversial shift of λmax of the solutes. Keywords: Reversed-phase HPLC, uncommon anthocyanins, 7-OH methylation; 5-OH methylation; regularities of retention alteration, electronic spectra . Установлено , что антоцианы лепестков цветков Catharanthus roseus образованы парами (3-галактозидами и 3-рамнозилгалактазидами ) в-основном антоцианидинами дельфинидинового ряда с метилированием OH-группы в положении 7: 7-метилдельфинидином , 7-метилпетунидином и 7- метилмальвидином ( хирсутидином ); впрочем , аналогичные производные антоцианов цианидинового ряда также присутствуют , но в небольших концентрациях . Антоцианы высушенных цветков Caesalpiniapulcherrima содержат два 3-глюкозида : цианидина и 5-метилцианидина . Перемещение CH 3-радикала из 3’-OH группы к 7-OH группе сказывается в заметном увеличении удерживания , но при аналогичном переносе на ОН -группу в положение 5 наблюдается уменьшение удерживания . Различный тип метилирования ОН -групп кольца А приводит к противоположным смещениям λmax антоцианов .
    [Show full text]
  • The Use of Plants in the Traditional Management of Diabetes in Nigeria: Pharmacological and Toxicological Considerations
    Journal of Ethnopharmacology 155 (2014) 857–924 Contents lists available at ScienceDirect Journal of Ethnopharmacology journal homepage: www.elsevier.com/locate/jep Review The use of plants in the traditional management of diabetes in Nigeria: Pharmacological and toxicological considerations Udoamaka F. Ezuruike n, Jose M. Prieto 1 Center for Pharmacognosy and Phytotherapy, Department of Pharmaceutical and Biological Chemistry, School of Pharmacy, University College London, 29-39 Brunswick Square, WC1N 1AX London, United Kingdom article info abstract Article history: Ethnopharmacological relevance: The prevalence of diabetes is on a steady increase worldwide and it is Received 15 November 2013 now identified as one of the main threats to human health in the 21st century. In Nigeria, the use of Received in revised form herbal medicine alone or alongside prescription drugs for its management is quite common. We hereby 26 May 2014 carry out a review of medicinal plants traditionally used for diabetes management in Nigeria. Based on Accepted 26 May 2014 the available evidence on the species' pharmacology and safety, we highlight ways in which their Available online 12 June 2014 therapeutic potential can be properly harnessed for possible integration into the country's healthcare Keywords: system. Diabetes Materials and methods: Ethnobotanical information was obtained from a literature search of electronic Nigeria databases such as Google Scholar, Pubmed and Scopus up to 2013 for publications on medicinal plants Ethnopharmacology used in diabetes management, in which the place of use and/or sample collection was identified as Herb–drug interactions Nigeria. ‘Diabetes’ and ‘Nigeria’ were used as keywords for the primary searches; and then ‘Plant name – WHO Traditional Medicine Strategy accepted or synonyms’, ‘Constituents’, ‘Drug interaction’ and/or ‘Toxicity’ for the secondary searches.
    [Show full text]
  • Chemistry and Pharmacology of Kinkéliba (Combretum
    CHEMISTRY AND PHARMACOLOGY OF KINKÉLIBA (COMBRETUM MICRANTHUM), A WEST AFRICAN MEDICINAL PLANT By CARA RENAE WELCH A Dissertation submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey in partial fulfillment of the requirements for the degree of Doctor of Philosophy Graduate Program in Medicinal Chemistry written under the direction of Dr. James E. Simon and approved by ______________________________ ______________________________ ______________________________ ______________________________ New Brunswick, New Jersey January, 2010 ABSTRACT OF THE DISSERTATION Chemistry and Pharmacology of Kinkéliba (Combretum micranthum), a West African Medicinal Plant by CARA RENAE WELCH Dissertation Director: James E. Simon Kinkéliba (Combretum micranthum, Fam. Combretaceae) is an undomesticated shrub species of western Africa and is one of the most popular traditional bush teas of Senegal. The herbal beverage is traditionally used for weight loss, digestion, as a diuretic and mild antibiotic, and to relieve pain. The fresh leaves are used to treat malarial fever. Leaf extracts, the most biologically active plant tissue relative to stem, bark and roots, were screened for antioxidant capacity, measuring the removal of a radical by UV/VIS spectrophotometry, anti-inflammatory activity, measuring inducible nitric oxide synthase (iNOS) in RAW 264.7 macrophage cells, and glucose-lowering activity, measuring phosphoenolpyruvate carboxykinase (PEPCK) mRNA expression in an H4IIE rat hepatoma cell line. Radical oxygen scavenging activity, or antioxidant capacity, was utilized for initially directing the fractionation; highlighted subfractions and isolated compounds were subsequently tested for anti-inflammatory and glucose-lowering activities. The ethyl acetate and n-butanol fractions of the crude leaf extract were fractionated leading to the isolation and identification of a number of polyphenolic ii compounds.
    [Show full text]
  • Complex Ligands with Different Copigmentation Status
    In: Anthocyanins: Structure, Biosynthesis and Health Benefits ISBN: 978-1-62257-329-5 Editor: Noboru Motohashi © 2012 Nova Science Publishers, Inc. No part of this digital document may be reproduced, stored in a retrieval system or transmitted commercially in any form or by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in rendering legal, medical or any other professional services. Chapter 12 COMPARATIVE HUMAN IN VITRO AND IN VIVO BIOAVAILABILITY INVESTIGATION OF BILBERRY ANTHOCYANINS IN DIFFERENT COMPLEX LIGANDS WITH DIFFERENT COPIGMENTATION STATUS Thomas Eidenberger*, Manuel Selg and Sigrid Fuerst Upper Austrian University of Applied Sciences, Faculty of Natural and Environmental Sciences, Wels, Austria ABSTRACT The colorful anthocyanins are well recognized members of the bioflavonoid phytochemicals. Anthocyanins have gained much attention as the food ingredients with health-promoting functions for recent years. Bilberries have been particularly known as one of the richest sources of anthocyanins. The physiological effects of anthocyanins in humans are dependent on the absorption after ingestion. Clinical studies have demonstrated that the bioavailability of anthocyanins is very low and highly variable because of their instability in physiological absorption conditions. The targets for the development of new anthocyanin products are improved absorption and reduced absorption variability. One way to achieve these targets is an increase of the stability of anthocyanins under physiological conditions.
    [Show full text]
  • Alteration of Anthocyanin Glycosylation in Cranberry Through Interspecific Hybridization
    J. AMER. Soc. HORT. Sci. 130(5):711-715. 2005. Alteration of Anthocyanin Glycosylation in Cranberry Through Interspecific Hybridization Nicholi Vorsa Philip E. Marucci Center for Blueberry and Cranberry Research and Extension, Rutgers University, 125A Lake Oswego Road, Chatsworth, NJ 08019 James J. Polashock1 USDA—ARS Fruit Lab, 125A Lake Oswego Road, Chatsworth, NJ 08019 ADDITIONAL INDEX WORDS. Vaccinium macrocarpon, Vaccinium oxycoccus, antioxidant, bioavailability, flavonoid ABSTRACT. The flavonoids of american cranberry (Vaccinium macrocarpon Alt.) are documented to be beneficial for hu- man health. Among their benefits is a high antioxidant potential, with anthocyanin glycosides being the main contribu- tors. Flavonoid glucose conjugates are reported to be more bioavailable than those with other sugar conjugates. The anthocyanin glycosides of V. macrocarpon fruit are mainly galactosides and arabinosides of the aglycones, cyanidin and peonidin, with less than 8% glucosides. In contrast, the fruit anthocyanins of another cranberry species, V. oxycoccus L. were found to be largely glucosides of cyanidin and peonidin. Interspecific hybrids between these two species were intermediate to the parental species in the proportion of fruit anthocyanin glucosides. About half the progeny (1:1 segregation) in a backcross population (to V. macrocarpon) maintained the relatively high anthocyanin glucoside ratio. In this study, we demonstrate the genetic manipulation of anthocyanin glycosylation in cranberry using interspecific hybridization, resulting in dramatically increased glucose-conjugated anthocyanins. Flavonoids are considered to be secondary metabolites, which The cultivated american cranberry (V. macrocarpon) is recog- have been associated with roles in ultraviolet protection, plant nized for its brilliant red fruit due to an abundance of anthocyanins sexual reproduction, pollinator attraction, symbiotic plant—microbe in the fruit epidermal tissues.
    [Show full text]
  • Valorization of American Barrel-Shoot Wastes: Effect of Post Fermentative
    molecules Article Valorization of American Barrel-Shoot Wastes: Effect of Post Fermentative Addition and Readdition on Phenolic Composition and Chromatic Quality of Syrah Red Wines Berta Baca-Bocanegra, Julio Nogales-Bueno y , José Miguel Hernández-Hierro * and Francisco José Heredia Food Color and Quality Laboratory, Section of Nutrition and Food Science, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; [email protected] (B.B.-B.); [email protected] (J.N.-B.); [email protected] (F.J.H.) * Correspondence: [email protected]; Tel.: +34-954-556-495; Fax: +34-954-556-110 Current address: Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de Évora, y Departamento de Fitotecnia, Apartado 94 7002-554 Évora, Portugal. Received: 15 January 2020; Accepted: 9 February 2020; Published: 11 February 2020 Abstract: The influence of post fermentative addition of American barrel-shoot wastes on phenolic composition and chromatic quality of Syrah red wines has been evaluated as an environmentally sustainable alternative to the conventional winemaking for avoiding the common color loss of red wines elaborated in warm climates. American oak wood byproducts added were previously classified by hyperspectral image analysis according to the amount of phenolic compounds transferred to the extraction media. After that, wines were elaborated under different maceration conditions by 1 applying only one proportion of wood (12 g L− ) and two different maceration procedures (simple and double addition) and were compared with a traditionally macerated Syrah red wine (CW, no wood addition). Results proved the effectiveness of the moderate postfermentative addition of oak wood byproducts to stabilize the color of wines and to provoke lower color modification along the time, producing color wines chromatically more stable for a better aging.
    [Show full text]
  • Ultrasound-Assisted Extraction Optimization Using
    a ISSN 0101-2061 (Print) Food Science and Technology ISSN 1678-457X (Online) DOI: https://doi.org/10.1590/fst.13421 Berberis crataegina DC. as a novel natural food colorant source: ultrasound-assisted extraction optimization using response surface methodology and thermal stability studies Mehmet DEMIRCI1,2 , Merve TOMAS1 , Zeynep Hazal TEKIN-ÇAKMAK2 , Salih KARASU2* Abstract This study aimed to investigate the potential use of anthocyanin of Berberis crataegina DC. as a natural food coloring agent in the food industry. For this aim, the ultrasound-assisted extraction (UAE) method was performed to extract anthocyanin of Berberis crataegina DC. The effect of ultrasound power 1(X : 20-100%), extraction temperature (X2: 20-60 °C), and time (X3: 10-20 min) on TPC and TAC of Berberis crataegina DC. extracts were examined and optimized by applying the Box–Behnken experimental design (BBD) with the response surface methodology (RSM). The influence of three independent variables and their combinatorial interactions on TPC and TAC were investigated by the quadratic models (R2: 0.9638&0.9892 and adj R2:0.9171&0.9654, respectively). The optimum conditions were determined as the amplitude level of 98%, the temperature of 57.41 °C, and extraction time of 13.86 min. The main anthocyanin compounds were identified, namely, Delphinidin-3-O- galactoside, Cyanidin-3-O-glucoside, Cyanidin-3-O-rutinoside, Petunidin-3-O-glucoside, Pelargonidin-3-O-glucoside, and Peonidin-3-O-glucoside. The anthocyanin degradation showed first-order kinetic, degradation rate constant (k), the half-life values (t1/2), and loss (%) were significantly affected by different temperatures (P < 0.05).
    [Show full text]
  • Flavonoid Glucodiversification with Engineered Sucrose-Active Enzymes Yannick Malbert
    Flavonoid glucodiversification with engineered sucrose-active enzymes Yannick Malbert To cite this version: Yannick Malbert. Flavonoid glucodiversification with engineered sucrose-active enzymes. Biotechnol- ogy. INSA de Toulouse, 2014. English. NNT : 2014ISAT0038. tel-01219406 HAL Id: tel-01219406 https://tel.archives-ouvertes.fr/tel-01219406 Submitted on 22 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Last name: MALBERT First name: Yannick Title: Flavonoid glucodiversification with engineered sucrose-active enzymes Speciality: Ecological, Veterinary, Agronomic Sciences and Bioengineering, Field: Enzymatic and microbial engineering. Year: 2014 Number of pages: 257 Flavonoid glycosides are natural plant secondary metabolites exhibiting many physicochemical and biological properties. Glycosylation usually improves flavonoid solubility but access to flavonoid glycosides is limited by their low production levels in plants. In this thesis work, the focus was placed on the development of new glucodiversification routes of natural flavonoids by taking advantage of protein engineering. Two biochemically and structurally characterized recombinant transglucosylases, the amylosucrase from Neisseria polysaccharea and the α-(1→2) branching sucrase, a truncated form of the dextransucrase from L. Mesenteroides NRRL B-1299, were selected to attempt glucosylation of different flavonoids, synthesize new α-glucoside derivatives with original patterns of glucosylation and hopefully improved their water-solubility.
    [Show full text]
  • 3-Deoxyanthocyanins : Chemical Synthesis, Structural Transformations, Affinity for Metal Ions and Serum Albumin, Antioxidant Activity
    ACADÉMIE D’AIX-MARSEILLE UNIVERSITÉ D’AVIGNON Ecole Doctorale 536 Agrosciences & Sciences THESE présentée pour l’obtention du Diplôme de Doctorat Spécialité: chimie par Sheiraz AL BITTAR le 17 juin 2016 3-Deoxyanthocyanins : Chemical synthesis, structural transformations, affinity for metal ions and serum albumin, antioxidant activity Composition du jury: Victor DE FREITAS Professeur Rapporteur Faculté des Sciences - Université de Porto Cédric SAUCIER Professeur Rapporteur Faculté de Pharmacie - Université de Montpellier I Hélène FULCRAND Directrice de Recherche à l’INRA Examinatrice Montpellier - SupAgro Olivier DANGLES Professeur Directeur de thèse UFR STS - Université d’Avignon Nathalie MORA- Maître de Conférences Co-Encadrante SOUMILLE UFR STS - Université d’Avignon A Alma & Jana… 2 Remerciements Difficile d’être exhaustive dans ces remerciements tant les rencontres, échanges et soutiens ont été nombreux durant ces cinq années. Tout d’abord, je tiens à remercier l’université d’Avignon pour m’accueillir dans ces locaux et de m’offrir le nécessaire pour acomplir ce travail. Je remercie également l’université Al-Baath en Syrie pour la bourse d’étude qui m’a permis de venir en France et Campus Farnce pour l’accueil et la direction en France. Toute ma gratitude va aux membres du jury Victor DE FREITAS, Cédric SAUCIER et Hélène FULCRAND d’avoir accepté d’évaluer ma thèse. Je remercie encore une fois Hélène FULCRAND tant que membre de mon comité de thèse, pour les discussions constructives et ses conseils pendant ma thèse. Je tiens à remercier infiniment mon directeur de thèse Olivier DANGLES. Merci d’accepter de m’accueillir dans votre équipe sans me connaitre il y a 6 ans.
    [Show full text]
  • Structure Assignment and H/D-Exchange Behavior of Several Glycosylated Polyphenols Andreas H
    University of the Pacific Scholarly Commons College of the Pacific aF culty Articles All Faculty Scholarship 1-1-2014 Structure assignment and H/D-exchange behavior of several glycosylated polyphenols Andreas H. Franz University of the Pacific, [email protected] Ilona Serebnitskaya University of the Pacific Gurbir Gudial University of the Pacific Christopher Wallis San Joaquin Valley Agricultural Sciences Center Follow this and additional works at: https://scholarlycommons.pacific.edu/cop-facarticles Part of the Chemistry Commons Recommended Citation Franz, A. H., Serebnitskaya, I., Gudial, G., & Wallis, C. (2014). Structure assignment and H/D-exchange behavior of several glycosylated polyphenols. ARKIVOC, 2014(5), 1–29. DOI: 10.3998/ark.5550190.p008.583 https://scholarlycommons.pacific.edu/cop-facarticles/143 This Article is brought to you for free and open access by the All Faculty Scholarship at Scholarly Commons. It has been accepted for inclusion in College of the Pacific aF culty Articles by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. General Papers ARKIVOC 2014 (v) 94-122 Structure assignment and H/D-exchange behavior of several glycosylated polyphenols Andreas H. Franz,a* Ilona Serebnitskaya,a Gurbir Gudial,a and Christopher Wallisb a Department of Chemistry, University of the Pacific, 3601 Pacific Avenue, Stockton, CA 95211, USA b Crop Diseases, Pests, and Genetics Research Unit, USDA-ARS San Joaquin Valley Agricultural Sciences Center, 9611 S. Riverbend Ave, Parlier, CA 93648, USA E-mail: [email protected] DOI: http://dx.doi.org/10.3998/ark.5550190.p008.583 Abstract The NMR-structures of six polyphenols, resveratrol (1), (-)-epicatechin (2), pelargonidin chloride (3), cyanidin chloride (4), cyanin chloride (5), and keracyanin chloride (6), were fully assigned.
    [Show full text]
  • WO 2017/050853 Al 30 March 2017 (30.03.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/050853 Al 30 March 2017 (30.03.2017) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12P 19/44 (2006.01) C12N 15/52 (2006.01) kind of national protection available): AE, AG, AL, AM, C12P 17/06 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (21) Number: International Application DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/EP20 16/072474 HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (22) International Filing Date: KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, 2 1 September 2016 (21 .09.201 6) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (25) Filing Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (26) Publication Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 62/222,919 24 September 2015 (24.09.2015) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant: EVOLVA SA [CH/CH]; Duggingerstrasse 23, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 4153 Reinach (CH).
    [Show full text]