Lecture 13: Metals

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 13: Metals Matthew Schwartz Statistical Mechanics, Spring 2019 Lecture 13: Metals 1 Introduction Fermions satisfy the Pauli-exclusion principle: no two fermions can occupy the same state. This makes fermionic systems act very dierently from bosonic systems. We introduced the non-interacting Fermi gas in Lecture 10, and will continue to discuss it here. We assume the fermions do not interact with each other. This means that the single-particle states of a system are not aected by which states are occupied. So we will x the states, then ll them from the bottom up, then see what happens when we heat it up. You can think of the possible states as bunch of little shelves and we stack the fermions onto them one-by-one. The exclusion principle implies that once a state is occupied, it cannot be occupied again: the occupancy number of each state is either 0 or 1. This leads to the single-particle grand partition function of state i ("i )n ("i ) = e¡ ¡ = 1 + e¡ ¡ (1) Zi n=0;1 X and grand free energy for state i: 1 1 (" ) = ln = ln[1 + e¡ i¡ ] (2) i ¡ Zi ¡ The occupation number for state i we then found to be given by (3) @i 1 ni = = f("i) = ("i ) h i ¡ @ e ¡ + 1 This is known as the Fermi-Dirac distribution or Fermi function, f("). As T 0 the function ! approaches a step function where all the states below are occupied and the staes above are unoccupied. The value of at T = 0 is called the Fermi energy and denoted by "F . Sometimes the Fermi energy is also called the Fermi level. At any temperature T > 0, some fermions will have energies higher than "F , and therefore some states with energy less than "F will not be occupied. We call the unoccupied states holes. You can picture a nite-temperature Fermi gas as having fermions constantly bouncing out of lower-energy states into higher energy states, leaving holes, then other fermions falling out of excited states into those holes. The electron/hole picture gives a useful way to think about nite temperature metals and gives a powerful way to understand the physics of semiconductors, as we will see in this and the next lecture. We call the temperature corresponding to the Fermi energy the Fermi temperature: "F TF (4) kB 1 2 Section 2 When the temperature of a system is well below the Fermi temperature, T T , then " and F F the Fermi distribution looks very much like a step function f(") (" "). In such situations, the F ¡ lowest states are almost all occupied and we say the system is highly degenerate. In a degenerate system, quantum eects are important. Generally, Fermi temperatures in metals are very high (for example, TF for electrons in copper is around 80,000K, as we will see below). So high in fact, that it is generally impossible to heat a system above the Fermi temperature without changing the nature of the system (i.e. melting the solid). Thus, quantum statistics are always important for electrons in metals. The typical picture of a highly degenerate fermionic system is having a relatively small set of energy levels that are relevant, namely those near " . Energy levels with " " require a lot of F F energy, of order "F , to be excited into an empty state, since the rst available state is above "F . This is nearly impossible when T T . The set of low-energy states that do not participate in the F thermal activity are called the Fermi sea. The Fermi sea can be very deep (a lot of states), but its depth is largely irrelevant to the thermal properties of the material. Similarly, the levels with energies much higher than " are impossible to excite when T T . So only those levels near " F F F matter. Thus degenerate gases have something very close to a symmetry between states above and below "F : a symmetry between electrons and holes. We'll use this picture to understand some properties of metals. 2 Free electron gas The possible single-particle states of the electrons in a free electron gas are the same as for a boson in a box. The allowed wavenumbers are ~k = ~n; ~n = triplet of whole numbers (5) L In the non-relativistic limit energies are determined by the usual relation in quantum mechanics 2~ 2 2 2 ~ k ~ 2 "n = = 2 n (6) 2me 2me L with n = ~n . So j j L 2m L 2m d" n = e p"; dn = e (7) ~2 2 ~2 p" r r For electrons, there are two spins. So we compute the density of states via 1 V 2m 3/2 2 2 4n2dn = e p"d" (8) ! 8 22 2 n ~ X Z Z 1 As before, the 8 accounting for the modes only counting the rst octant (i.e. the ~n are whole numbers) while the integral over the sphere includes all 8 octants. We'll also study the relativistic and ultrarelativistic limits when we discuss white dwarf stars in Lecture 15, but in metals the 3/2 electrons are generally non-relativistic, as we will check shortly. Thus g(") = V 2me p". This 22 ~2 scaling g(") p" is the same as for the Bose gas from last lecture, only the constant in g(") is ¡ dierent. 1; " < "F Recall that as T 0, the Fermi function becomes a step function: n" . The Fermi ! h i ! 0; " > "F energy "F is the chemical potential at T = 0 or equivalently the energy below which all the states are occupied at T = 0. So in particular, the number of of states at T = 0 is 3/2 "F 3/2 1 T =0 V 2me V 2me 2 3/2 N = n" g(")d" 2 2 p"d" = 2 2 "F (9) 0 h i !!!!!!!!!!!!! 2 ~ 0 2 ~ 3 Z Z Sommerfeld free electron model for metals 3 Therefore 2 N 2/3 " = ~ 32 (10) F 2m V e Using this, it's convenient to write the density of states as V 2m 3/2 3N g(") = e p" = p" (11) 22 ~2 3/2 2"F The energy of the Fermi gas at zero temperature is 3N "F 3 E = E(T = 0) = "p"d" = N" (12) 0 3/2 5 F 2"F Z0 E 3 So the average energy of each electron is N = 5 "F . An important concept in electron gases, or Fermi gases in general, is that of degeneracy pressure. Pressure is dened as P = @E . Normally we associate pressure with the kinetic motion ¡ @V of molecules bombarding the walls of a container. This exerts a force on the walls, so that if the volume increases, the energy would go down. Because the force is due to thermal motion, this ordinary pressure is absent at T = 0. Degeneracy pressure, on the other hand, is a contribution to @E in Fermi gases that persists even at T = 0. ¡ @V The way to understand degeneracy pressure is by thinking about how the energy levels change as the volume is shrunk, for example under isothermal compression. For a classical gas, isothermal compression does not change the energy of the gas (i.e. E = CVkBT is volume independent). What it does is increase the density of molecules, so the number of collisions on the wall of a container N goes up, and hence the pressure increases (P = V kBT ). For a Bose gas, as the volume shrinks, all the energy levels go up, but the occupancies of dierent levels adjust so that the total energy is the same. Thus, Bose gases behave essentially like classical gases when compressed. For a degenerate Fermi gas, when the volume goes down, the occupancies of states cannot adjust. Instead, the energy levels go up and the total energy simply increases. This contribution to @E is called degeneracy ¡ @V pressure. To see that this pressure really is dierent from kinetic motion on container walls, consider the T = 0 limit. As we saw before, T = 0 is often a good approximation when T T . Since we have F been working at T = 0 already, all we have to do is dierentiate Eq. (12): @E @ 3 3 @ 2 N 2/3 2 E P = = N" = N ~ 32 = 0 (13) ¡ @V ¡@V 5 F ¡5 @V 2m V 3 V " e # In this limit, the classical pressure goes to zero but the degeneracy pressure persists. Degeneracy pressure is essential to understand white dwarfs and neutron stars, as we'll see in Lecture 15. 3 Sommerfeld free electron model for metals Sommerfeld proposed that the electrons in a metal can be described by a free electron gas. The basic idea is that each atom in a metal has some number of loosely bound electrons that it contributes to the gas. The alkali metals (rst column of periodic table, e.g. potassium) are monovalent, contributing one electron each. Some metals contribute more than one electron per atom (we'll see why in Lecture 15). The weakly bound electrons, called the valence electrons, are assumed to be free at leading order, so they just bounce around like particles in a box, with the size of the box determined by the size of the metal. This is called the free electron model, 4 Section 3 Before getting into the predictions of the free electron model, it's worth a few comments about why on earth this model should be at all reasonable. At rst thought, it seems crazy that we could both ignore the attractive interactions of the electrons to the positively charged nuclei and ignore the repulsive Coulomb interactions among the electrons themselves.
Recommended publications
  • Part 5: the Bose-Einstein Distribution
    PHYS393 – Statistical Physics Part 5: The Bose-Einstein Distribution Distinguishable and indistinguishable particles In the previous parts of this course, we derived the Boltzmann distribution, which described how the number of distinguishable particles in different energy states varied with the energy of those states, at different temperatures: N εj nj = e− kT . (1) Z However, in systems consisting of collections of identical fermions or identical bosons, the wave function of the system has to be either antisymmetric (for fermions) or symmetric (for bosons) under interchange of any two particles. With the allowed wave functions, it is no longer possible to identify a particular particle with a particular energy state. Instead, all the particles are “shared” between the occupied states. The particles are said to be indistinguishable . Statistical Physics 1 Part 5: The Bose-Einstein Distribution Indistinguishable fermions In the case of indistinguishable fermions, the wave function for the overall system must be antisymmetric under the interchange of any two particles. One consequence of this is the Pauli exclusion principle: any given state can be occupied by at most one particle (though we can’t say which particle!) For example, for a system of two fermions, a possible wave function might be: 1 ψ(x1, x 2) = [ψ (x1)ψ (x2) ψ (x2)ψ (x1)] . (2) √2 A B − A B Here, x1 and x2 are the coordinates of the two particles, and A and B are the two occupied states. If we try to put the two particles into the same state, then the wave function vanishes. Statistical Physics 2 Part 5: The Bose-Einstein Distribution Indistinguishable fermions Finding the distribution with the maximum number of microstates for a system of identical fermions leads to the Fermi-Dirac distribution: g n = i .
    [Show full text]
  • Fermi- Dirac Statistics
    Prof. Surajit Dhara Guest Teacher, Dept. Of Physics, Narajole Raj College GE2T (Thermal physics and Statistical Mechanics) , Topic :- Fermi- Dirac Statistics Fermi- Dirac Statistics Basic features: The basic features of the Fermi-Dirac statistics: 1. The particles are all identical and hence indistinguishable. 2. The fermions obey (a) the Heisenberg’s uncertainty relation and also (b) the exclusion principle of Pauli. 3. As a consequence of 2(a), there exists a number of quantum states for a given energy level and because of 2(b) , there is a definite a priori restriction on the number of fermions in a quantum state; there can be simultaneously no more than one particle in a quantum state which would either remain empty or can at best contain one fermion. If , again, the particles are isolated and non-interacting, the following two additional condition equations apply to the system: ∑ ; Thermodynamic probability: Consider an isolated system of N indistinguishable, non-interacting particles obeying Pauli’s exclusion principle. Let particles in the system have energies respectively and let denote the degeneracy . So the number of distinguishable arrangements of particles among eigenstates in the ith energy level is …..(1) Therefore, the thermodynamic probability W, that is, the total number of s eigenstates of the whole system is the product of ……(2) GE2T (Thermal physics and Statistical Mechanics), Topic :- Fermi- Dirac Statistics: Circulated by-Prof. Surajit Dhara, Dept. Of Physics, Narajole Raj College FD- distribution function : Most probable distribution : From eqn(2) above , taking logarithm and applying Stirling’s theorem, For this distribution to represent the most probable distribution , the entropy S or klnW must be maximum, i.e.
    [Show full text]
  • The Debye Model of Lattice Heat Capacity
    The Debye Model of Lattice Heat Capacity The Debye model of lattice heat capacity is more involved than the relatively simple Einstein model, but it does keep the same basic idea: the internal energy depends on the energy per phonon (ε=ℏΩ) times the ℏΩ/kT average number of phonons (Planck distribution: navg=1/[e -1]) times the number of modes. It is in the number of modes that the difference between the two models occurs. In the Einstein model, we simply assumed that each mode was the same (same frequency, Ω), and that the number of modes was equal to the number of atoms in the lattice. In the Debye model, we assume that each mode has its own K (that is, has its own λ). Since Ω is related to K (by the dispersion relation), each mode has a different Ω. 1. Number of modes In the Debye model we assume that the normal modes consist of STANDING WAVES. If we have travelling waves, they will carry energy through the material; if they contain the heat energy (that will not move) they need to be standing waves. Standing waves are waves that do travel but go back and forth and interfere with each other to create standing waves. Recall that Newton's Second Law gave us atoms that oscillate: [here x = sa where s is an integer and a the lattice spacing] iΩt iKsa us = uo e e ; and if we use the form sin(Ksa) for eiKsa [both indicate oscillations]: iΩt us = uo e sin(Ksa) . We now apply the boundary conditions on our solution: to have standing waves both ends of the wave must be tied down, that is, we must have u0 = 0 and uN = 0.
    [Show full text]
  • Solid State Physics II Level 4 Semester 1 Course Content
    Solid State Physics II Level 4 Semester 1 Course Content L1. Introduction to solid state physics - The free electron theory : Free levels in one dimension. L2. Free electron gas in three dimensions. L3. Electrical conductivity – Motion in magnetic field- Wiedemann-Franz law. L4. Nearly free electron model - origin of the energy band. L5. Bloch functions - Kronig Penney model. L6. Dielectrics I : Polarization in dielectrics L7 .Dielectrics II: Types of polarization - dielectric constant L8. Assessment L9. Experimental determination of dielectric constant L10. Ferroelectrics (1) : Ferroelectric crystals L11. Ferroelectrics (2): Piezoelectricity L12. Piezoelectricity Applications L1 : Solid State Physics Solid state physics is the study of rigid matter, or solids, ,through methods such as quantum mechanics, crystallography, electromagnetism and metallurgy. It is the largest branch of condensed matter physics. Solid-state physics studies how the large-scale properties of solid materials result from their atomic- scale properties. Thus, solid-state physics forms the theoretical basis of materials science. It also has direct applications, for example in the technology of transistors and semiconductors. Crystalline solids & Amorphous solids Solid materials are formed from densely-packed atoms, which interact intensely. These interactions produce : the mechanical (e.g. hardness and elasticity), thermal, electrical, magnetic and optical properties of solids. Depending on the material involved and the conditions in which it was formed , the atoms may be arranged in a regular, geometric pattern (crystalline solids, which include metals and ordinary water ice) , or irregularly (an amorphous solid such as common window glass). Crystalline solids & Amorphous solids The bulk of solid-state physics theory and research is focused on crystals.
    [Show full text]
  • Fermi Surface of Copper Electrons That Do Not Interact
    StringString theorytheory andand thethe mysteriousmysterious quantumquantum mattermatter ofof condensedcondensed mattermatter physics.physics. Jan Zaanen 1 String theory: what is it really good for? - Hadron (nuclear) physics: quark-gluon plasma in RIHC. - Quantum matter: quantum criticality in heavy fermion systems, high Tc superconductors, … Started in 2001, got on steam in 2007. Son Hartnoll Herzog Kovtun McGreevy Liu Schalm 2 Quantum critical matter Quark gluon plasma Iron High Tc Heavy fermions superconductors superconductors (?) Quantum critical Quantum critical 3 High-Tc Has Changed Landscape of Condensed Matter Physics High-resolution ARPES Magneto-optics Transport-Nernst effect Spin-polarized Neutron STM High Tc Superconductivity Inelastic X-Ray Scattering Angle-resolved MR/Heat Capacity ? Photoemission spectrum Hairy Black holes … 6 Holography and quantum matter But first: crash course in holography “Planckian dissipation”: quantum critical matter at high temperature, perfect fluids and the linear resistivity (Son, Policastro, …, Sachdev). Reissner Nordstrom black hole: “critical Fermi-liquids”, like high Tc’s normal state (Hong Liu, John McGreevy). Dirac hair/electron star: Fermi-liquids emerging from a non Fermi liquid (critical) ultraviolet, like overdoped high Tc (Schalm, Cubrovic, Hartnoll). Scalar hair: holographic superconductivity, a new mechanism for superconductivity at a high temperature (Hartnoll, Herzog,Horowitz) . 7 General relativity “=“ quantum field theory Gravity Quantum fields Maldacena 1997 = 8 Anti de Sitter-conformal
    [Show full text]
  • Quantum Mechanics Electromotive Force
    Quantum Mechanics_Electromotive force . Electromotive force, also called emf[1] (denoted and measured in volts), is the voltage developed by any source of electrical energy such as a batteryor dynamo.[2] The word "force" in this case is not used to mean mechanical force, measured in newtons, but a potential, or energy per unit of charge, measured involts. In electromagnetic induction, emf can be defined around a closed loop as the electromagnetic workthat would be transferred to a unit of charge if it travels once around that loop.[3] (While the charge travels around the loop, it can simultaneously lose the energy via resistance into thermal energy.) For a time-varying magnetic flux impinging a loop, theElectric potential scalar field is not defined due to circulating electric vector field, but nevertheless an emf does work that can be measured as a virtual electric potential around that loop.[4] In a two-terminal device (such as an electrochemical cell or electromagnetic generator), the emf can be measured as the open-circuit potential difference across the two terminals. The potential difference thus created drives current flow if an external circuit is attached to the source of emf. When current flows, however, the potential difference across the terminals is no longer equal to the emf, but will be smaller because of the voltage drop within the device due to its internal resistance. Devices that can provide emf includeelectrochemical cells, thermoelectric devices, solar cells and photodiodes, electrical generators,transformers, and even Van de Graaff generators.[4][5] In nature, emf is generated whenever magnetic field fluctuations occur through a surface.
    [Show full text]
  • Phys 446: Solid State Physics / Optical Properties Lattice Vibrations
    Solid State Physics Lecture 5 Last week: Phys 446: (Ch. 3) • Phonons Solid State Physics / Optical Properties • Today: Einstein and Debye models for thermal capacity Lattice vibrations: Thermal conductivity Thermal, acoustic, and optical properties HW2 discussion Fall 2007 Lecture 5 Andrei Sirenko, NJIT 1 2 Material to be included in the test •Factors affecting the diffraction amplitude: Oct. 12th 2007 Atomic scattering factor (form factor): f = n(r)ei∆k⋅rl d 3r reflects distribution of electronic cloud. a ∫ r • Crystalline structures. 0 sin()∆k ⋅r In case of spherical distribution f = 4πr 2n(r) dr 7 crystal systems and 14 Bravais lattices a ∫ n 0 ∆k ⋅r • Crystallographic directions dhkl = 2 2 2 1 2 ⎛ h k l ⎞ 2πi(hu j +kv j +lw j ) and Miller indices ⎜ + + ⎟ •Structure factor F = f e ⎜ a2 b2 c2 ⎟ ∑ aj ⎝ ⎠ j • Definition of reciprocal lattice vectors: •Elastic stiffness and compliance. Strain and stress: definitions and relation between them in a linear regime (Hooke's law): σ ij = ∑Cijklε kl ε ij = ∑ Sijklσ kl • What is Brillouin zone kl kl 2 2 C •Elastic wave equation: ∂ u C ∂ u eff • Bragg formula: 2d·sinθ = mλ ; ∆k = G = eff x sound velocity v = ∂t 2 ρ ∂x2 ρ 3 4 • Lattice vibrations: acoustic and optical branches Summary of the Last Lecture In three-dimensional lattice with s atoms per unit cell there are Elastic properties – crystal is considered as continuous anisotropic 3s phonon branches: 3 acoustic, 3s - 3 optical medium • Phonon - the quantum of lattice vibration. Elastic stiffness and compliance tensors relate the strain and the Energy ħω; momentum ħq stress in a linear region (small displacements, harmonic potential) • Concept of the phonon density of states Hooke's law: σ ij = ∑Cijklε kl ε ij = ∑ Sijklσ kl • Einstein and Debye models for lattice heat capacity.
    [Show full text]
  • Chapter 4: Bonding in Solids and Electronic Properties
    Chapter 4: Bonding in Solids and Electronic Properties Free electron theory Consider free electrons in a metal – an electron gas. •regards a metal as a box in which electrons are free to move. •assumes nuclei stay fixed on their lattice sites surrounded by core electrons, while the valence electrons move freely through the solid. •Ignoring the core electrons, one can treat the outer electrons with a quantum mechanical description. •Taking just one electron, the problem is reduced to a particle in a box. Electron is confined to a line of length a. Schrodinger equation 2 2 2 d d 2me E 2 (E V ) 2 2 2me dx dx Electron is not allowed outside the box, so the potential is ∞ outside the box. Energy is quantized, with quantum numbers n. 2 2 2 n2h2 h2 n n n In 1d: E In 3d: E a b c 2 8m a2 b2 c2 8mea e 1 2 2 2 2 Each set of quantum numbers n , n , h n n n a b a b c E 2 2 2 and nc will give rise to an energy level. 8me a b c •In three dimensions, there are multiple combination of energy levels that will give the same energy, whereas in one-dimension n and –n are equal in energy. 2 2 2 2 2 2 na/a nb/b nc/c na /a + nb /b + nc /c 6 6 6 108 The number of states with the 2 2 10 108 same energy is known as the degeneracy. 2 10 2 108 10 2 2 108 When dealing with a crystal with ~1020 atoms, it becomes difficult to work out all the possible combinations.
    [Show full text]
  • Lecture 24. Degenerate Fermi Gas (Ch
    Lecture 24. Degenerate Fermi Gas (Ch. 7) We will consider the gas of fermions in the degenerate regime, where the density n exceeds by far the quantum density nQ, or, in terms of energies, where the Fermi energy exceeds by far the temperature. We have seen that for such a gas μ is positive, and we’ll confine our attention to the limit in which μ is close to its T=0 value, the Fermi energy EF. ~ kBT μ/EF 1 1 kBT/EF occupancy T=0 (with respect to E ) F The most important degenerate Fermi gas is 1 the electron gas in metals and in white dwarf nε()(),, T= f ε T = stars. Another case is the neutron star, whose ε⎛ − μ⎞ exp⎜ ⎟ +1 density is so high that the neutron gas is ⎝kB T⎠ degenerate. Degenerate Fermi Gas in Metals empty states ε We consider the mobile electrons in the conduction EF conduction band which can participate in the charge transport. The band energy is measured from the bottom of the conduction 0 band. When the metal atoms are brought together, valence their outer electrons break away and can move freely band through the solid. In good metals with the concentration ~ 1 electron/ion, the density of electrons in the electron states electron states conduction band n ~ 1 electron per (0.2 nm)3 ~ 1029 in an isolated in metal electrons/m3 . atom The electrons are prevented from escaping from the metal by the net Coulomb attraction to the positive ions; the energy required for an electron to escape (the work function) is typically a few eV.
    [Show full text]
  • Chapter 13 Ideal Fermi
    Chapter 13 Ideal Fermi gas The properties of an ideal Fermi gas are strongly determined by the Pauli principle. We shall consider the limit: k T µ,βµ 1, B � � which defines the degenerate Fermi gas. In this limit, the quantum mechanical nature of the system becomes especially important, and the system has little to do with the classical ideal gas. Since this chapter is devoted to fermions, we shall omit in the following the subscript ( ) that we used for the fermionic statistical quantities in the previous chapter. − 13.1 Equation of state Consider a gas ofN non-interacting fermions, e.g., electrons, whose one-particle wave- functionsϕ r(�r) are plane-waves. In this case, a complete set of quantum numbersr is given, for instance, by the three cartesian components of the wave vector �k and thez spin projectionm s of an electron: r (k , k , k , m ). ≡ x y z s Spin-independent Hamiltonians. We will consider only spin independent Hamiltonian operator of the type ˆ 3 H= �k ck† ck + d r V(r)c r†cr , �k � where thefirst and the second terms are respectively the kinetic and th potential energy. The summation over the statesr (whenever it has to be performed) can then be reduced to the summation over states with different wavevectork(p=¯hk): ... (2s + 1) ..., ⇒ r � �k where the summation over the spin quantum numberm s = s, s+1, . , s has been taken into account by the prefactor (2s + 1). − − 159 160 CHAPTER 13. IDEAL FERMI GAS Wavefunctions in a box. We as- sume that the electrons are in a vol- ume defined by a cube with sidesL x, Ly,L z and volumeV=L xLyLz.
    [Show full text]
  • Extent of Fermi-Surface Reconstruction in the High-Temperature Superconductor Hgba2cuo4+Δ
    Extent of Fermi-surface reconstruction in the high-temperature superconductor HgBa2CuO4+δ Mun K. Chana,1, Ross D. McDonalda, Brad J. Ramshawd, Jon B. Bettsa, Arkady Shekhterb, Eric D. Bauerc, and Neil Harrisona aPulsed Field Facility, National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA; bNational High Magnetic Field Laboratory, Florida State University, Tallahassee, Forida 32310, USA; cLos Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA; dLaboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 148.3, USA This manuscript was compiled on June 17, 2020 High magnetic fields have revealed a surprisingly small Fermi- change at TH ≈ 20 K. These results attest to the high-quality surface in underdoped cuprates, possibly resulting from Fermi- of the present crystals and confirm prior results indicating surface reconstruction due to an order parameter that breaks trans- Fermi-surface reconstruction in Hg1201 at similar doping lev- lational symmetry of the crystal lattice. A crucial issue concerns els (6,9, 10). the doping extent of this state and its relationship to the principal We have also found a peak in the planar resistivity ρ(T ) pseudogap and superconducting phases. We employ pulsed mag- at high fields, Figs.1C&D. ρ(T ) upturns at a temperature netic field measurements on the cuprate HgBa2CuO4+δ to identify coincident with the steep downturn in Rxy(T ), as shown in signatures of Fermi surface reconstruction from a sign change of the Fig.1D and SI Appendix Fig. S7. The common character- Hall effect and a peak in the temperature-dependent planar resistiv- istic temperatures suggest the features in ρ(T ) are related ity.
    [Show full text]
  • Inorganic Chemistry for Dummies® Published by John Wiley & Sons, Inc
    Inorganic Chemistry Inorganic Chemistry by Michael L. Matson and Alvin W. Orbaek Inorganic Chemistry For Dummies® Published by John Wiley & Sons, Inc. 111 River St. Hoboken, NJ 07030-5774 www.wiley.com Copyright © 2013 by John Wiley & Sons, Inc., Hoboken, New Jersey Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permis- sion of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley. com/go/permissions. Trademarks: Wiley, the Wiley logo, For Dummies, the Dummies Man logo, A Reference for the Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates in the United States and other countries, and may not be used without written permission. All other trade- marks are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any product or vendor mentioned in this book.
    [Show full text]