Fermi Surface of Copper Electrons That Do Not Interact
Total Page:16
File Type:pdf, Size:1020Kb
StringString theorytheory andand thethe mysteriousmysterious quantumquantum mattermatter ofof condensedcondensed mattermatter physics.physics. Jan Zaanen 1 String theory: what is it really good for? - Hadron (nuclear) physics: quark-gluon plasma in RIHC. - Quantum matter: quantum criticality in heavy fermion systems, high Tc superconductors, … Started in 2001, got on steam in 2007. Son Hartnoll Herzog Kovtun McGreevy Liu Schalm 2 Quantum critical matter Quark gluon plasma Iron High Tc Heavy fermions superconductors superconductors (?) Quantum critical Quantum critical 3 High-Tc Has Changed Landscape of Condensed Matter Physics High-resolution ARPES Magneto-optics Transport-Nernst effect Spin-polarized Neutron STM High Tc Superconductivity Inelastic X-Ray Scattering Angle-resolved MR/Heat Capacity ? Photoemission spectrum Hairy Black holes … 6 Holography and quantum matter But first: crash course in holography “Planckian dissipation”: quantum critical matter at high temperature, perfect fluids and the linear resistivity (Son, Policastro, …, Sachdev). Reissner Nordstrom black hole: “critical Fermi-liquids”, like high Tc’s normal state (Hong Liu, John McGreevy). Dirac hair/electron star: Fermi-liquids emerging from a non Fermi liquid (critical) ultraviolet, like overdoped high Tc (Schalm, Cubrovic, Hartnoll). Scalar hair: holographic superconductivity, a new mechanism for superconductivity at a high temperature (Hartnoll, Herzog,Horowitz) . 7 General relativity “=“ quantum field theory Gravity Quantum fields Maldacena 1997 = 8 Anti de Sitter-conformal quantum field theory correspondence AdS geometry Conformal quantum field (“near” the boundary) theory (at ‘high’ energies) Not like our universe … Another word for: Quantum criticality! 9 Holography with lasers Encoded on a two Three dimensional image dimensional photographic plate Gravity - quantum field holography Einstein world “AdS” = Quantum fields in flat space Anti de Sitter universe “CFT”= quantum critical Hawking radiation ‘t Hooft’s holographic principle Hawking Temperature: g = acceleration at horizon BH entropy: 0 1 0 1 0 0 0 1 0 1 1 1 1 1 1 0 1 0 1 A = area of horizon 0 0 1 0 1 1 1 1 1 0 1 1 1 1 0 0 1 0 1 Number of degrees of freedom (field 0 1 1 0 1 1 0 0 theory) scales with the area and not 0 1 0 0 1 1 1 1 1 0 0 1 with the volume (gravity) 0 1 The bulk: Anti-de Sitter space Extra radial dimension of the bulk <=> scaling “dimension” in the field IR UV theory Bulk AdS geometry = scale invariance of the field theory Fractal Cauliflower (romanesco) Quantum critical cauliflower Quantum critical cauliflower Quantum critical cauliflower Quantum critical cauliflower Fermion sign problem Imaginary time path-integral formulation Boltzmannons or Bosons: Fermions: . integrand non-negative . negative Boltzmann weights . probability of equivalent classical . non probablistic: NP-hard system: (crosslinked) ringpolymers problem (Troyer, Wiese)!!! Renormalization group for quantum critical matter The Magic of AdS/CFT! boundary: strings d-dim space-time Black holes Wilson-Fisher RG: based on Boltzmannian statistical physics gluons quarks Hawking radiation 21 Black hole hair codes the quantum matter “Hairy black holes” code for (un)stable states of quantum matter emerging from the quantum critical stuff. 22 Quantum critical dynamics: classical waves in AdS WCFT (J) = SAdS (φ) 0 J φx0 → = R4 g2 N = YM α 2 gYM = gs € 23 The AdS/CFT dictionary SUSY Einstein-Maxwell in AdS <==> SUSY Yang-Mills CFT E-field transverse E-field <=> 3d electric field radial E-field <=> 3d charge density B-field radial B-field <=> 3d magnetic field transverse B-field <=> 3d current density spatial metric perturb. transverse gradient <=> 3d distortion radial gradient <=> 3d stress tensor temporal metric perturb. transverse gradient <=> temperature gradient radial gradient <=> heat flow Holography and quantum matter But first: crash course in holography “Planckian dissipation”: quantum critical matter at high temperature, perfect fluids and the linear resistivity (Son, Policastro, …, Sachdev). Reissner Nordstrom black hole: “critical Fermi-liquids”, like high Tc’s normal state (Hong Liu, John McGreevy). Dirac hair/electron star: Fermi-liquids emerging from a non Fermi liquid (critical) ultraviolet, like overdoped high Tc (Schalm, Cubrovic, Hartnoll). Scalar hair: holographic superconductivity, a new mechanism for superconductivity at a high temperature (Hartnoll, Herzog,Horowitz) . 25 26 The Schwarzschild Black Hole is the heater Black hole temperature entropy GR in Anti de Sitter space Quantum-critical fields on the boundary: - at the Hawking temperature - entropy = black hole entropy 27 Dissipation = absorption of classical waves by Black hole! Policastro-Son-Starinets (2002): Viscosity: absorption cross section of gravitons by black hole σ abs(0) η = 16πG = area of horizon (GR theorems) Entropy density s: Bekenstein-Hawking € BH entropy = area of horizon Universal viscosity-entropy ratio for CFT’s η 1 h with gravitational dual limited in large N by: = s 4π kB 28 € AdS/CFT viscosity Kovtun-Son-Starinets (2005) 4πkBη hs € The quark-gluon plasma Relativistic Heavy Ion Collider Quark-gluon ‘fireball’ 30 The tiny viscosity of the Quark- Gluon plasma 4πkBη hs QG plasma: within€ 20% of the AdS/CFT viscosity! Quantum critical hydrodynamics: Planckian dissipation & viscosity 1 Planckian dissipation: ω In a finite temperature quantum critical state the time it takes to convert work in h heat (relaxation time) has to be k T B € Sachdev, h 1992 τ = τ ≈ h € kBT ε + p η Viscosity, entropy density: η = (ε + p)τ, s = ⇒ = Tτ T s η Planckian viscosity: ≈ h s kB € € 32 € Twenty five years ago … Mueller Bednorz Ceramic CuO’s, likeYBa2Cu3O7 Superconductivity jumps to ‘high’ temperatures 33 Graveyard of Theories Mueller Schrieffer Mott Laughlin Abrikosov De Gennes Bednorz Anderson Leggett Lee Wilczek Ginzburg Yang 34 Phase diagram high Tc superconductors Mystery ‘Stripy stuff’, spontaneous quantum critical currents, phase fluctuations .. metal The return of normalcy + + ΨBCS = Πk (uk + vkck↑c−k↓) vac. JZ, Science 315, 1372 (2007) € 35 Quantum Phase transitions Quantum scale invariance emerges naturally at a zero temperature continuous phase transition driven by quantum fluctuations: JZ, Science 319, 1205 (2008) 36 A universal phase diagram High Tc Heavy fermions Iron superconductors superconductors (?) Quantum critical Quantum critical 37 Divine resistivity 38 Critical Cuprates are Planckian Dissipators van der Marel, JZ, … Nature 2003: Optical conductivity QC cuprates Frequency less than temperature: 2 1 ω prτ r h σ1(ω,T) = 2 2 , τ r = A 4π 1+ ω τ r kBT ω ⇒ [ h ] = const.(1+ A2[ h ]2) k Tσ k T B 1 B € A= 0.7: the normal state of optimallly doped cuprates is a Planckian dissipator! € 39 Divine resistivity = Planckian Dissipation! 1 ρ ∝ ∝ k T τ B h € 40 Holography and quantum matter But first: crash course in holography “Planckian dissipation”: quantum critical matter at high temperature, perfect fluids and the linear resistivity (Son, Policastro, …, Sachdev). Reissner Nordstrom black hole: “critical Fermi-liquids”, like high Tc’s normal state (Hong Liu, John McGreevy). Dirac hair/electron star: Fermi-liquids emerging from a non Fermi liquid (critical) ultraviolet, like heavy fermions (Schalm, Cubrovic, Hartnoll). Scalar hair: holographic superconductivity, a new mechanism for superconductivity at a high temperature (Hartnoll, Herzog,Horowitz) . 41 Holographic quantum critical fermion state Liu McGreevy 42 The quantum in the kitchen: Landau’s miracle Kinetic energy Electrons are waves Fermi energy Pauli exclusion principle: every state occupied by one electron Unreasonable: electrons strongly Fermi momenta interact !! k=1/wavelength Landau’s Fermi-liquid: the highly collective low energy quantum excitations are like Fermi surface of copper electrons that do not interact. 43 Watching electrons: photoemission Kinetic energy Electron spectral function: probability to create or annihilate an electron at a given momentum and energy. Fermi energy Fermi momenta Fermi k=1/wavelength energy energy Fermi surface of copper k=1/wavelength 44 ARPES: Observing Fermi liquids ‘MDC’ at EF in conventional Fermi-liquids: sharp Quasiparticle ‘poles’ 2D metal (NbSe2) 45 Cuprates: “Marginal” or “Critical” Fermi liquids Fermi ‘arcs’ (underdoped) closing to Fermi-surfaces EDC lineshape: ‘branch cut’ (conformal), (optimally-, overdoped). width propotional to energy 46 Breaking fermionic criticality with a chemical potential ‘Dirac waves’ E Fermi-surface?? µ µ k Electrical monopole€ € 47 AdS/ARPES for the Reissner- Nordstrom non-Fermi liquids Fermi surfaces but no quasiparticles! Critical FL Marginal FL Non Landau FL 48 Gravitationally coding the fermion propagators (Faulkner et al. Science 329, 1043, 2010) Horizon geometry of the extremal Gravitational ‘mechanism’ for marginal black hole: ‘emergent’ AdS2 => (critical) Fermi-liquids: IR of boundary theory controlled G−1 = ω − v k − k − Σ k,ω by emergent temporal criticality F ( F ) ( ) € Temporal scale invariance IR “lands” in probing fermion self energy! 2ν Σ"∝ω kF Fermi-surface “discovered” by matching UV-IR: like Mandelstam “fermion insertion” for Luttinger liquid! € 49 Holography and quantum matter But first: crash course in holography “Planckian dissipation”: quantum critical matter at high temperature, perfect fluids and the linear resistivity (Son, Policastro, …, Sachdev). Reissner Nordstrom black hole: “critical Fermi-liquids”, like high Tc’s normal state (Hong Liu, John McGreevy). Dirac hair/electron