bioRxiv preprint doi: https://doi.org/10.1101/482653; this version posted July 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Connectomic identification and three-dimensional color tuning of S-OFF midget ganglion cells in the primate retina Lauren E Wool2†, Orin S Packer1, Qasim Zaidi2, and Dennis M Dacey1* 1University of Washington, Department of Biological Structure, Seattle, WA (United States) 2State University of New York College of Optometry, Graduate Center for Vision Research, New York, NY (United States) †Current address: University College London, Institute of Neurology, London (United Kingdom) *Correspondingauthor:DepartmentofBiologicalStructure,UniversityofWashington,1959NEPacificStreetBox357420,Seattle, Washington 98195. Email:
[email protected]. Significance statement The first step of color processing in the visual pathway of primates occurs when signals from short- (S), middle- (M) and long- (L) wavelength sensitive cone types interact antagonistically within the retinal circuitry to create color-opponent pathways. The midget (L vs. M or ‘red-green’) and small bistratified (S vs. L+M, or ‘blue-yellow’) appear to provide the physiological origin of the cardinal axes of human color vision. Here we confirm the pres- ence of an additional S-OFF midget circuit in the macaque monkey fovea with scanning block-face electron microscopy (SBEM) and show physiologically that a subpopulation of S-OFF midget cells combine S, L and M cone inputs along non-cardinal directions of color space, expanding the retinal role in color coding. Abstract In the trichromatic primate retina, the ‘midget’ retinal ganglion cell is the classical substrate for red-green color signaling, with a circuitry that enables antagonistic responses between long (L)- and medium (M)-wavelength sensitive cone inputs.