Surfaces of general type with geometric genus zero: a survey Ingrid Bauer, Fabrizio Catanese and Roberto Pignatelli∗ Abstract In the last years there have been several new constructions of surfaces of general type with pg = 0, and important progress on their classification. The present paper presents the status of the art on surfaces of general type with pg = 0, and gives an updated list of the existing surfaces, in the case where K2 = 1,...,7. It also focuses on certain important aspects of this classification. Key words: Surfaces of general type with genus 0. Godeaux surfaces. Campedelli surfaces. Burniat surfaces. Bloch conjecture. Actions of finite groups. 2000 Mathematics Subject Classification: 14J29, 14J10, 14H30, 14J80, 20F05. Introduction It is nowadays well known that minimal surfaces of general type with pg(S)= 0 2 have invariants pg(S)= q(S)= 0,1 ≤ KS ≤ 9, hence they yield a finite number of irreducible components of the moduli space of surfaces of general type. Ingrid Bauer Lehrstuhl Mathematik VIII, Mathematisches Institut der Universit¨at Bayreuth; Universit¨atsstr. 30; D-95447 Bayreuth, Germany e-mail:
[email protected] arXiv:1004.2583v3 [math.AG] 18 Oct 2010 Fabrizio Catanese Lehrstuhl Mathematik VIII, Mathematisches Institut der Universit¨at Bayreuth; Universit¨atsstr. 30; D-95447 Bayreuth, Germany e-mail:
[email protected] Roberto Pignatelli Dipartimento di Matematica della Universit`adi Trento; Via Sommarive 14; I-38123 Trento (TN), Italy e-mail:
[email protected] ∗ The present work took place in the realm of the DFG Forschergruppe 790 ”Classification of algebraic surfaces and compact complex manifolds”.