Nonlinear Eigenvalue Problems: Newton-Type Methods and Nonlinear Rayleigh Functionals

Total Page:16

File Type:pdf, Size:1020Kb

Nonlinear Eigenvalue Problems: Newton-Type Methods and Nonlinear Rayleigh Functionals Nonlinear Eigenvalue Problems: Newton-type Methods and Nonlinear Rayleigh Functionals vorgelegt von Dipl.-Math. Kathrin Schreiber aus Weimar Von der Fakult¨atII - Mathematik und Naturwissenschaften der Technischen Universit¨atBerlin zur Erlangung des akademischen Grades Doktorin der Naturwissenschaften - Dr. rer. nat. - genehmigte Dissertation Promotionsausschuss: Vorsitzender: Prof. Dr. John M. Sullivan Berichter: Prof. Dr. Hubert Schwetlick Berichter: Prof. Dr. Volker Mehrmann Gutachter: Prof. Dr. Heinrich Voß Tag der wissenschaftlichen Aussprache: 09.05.2008 Berlin 2008 D 83 Danksagung Die vorliegende Dissertation w¨arenicht ohne Prof. Dr. Hubert Schwetlick entstanden, dem ich auf das Herzlichste danken m¨ochte. Ich danke ihm f¨urdas Vertrauen, das er mir entgegenbrachte, f¨urdie Freiheit, bei der Wahl der Schwerpunkte meinen Interessen nachzugehen, und f¨urdie Geduld, die er mir und meinen Fragen entgegenbrachte, sowie f¨urdie vielen kurzweiligen Stunden, in denen ich von ihm lernen konnte. Ich danke Prof. Dr. Volker Mehrmann ebenso herzlich f¨urseine fachliche Unterst¨utzung und die vielen Anmerkungen, Hinweise und kurzfristiges Korrekturlesen, wie daf¨ur,dass er mir die M¨oglichkeit gab, nach Berlin zu kommen in eine wundervolle, inspirierende Arbeitsumgebung. Beiden muss ich daf¨urdanken, dass sie Mittel und Wege fanden, mich ¨uber die letzten drei Jahre zu finanzieren. Herrn Prof. Dr. Voß danke ich f¨urseine Hinweise zur Geschichte von Rayleigh Funk- tionalen, und f¨urdie freundliche Bereiterkl¨arung,als Gutachter zu fungieren. Ich danke Elias Jarlebring f¨urdie Bereitstellung der Matrizen eines Beispiels. Ohne meine Freunde h¨atteich kaum die Kraft, Ausdauer und Geduld gehabt, die diese Arbeit abverlangten. Deswegen m¨ochte ich allen f¨urdie sch¨oneZeit in Dresden und Berlin { f¨urdie Gestaltung der Zeit jenseits vom scharfen Nachdenken { danken, sowohl Freunden als auch Kollegen. Insbesondere Dr. Sonja Schmelter, die so oft meine erste Ansprechpart- nerin war bei allen allgemeinen und LATEX 2"-Fragen, vers¨ußtemir den Dissertationsalltag und die zahlreichen Tassen Kaffee. Ganz besonders m¨ochte ich meiner Familie danken, auf die ich mich immer verlassen konnte. Meine Eltern (die besten, die es gibt) gaben mir Mut, R¨uckhalt und Kraft, seit ich denken kann. Alexander Hoyer danke ich aus tiefstem Herzen f¨urdie Unterst¨utzung, dass er f¨urmich da ist und mir so viel Liebe schenkt. iii iv To my parents v vi Abstract Nonlinear eigenvalue problems arise in many fields of natural and engineering sciences. Theoretical and practical results are scattered in the literature and in most cases they have been developed for a certain type of problem. In this thesis we consider the most general nonlinear eigenvalue problem without assumptions on the structure or spectrum. We start by providing basic facts on the conditioning of a simple eigenvalue and an inverse operator representation in terms of the singular value decomposition. The main part of the thesis connects Newton-type methods for nonlinear eigenvalue problems and nonlinear Rayleigh functionals. The one-sided and the two-sided/generalized Rayleigh functional are introduced with com- plex range, in contrast to the one-sided functional of the literature. Such functionals are the generalizations of Rayleigh quotients for matrices. Local uniqueness and bounds for the distance to the exact eigenvalue in terms of the angles of eigenvectors and approxi- mations to eigenvectors are derived. We obtain a first order perturbation bound which is used to show stationarity, and which implies the Lipschitz continuity of the functionals. With the so gained knowledge on Rayleigh functionals, we design new basic methods for the computation of eigenvalues and -vectors: The two{sided Rayleigh functional iteration is the analogon to the two-sided Rayleigh quotient iteration for nonnormal matrices, and is shown to converge locally cubically as well. These methods are important for subspace extension methods like Jacobi{Davidson and nonlinear Arnoldi, that need to solve small dimensional projected nonlinear problems. We compare the methods regarding computational costs and initial assumptions, and show numerical results. A technique to accelerate convergence for methods computing left and right eigenvector is introduced and the convergence improvement is shown in terms of the R-order. The new methods are called half-step methods. The half-step two-sided Rayleigh functional iteration is shown to converge with R-order 4. Using the previous results, we discuss various nonlinear Jacobi{Davidson methods. The proposed methods are compared theoretically regarding asymptotic condition numbers, vii and in practice with examples. The special case of nonlinear complex symmetric eigenvalue problems is examined. We show the appropriate definition of a complex symmetric Rayleigh functional, which is used to derive a complex symmetric Rayleigh functional iteration which converges locally cubi- cally, and the complex symmetric residual inverse iteration method. A complex symmetric Jacobi{Davidson algorithm is formulated and tested numerically. viii Zusammenfassung Nichtlineare Eigenwertprobleme entstehen in vielen Bereichen der Natur- und Ingenieur- wissenschaften. Obwohl sie seit mehreren Jahrzehnten Gegenstand der mathematischen Forschung sind, ist die L¨osungoftmals schwierig und ben¨otigt besonderen Aufwand, ins- besondere durch die Vielfalt und unterschiedlichen Anforderungen der einzelnen Problem- stellungen. In der Literatur finden sich verstreute Beitr¨agezur Analysis und verschiedene Algorithmen zur L¨osung,oft angepasst an die Struktur einer speziellen Klasse von Prob- lemen oder eines einzelnen Problems. Diese Arbeit besch¨aftigtsich mit dem nichtlinearen Eigenwertproblem in seiner allgemein- sten Form unter m¨oglichst wenigen Annahmen. Es werden zuerst Darstellungen f¨urdie Konditionszahl eines einfachen Eigenwertes und den inversen Operator entwickelt. Der Hauptteil der Arbeit befasst sich mit Newton-Verfahren in Zusammenhang mit nicht- linearen Rayleigh-Funktionalen, das bedeutet, die Eigenvektoren werden durch Newton- schritte verbessert und die Eigenwertn¨aherungenals Rayleigh-Funktionale neu bestimmt. Das einseitige und das zweiseitige, auch verallgemeinerte, Rayleigh-Funktional werden eingef¨uhrtauf einer komplexen Menge { im Gegensatz zum in der Literatur gebr¨auchlichen einseitigen reellen Funktional. Die so definierten Funktionale sind die nat¨urliche Er- weiterung der Rayleigh-Quotienten f¨ur Matrizen auf nichtlineare Eigenwertprobleme. Lo- kale Eindeutigkeit und Schranken f¨urden Abstand von Funktional und exaktem Eigenwert in Termen der Winkel zwischen Eigenvektoren und Eigenvektorapproximationen werden bewiesen. Eine St¨orungsschranke erster Ordnung wird hergeleitet, mit deren Hilfe Station- arit¨atunter bestimmten Voraussetzungen sowie die Lipschitz-Stetigkeit des Funktionals gezeigt werden. Mit dem Wissen ¨uber Rayleigh-Funktionale werden neue Verfahren f¨urdie Berechnung von Eigenwerten und -vektoren entwickelt und deren Konvergenz bewiesen. Diese Verfahren sind essentiell f¨urUnterraum-erweiternde Verfahren wie das Jacobi{Davidson-Verfahren oder das nichtlineare Arnoldi Verfahren, da diese niedrig dimensionierte projizierte nicht- lineare Eigenwertprobleme im Inneren der Algorithmen l¨osenm¨ussen.Es wird bewiesen, ix dass die zweiseitige Rayleigh-Funktional-Iteration lokal kubisch konvergiert. Die neuen Verfahren werden bez¨uglich Aufwand und Voraussetzungen wie auch anhand numerischer Beispiele mit bekannten verglichen. Eine Technik, die die R-Ordnung der Konvergenz von den Verfahren, die Links- und Rechtseigenvektoren berechnen, erh¨oht, wird aufgezeigt und analysiert. Die so entstande- nen neuen Verfahren erhalten das zus¨atzliche Attribut halb-Schritt. Die halb-Schritt zwei- seitige Rayleigh-Funktional-Iteration konvergiert mit R-Ordnung 4. Aufbauend auf den Aussagen ¨uber Rayleigh-Funktionale und ein- und zwei-Vektor Metho- den werden verschiedene Varianten des nichtlinearen Jacobi{Davidson Verfahrens vorgeschla- gen und analysiert, und zwar unter anderem von theoretischer Seite bez¨uglich asympto- tischer Konditionszahlen, als auch anhand von diversen numerischen Beispielen. Der Spezialfall des nichtlinearen komplex symmetrischen Eigenwertproblems wird disku- tiert und ein entsprechendes komplex symmetrisches Rayleigh-Funktional definiert. St¨o- rungsabsch¨atzungenerster Ordnung und die Stationarit¨atdes Funktionals werden gezeigt, lokal kubische Konvergenz f¨urdie komplex symmetrische Rayleigh-Funktional-Iteration bewiesen. Diese bildet die Grundlage f¨urdas komplex symmetrische Jacobi{Davidson- Verfahren, das formuliert und getestet wird. x Notation λ∗ exact eigenvalue x∗ exact right eigenvector y∗ exact left eigenvector (λ∗; x∗) eigenpair (λ∗; x∗; y∗) eigentriple u right eigenvector approximation v left eigenvector approximation λ¯ complex conjugate of λ M H M¯ T H _ α y∗ T (λ∗)x∗ H _ α~ x∗ T (λ∗)x∗ I;In identity matrix of order n en n-th unit vector (u; v) vH u, scalar product T (u; v)T v u S(λ, τ) fλ0 2 C : jλ0 − λj < τg ¯ S(λ, τ) fλ0 2 C : jλ0 − λj ≤ τg n K"(x∗) fu 2 C : ](spanfug; spanfx∗g) ≤ "g p(u) nonlinear (one-sided) Rayleigh functional p(u; v) nonlinear generalized/two-sided Rayleigh functional pT (u) nonlinear complex symmetric Rayleigh functional pL ≡ pL(λ, u; v) generalized Rayleigh quotient pN ≡ pL(λ, u; u) generalized one-sided Rayleigh quotient pLT ≡ pLT (λ, u) generalized complex symmetric Rayleigh quotient q ≡ q(λ, u) T_ (λ)u k : k Euclidean norm or spectral
Recommended publications
  • Robust Solution Methods for Nonlinear Eigenvalue Problems
    Robust solution methods for nonlinear eigenvalue problems Th`ese pr´esent´ee le 29 aoutˆ 2013 a` la Facult´e des Sciences de Base Chaire d’algorithmes num´eriques et calcul haute performance Programme doctoral en Math´ematiques Ecole´ polytechnique f´ed´erale de Lausanne pour l’obtention du grade de Docteur `es Sciences par Cedric Effenberger Jury: Prof. Philippe Michel, pr´esident du jury Prof. Daniel Kressner, directeur de th`ese Prof. Peter Benner, rapporteur Prof. Wolf-Jurgen¨ Beyn, rapporteur Prof. Marco Picasso, rapporteur Lausanne, Suisse 2013 Acknowledgments iii Acknowledgments The research documented within this thesis was conducted from November 2009 until February 2012 at the Seminar for Applied Mathematics (SAM) of ETH Zurich and from March 2012 until September 2013 at the Mathematics Institute of Com- putational Science and Engineering (MATHICSE) of EPF Lausanne. Special thanks are due to my thesis advisor, Prof. Dr. Daniel Kressner, for his enthusiasm and support over the past years. I learned a lot from him, both scientif- ically and non-scientifically, and it was him who sparked my interest in nonlinear eigenvalue problems. Furthermore, I thank Prof. Dr. Peter Benner, Prof. Dr. Wolf-Jurgen¨ Beyn, Prof. Dr. Philippe Michel, and Prof. Dr. Marco Picasso for agreeing to serve on my PhD committee. I would like to express my gratitude to Prof. Dr. Heinrich Voß for his interest in my work, for several fruitful discussions about Jacobi-Davidson algorithms, and the invitation to visit the Hamburg University of Technology in December 2012. I am also indebted to Prof. Dr. Karl Meerbergen and Prof.
    [Show full text]
  • Arxiv:1602.08438V2 [Physics.Flu-Dyn] 3 Aug 2016 firm That a Combustor Is Unstable, They Do Not Suggest How to Control the Insta- Bility
    Stability analysis of thermo-acoustic nonlinear eigenproblems in annular combustors. Part I. Sensitivity Luca Magria,b, Michael Bauerheimc, Matthew P. Juniperb aCenter for Turbulence Research, Stanford University, CA, United States bCambridge University Engineering Department, Cambridge, United Kingdom cCAPS Lab/, ETH Z¨urich,Switzerland Abstract We present an adjoint-based method for the calculation of eigenvalue perturba- tions in nonlinear, degenerate and non self-adjoint eigenproblems. This method is applied to a thermo-acoustic annular combustor network, the stability of which is governed by a nonlinear eigenproblem. We calculate the first- and second-order sensitivities of the growth rate and frequency to geometric, flow and flame parameters. Three different configurations are analysed. The bench- mark sensitivities are obtained by finite difference, which involves solving the nonlinear eigenproblem at least as many times as the number of parameters. By solving only one adjoint eigenproblem, we obtain the sensitivities to any thermo-acoustic parameter, which match the finite-difference solutions at much lower computational cost. Keywords: Thermo-acoustic stability, Sensitivity analysis, Annular combustors, Adjoint methods 1. Introduction Thermo-acoustic oscillations involve the interaction of heat release and sound. In rocket and aircraft engines, heat release fluctuations can synchronize with the natural acoustic modes in the combustion chamber. This can cause loud vibra- tions that sometimes lead to catastrophic failure. It is one of the biggest and most persistent problems facing rocket and aircraft engine manufacturers [1]. Many studies have demonstrated the ability of Large-Eddy Simulation (LES) to represent the flame dynamics [2]. However, even when LES simulations con- arXiv:1602.08438v2 [physics.flu-dyn] 3 Aug 2016 firm that a combustor is unstable, they do not suggest how to control the insta- bility.
    [Show full text]
  • 0 Nonsymmetric Eigenvalue Problems 149
    0 Nonsymmetric Eigenvalue Problems 4.1. Introduction We discuss canonical forms (in section 4.2), perturbation theory (in section 4.3), and algorithms for the eigenvalue problem for a single nonsymmetric matrix A (in section 4.4). Chapter 5 is devoted to the special case of real symmet- ric matrices A = A T (and the SVD). Section 4.5 discusses generalizations to eigenvalue problems involving more than one matrix, including motivating applications from the analysis of vibrating systems, the solution of linear differ- ential equations, and computational geometry. Finally, section 4.6 summarizes all the canonical forms, algorithms, costs, applications, and available software in a list. One can roughly divide the algorithms for the eigenproblem into two groups: direct methods and iterative methods. This chapter considers only direct meth- ods, which are intended to compute all of the eigenvalues, and (optionally) eigenvectors. Direct methods are typically used on dense matrices and cost O(n3 ) operations to compute all eigenvalues and eigenvectors; this cost is rel- atively insensitive to the actual matrix entries. The mail direct method used in practice is QR iteration with implicit shifts (see section 4.4.8). It is interesting that after more than 30 years of depend- able service, convergence failures of this algorithm have quite recently been observed, analyzed, and patched [25, 65]. But there is still no global conver- gence proof, even though the current algorithm is considered quite reliable. So the problem of devising an algorithm that is numerically stable and globally (and quickly!) convergent remains open. (Note that "direct" methods must still iterate, since finding eigenvalues is mathematically equivalent to finding zeros of polynomials, for which no noniterative methods can exist.
    [Show full text]
  • Slepc Users Manual Scalable Library for Eigenvalue Problem Computations
    Departamento de Sistemas Inform´aticos y Computaci´on Technical Report DSIC-II/24/02 SLEPc Users Manual Scalable Library for Eigenvalue Problem Computations https://slepc.upv.es Jose E. Roman Carmen Campos Lisandro Dalcin Eloy Romero Andr´es Tom´as To be used with slepc 3.15 March, 2021 Abstract This document describes slepc, the Scalable Library for Eigenvalue Problem Computations, a software package for the solution of large sparse eigenproblems on parallel computers. It can be used for the solution of various types of eigenvalue problems, including linear and nonlinear, as well as other related problems such as the singular value decomposition (see a summary of supported problem classes on page iii). slepc is a general library in the sense that it covers both Hermitian and non-Hermitian problems, with either real or complex arithmetic. The emphasis of the software is on methods and techniques appropriate for problems in which the associated matrices are large and sparse, for example, those arising after the discretization of partial differential equations. Thus, most of the methods offered by the library are projection methods, including different variants of Krylov and Davidson iterations. In addition to its own solvers, slepc provides transparent access to some external software packages such as arpack. These packages are optional and their installation is not required to use slepc, see x8.7 for details. Apart from the solvers, slepc also provides built-in support for some operations commonly used in the context of eigenvalue computations, such as preconditioning or the shift- and-invert spectral transformation. slepc is built on top of petsc, the Portable, Extensible Toolkit for Scientific Computation [Balay et al., 2021].
    [Show full text]
  • Nonlinear Eigenvalue Problems: a Challenge for Modern Eigenvalue Methods
    gamm header will be provided by the publisher Nonlinear Eigenvalue Problems: A Challenge for Modern Eigenvalue Methods Volker Mehrmann∗1 and Heinrich Voss∗∗2 1 Institut fur¨ Mathematik, MA 4-5, Technische Universitat¨ Berlin, D-10623 Berlin, Fed. Rep. Germany. Supported by Deutsche Forschungsgemeinschaft through the DFG Research Center MATHEON ‘Mathematics for key technologies’ in Berlin 2 Arbeitsbereich Mathematik, Technische Universitat¨ Hamburg-Harburg, D-21071 Hamburg, Fed. Rep. Germany Key words matrix polynomial, projection method, Krylov-subspace method, Arnoldi method, rational-Krylov method, linearization, structure preservation. MSC (2000) 65F15, 15A18, 35P30 We discuss the state of the art in numerical solution methods for large scale polynomial or rational eigenvalue problems. We present the currently available solution methods such as the Jacobi-Davidson, Arnoldi or the rational Krylov method and analyze their properties. We briefly introduce a new linearization technique and demonstrate how it can be used to improve structure preservation and with this the accuracy and efficiency of linearization based methods. We present several recent applications where structured and unstructured nonlinear eigenvalue problems arise and some numerical results. Copyright line will be provided by the publisher 1 Introduction We discuss numerical methods for the solution of large scale nonlinear eigenvalue problems F(λ)x = F(λ; M0; : : : ; Mk; p)x = 0; (1) where for K = C or K = R F : D ! Km;n: is a family of matrices depending on a variable λ 2 D, where D ⊂ K is an open set. As in the linear case, λ 2 D is called an eigenvalue of problem (1) if equation (1) has a nontrivial solution x 6= 0.
    [Show full text]
  • Safeguarded Use of the Implicit Restarted Lanczos Technique for Solving Nonlinear Structural Eigensystems MR Abdel-Aziz June
    Safeguarded Use of the Implicit Restarted Lanczos Technique for Solving Nonlinear Structural Eigensystems M.R. Abdel-Aziz June, 1993 TR93-27 SAFEGUARDED USE OF THE IMPLICIT RESTARTED LANCZOS TECHNIQUE FOR SOLVING NONLINEAR STRUCTURAL EIGENSYSTEMS Mohammedi R. Abdel-Aziz, Research Associate Department of Computational and Applied Mathematics, Rice University, Houston, TX 77251. July 2, 1993 SUMMARY This paper presents a new algorithm for evaluating the eigenvalues and their corresponding eigenvectors for large scale nonlinear eigensystems in structural dynamics. The algorithm is based on solving a sequence of algebraic eigenproblems and updating the parameter, >.. The Implicitly Restarted Lanczos method has been determined to be well suited for solving the linear eigenproblems that are arised in this context. A zero-finder approach that uses rational interpolation to approximate the generalized eigenvalues has been developed to update >.. The methodology of the new algorithm developed here is designed to evaluate a subset of the parametrized nonlinear eigencurves at a specific values of>.. Numerical experiments show that the new eigensolution technique is superior to the pre-existing approaches for the large scale problems and comptitive for the small size ones. The main emphasis of this contribution is the derivation and analysis of this scheme for eigensystems that are based on the frequency dependent shape functions. 1 INTRODUCTION Large scale eigenvalue problems are of great importance in many physical areas. These very large problems arise through the discretization of a differential operator to approxi­ mate some of its spectral properties. However, there are many additional sources for these 17 problems. Saad gave a number of examples in .
    [Show full text]
  • Sensitivity Analysis of Thermo-Acoustic Eigenproblems with Adjoint Methods
    Center for Turbulence Research 189 Proceedings of the Summer Program 2014 Sensitivity analysis of thermo-acoustic eigenproblems with adjoint methods By M. Juniper†, L. Magri†, M. Bauerheim ‡ AND F. Nicoud ¶ This paper outlines two new applications of adjoint methods in the study of thermo- acoustic instability. The first is to calculate gradients for the active subspace method, which is used in uncertainty quantification. The second is to calculate gradients in a non- linear thermo-acoustic Helmholtz solver. Two methods are presented. The first, which uses the discrete adjoint approach, is specifically for nonlinear Helmholtz eigenvalue problems that are solved iteratively. The second, which uses a hybrid adjoint approach, is more general and can be applied to both problems. 1. Introduction Thermo-acoustic oscillations involve the interaction of heat release (e.g., from a flame) and sound. In rocket and aircraft engines, heat release fluctuations can synchronize with the natural acoustic modes in the combustion chamber. This can cause loud vibrations that sometimes lead to catastrophic failure. It is one of the biggest and most persistent problems facing rocket and aircraft engine manufacturers (Lieuwen & Yang 2005). In situations that are susceptible to these oscillations, often only a handful of oscillation modes are unstable. Existing techniques examine how a change in one parameter affects all oscillation modes, whether unstable or not. Adjoint techniques turn this around. In a single calculation, they examine how each oscillation mode is affected by changes in all parameters. In other words, they provide gradient information about the variation of an eigenvalue with respect to all the parameters in the model.
    [Show full text]
  • Nonlinear Eigenvalue Problems General Theory, Results and Methods
    Nonlinear Eigenvalue Problems General Theory, Results and Methods Heinrich Voss [email protected] Hamburg University of Technology Institute of Mathematics TUHH Heinrich Voss Isfahan, July, 2016 1 / 72 On the one hand: Parameter dependent nonlinear (with respect to the state variable) operator equations T (λ, u) = 0 discussing — positivity of solutions — multiplicity of solution — dependence of solutions on the parameter; bifurcation — (change of ) stability of solutions Nonlinear eigenvalue problem The term nonlinear eigenvalue problem is not used in a unique way in the literature TUHH Heinrich Voss Isfahan, July, 2016 2 / 72 Nonlinear eigenvalue problem The term nonlinear eigenvalue problem is not used in a unique way in the literature On the one hand: Parameter dependent nonlinear (with respect to the state variable) operator equations T (λ, u) = 0 discussing — positivity of solutions — multiplicity of solution — dependence of solutions on the parameter; bifurcation — (change of ) stability of solutions TUHH Heinrich Voss Isfahan, July, 2016 2 / 72 Find λ 2 D and x 6= 0 such that T (λ)x = 0: Then λ is called an eigenvalue of T (·), and x a corresponding (right) eigenvector. In this presentation For D ⊂ C let T (λ), λ 2 D be a family of linear operators on a Hilbert space H (more generally a family of closed linear operators on a Banach space). TUHH Heinrich Voss Isfahan, July, 2016 3 / 72 In this presentation For D ⊂ C let T (λ), λ 2 D be a family of linear operators on a Hilbert space H (more generally a family of closed linear operators on a Banach space).
    [Show full text]
  • Arxiv:1910.11712V3 [Cs.MS] 15 Jan 2021
    NEP: a module for the parallel solution of nonlinear eigenvalue problems in SLEPc∗ Carmen Campos† Jose E. Roman‡ January 18, 2021 Abstract SLEPc is a parallel library for the solution of various types of large-scale eigenvalue problems. In the last years we have been developing a module within SLEPc, called NEP, that is intended for solving nonlinear eigenvalue problems. These problems can be defined by means of a matrix-valued function that depends nonlinearly on a single scalar parameter. We do not consider the particular case of polynomial eigenvalue problems (which are implemented in a different module in SLEPc) and focus here on rational eigenvalue problems and other general nonlinear eigenproblems involving square roots or any other nonlinear function. The paper discusses how the NEP module has been designed to fit the needs of applications and provides a description of the available solvers, including some implementation details such as parallelization. Several test problems coming from real applications are used to evaluate the performance and reliability of the solvers. 1 Introduction SLEPc, the Scalable Library for Eigenvalue Problem Computations (Hernandez et al., 2005; Roman et al., 2019), is a software package for the parallel solution of large-scale eigenvalue prob- lems, with special focus on iterative methods to compute only part of the spectrum. It started as a collection of solvers for the linear eigenvalue problem, but its scope soon extended to other classes of related problems such as the singular value decomposition, the polynomial eigenvalue problem and the general nonlinear eigenvalue problem. SLEPc has a modular design, and this paper deals with the module called NEP, which is intended for the solution of general nonlinear eigenvalue problems.
    [Show full text]
  • The John A. Blume Earthquake Engineering Center VIBRATION
    1111111111111111111111111111111 PB95-179081 The John A. Blume Earthquake Engineering Center Department of Civil Engineering Stanford University VIBRATION ANALYSIS OF SKELETAL SYSTEMS USING A MIXED FORMULATION WITH AN ARNOLDI-BASED NONLINEAR EIGENSOLUTION TECHNIQUE by Rajesh K. Singh and H. Allison Smith A report on research sponsored in part by the National Science Foundation Grant BCS-9058316 Report No.1 09 December 1993 REPRODUCED BY: I'll:§., U.S. Department of Co~merce~"- ­ National Technical Information Service Springfield, Virginia 22161 The John A. Blume Earthquake Engineering Center was established to promote research and education in earthquake engineering. Through its activities our understanding of earthquakes and their effects on man­ kind's facilities and structures is improving. The Center conducts research, provides instruction, publishes reports and articles, conducts seminars and conferences, and provides financial support for students. The Center is named for Dr. John A. Blume, a well-known consulting engineer and Stanford alumnus. Address The John A. Blume Earthquake Engineering Center Department of Civil Engineering Stanford University Stanford, California 94305 BIBLIOGRAPHIC INFORMATION PB95-179081 Report Nos: Title: Vibration Analysis of Skeletal Systems Using a Mixed Formulation with an ArnOTdi-Based Nonlinear Eigensolution Technique. Date: Dec 93 Authors: R. K. Singh and H. A. Smith. Performing Organization: Stanford Univ., CA. John A. Blume Earthquake Engineering Center. Sponsoring Organization: *National Science Foundation, Washington, DC. Contract Nos: NSF-BCS-9058316 Supplemental Notes: Also pub. as Stanford Univ., CA. John A. Blume Earthquake Engineering Center rept. no. REPT-I09. NTIS Field/Group Codes: 890 (Structural Analyses), 46E (Structural Mechanics) Price: PC A08/MF A02 Availability: Available from the National Technical Information Service, Springfield, VA.
    [Show full text]
  • Stability Analysis of Thermo-Acoustic Nonlinear Eigenproblems in Annular Combustors
    Stability analysis of thermo-acoustic nonlinear eigenproblems in annular combustors. Part I. Sensitivity Luca Magri, Michael Bauerheim, Matthew P. Juniper To cite this version: Luca Magri, Michael Bauerheim, Matthew P. Juniper. Stability analysis of thermo-acoustic nonlinear eigenproblems in annular combustors. Part I. Sensitivity. Journal of Computational Physics, Elsevier, 2016, 325, pp.395-410. 10.1016/j.jcp.2016.07.032. hal-02116091 HAL Id: hal-02116091 https://hal.archives-ouvertes.fr/hal-02116091 Submitted on 30 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive Toulouse Archive Ouverte (OATAO ) OATAO is an open access repository that collects the wor of some Toulouse researchers and ma es it freely available over the web where possible. This is an author's version published in: https://oatao.univ-toulouse.fr/20704 Official URL : http://doi.org/10.1016/j.jcp.2016.07.032 To cite this version : Magri, Luca and Bauerheim, Michael and Juniper, Matthew P. Stability analysis of thermo-acoustic nonlinear eigenproblems in annular combustors. Part I. Sensitivity. (2016) Journal of Computational Physics, 325. 395-410. ISSN 0021-9991 Any correspondence concerning this service should be sent to the repository administrator: [email protected] Stability analysis of thermo-acoustic nonlinear eigenproblems in annular combustors.
    [Show full text]
  • Arxiv:2003.04595V3 [Math.SP] 19 Apr 2021 Vectors
    Nonlinear Power Method for Computing Eigenvectors of Proximal Operators and Neural Networks Leon Bungert∗ x , Ester Hait-Fraenkely x , Nicolas Papadakisz , and Guy Gilboay Key words. Nonlinear power method, Power iterations, Proximal operators, Neural networks Abstract. Neural networks have revolutionized the field of data science, yielding remarkable solutions in a data- driven manner. For instance, in the field of mathematical imaging, they have surpassed traditional methods based on convex regularization. However, a fundamental theory supporting the practical applications is still in the early stages of development. We take a fresh look at neural networks and examine them via nonlinear eigenvalue analysis. The field of nonlinear spectral theory is still emerging, providing insights about nonlinear operators and systems. In this paper we view a neural network as a complex nonlinear operator and attempt to find its nonlinear eigenvectors. We first discuss the existence of such eigenvectors and analyze the kernel of ReLU networks. Then we study a nonlinear power method for generic nonlinear operators. For proximal operators associated to absolutely one-homogeneous convex regularization functionals, we can prove convergence of the method to an eigenvector of the proximal operator. This motivates us to apply a nonlinear method to networks which are trained to act similarly as a proximal operator. In order to take the non- homogeneity of neural networks into account we define a modified version of the power method. We perform extensive experiments for different proximal operators and on various shallow and deep neural networks designed for image denoising. Proximal eigenvectors will be used for geometric analysis of graphs, as clustering or the computation of distance functions.
    [Show full text]