Diptera: Cecidomyiidae: Asphondyliini) from Palaearctic and Oriental Regions, with Descriptions of Two New Species That Induce Stem Galls on Lauraceae in Japan

Total Page:16

File Type:pdf, Size:1020Kb

Diptera: Cecidomyiidae: Asphondyliini) from Palaearctic and Oriental Regions, with Descriptions of Two New Species That Induce Stem Galls on Lauraceae in Japan SYSTEMATICS First Records of Genus Bruggmanniella (Diptera: Cecidomyiidae: Asphondyliini) from Palaearctic and Oriental Regions, with Descriptions of Two New Species That Induce Stem Galls on Lauraceae in Japan 1, 2 3, 4 MAKOTO TOKUDA AND JUNICHI YUKAWA Downloaded from https://academic.oup.com/aesa/article/99/4/629/62315 by guest on 01 October 2021 Ann. Entomol. Soc. Am. 99(4): 629Ð637 (2006) ABSTRACT Two new species of the genus Bruggmanniella, Bruggmanniella actinodaphnes and Bruggmanniella cinnamomi (Diptera: Cecidomyiidae: Asphondyliini: Asphondyliina) are described from Japan. The former species induces stem galls on Actinodaphne lancifolia (Siebold et Zucc.) (Lauraceae) in the Palaearctic Region, and the latter species induces stem galls on Cinnamomum japonicum (Lauraceae) in the Oriental Region. Bruggmanniella, previously known to occur only in the Neotropical and southern Nearctic regions, is recorded for the Þrst time from the Palaearctic and Oriental regions. The number of genera, their components, and morphological features of Asphon- dyliina are compared between different zoogeographical regions. KEY WORDS Asphondyliini, Bruggmanniella, Cecidomyiidae, gall midge, Lauraceae THE TRIBE ASPHONDYLIINI IS a well circumscribed mono- Many species of the subtribe Asphondyliina have phyletic group sharing unique characteristics of the been known to induce various galls on broad-leaved adult postabdomen and is divided into two subtribes, evergreen trees of Lauraceae in the Oriental and Asphondyliina and Schizomyiina (Gagne´ 1994, 2004). eastern Palaearctic regions, such as India (Kieffer The tribe is a taxonomically and phylogenetically 1905), southwestern Japan (through which the well studied group compared with other tribes of boundary of the Palaearctic and Oriental regions ex- Cecidomyiidae (Mo¨hn 1961, Gagne´ 1994), but many tends; Fig. 1) (Yukawa 1974, Yukawa and Masuda species are still unnamed in various parts of the world. 1996), Taiwan (Yang et al. 1999), and Indonesia and In addition, Asphondyliini exhibit various unique eco- Thailand (Yukawa et al. 2005). Accordingly, we have logical and life history traits, such as host alternation been paying special attention to Lauraceae trees in our (Harris 1975; Orphanides 1975; Yukawa et al. 2003; search for galling species of Asphondyliina at various Uechi et al. 2004, 2005), polyphagy (Gagne´ and Woods localities in Japan. In recent Þeld surveys, we have 1988, Tokuda et al. 2005), prolonged diapause (Maeda collected several galls of Asphondyliina on Lauraceae et al. 1982, Takasu and Yukawa 1984, Tabuchi and from Japan. In this article, we describe two new spe- Amano 2003), and association with fungal symbionts cies of the genus Bruggmanniella that induce stem galls (Meyer 1987, Bissett and Borkent 1988, Yukawa and on trees of Lauraceae. We compare generic compo- Rohfritsch 2005). Therefore, further taxonomic, phy- nents and morphological features of Asphondyliina, logenetic, and ecological studies of Asphondyliini are including Bruggmanniella, between the Neotropical required to elucidate the evolution of these traits, in and Palaearctic regions. particular the processes of host range expansion, in- cluding host plant shift and galled organ shift (Tokuda and Yukawa 2005). Materials and Methods Collection of Galls and Gall Midges. Some of the collected galls were dissected under a stereoscopic 1 Entomological Laboratory, Graduate School of Bioresources and microscope to obtain larval and pupal specimens. Bioenvironmental Sciences, Kyushu University, Fukuoka 812-8581, When some of the dissected galls contained mature Japan. larvae or pupae, the rest of the collected galls were 2 Corresponding author, address: Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and maintained in plastic bags (350 by 250 mm) to obtain Technology, Tsukuba, Ibaraki 305-8566, Japan (e-mail: tokuda- adults and pupal exuviae. All specimens collected in [email protected]). this study were preserved in 75% ethanol or 99.5% 3 Entomological Laboratory, Faculty of Agriculture, Kyushu Uni- acetone. versity, Fukuoka 812-8581, Japan. 4 Current address: Matsuzaki 1-5-12, Higashi-ku, Fukuoka 813-0035, Preservation of Specimens Examined. All speci- Japan. mens examined, including holotypes and paratypes, 0013-8746/06/0629Ð0637$04.00/0 ᭧ 2006 Entomological Society of America 630 ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA Vol. 99, no. 4 Table 1. B. actinodaphnes sp. n.: frontoclypeal and thoracic (for each sex 7 ؍ setal counts (n Male Female Mean SD Range Mean SD Range Frontoclypeal setae 25.0 2.94 21Ð28 21.3 4.72 18Ð28 ADL setaea 73.0 19.76 61Ð108 69.6 5.13 65Ð76 PDL setaeb 96.2 12.03 83Ð112 91.8 17.63 81Ð118 Mesopleural setae 56.0 8.00 45Ð65 55.0 12.37 46Ð76 Mesepimeral setae 57.0 4.98 50Ð63 60.4 7.16 52Ð71 a Anterior dorsolateral setae. b Posterior dorsolateral setae. Downloaded from https://academic.oup.com/aesa/article/99/4/629/62315 by guest on 01 October 2021 Hemibruggmanniella Mo¨hn, 1961: 6. Type species Bruggmanniella oblita Tavares 1920 The genus Bruggmanniella belongs to the subtribe Asphondyliina and comprises six known species in the world (Gagne´ 2004, Gagne´ et al. 2004). Among them, Þve species occur in the Neotropical Region and one in the southern parts of the Nearctic Region. Because Fig. 1. Collection records of B. actinodaphnes and the morphological features of Bruggmanniella were B. cinnamomi based on Yukawa (1976), Usuba (1977), Yama- summarized and discussed in Gagne´ (1994) and uchi et al. (1982), Yukawa (1988), Yukawa and Masuda Gagne´ et al. (2004), we refer in this article only to (1996), and the present results. The broken line illustrates morphological differences between Bruggmanniella the boundary between Oriental and Palaearctic zoogeo- and allied genera in the Palaearctic Region as fol- graphical regions. lows: Bruggmanniella is similar to Pseudasphondylia Monzen, 1955 in most male morphological features are preserved in the collection of the Entomological such as the presence of parameres and the two sep- Laboratory, Kyushu University, Fukuoka, Japan. arate teeth of the gonostylus. However, Bruggman- Morphological Studies and Terminology. For mi- niella can be distinguished from Pseudasphondylia by croscopic study, some of the ethanol-preserved spec- the presence of setae on the larval cervical papillae imens were mounted on slides in Canada balsam by and on all papillae of the ventral surface (Tokuda and using the techniques outlined in Gagne´ (1989). Draw- Yukawa 2005). Bruggmanniella, with its two separate ings were made with the aid of a drawing tube. Some teeth on the gonostylus, is distinguishable from Pro- important structures of the pupae were examined with bruggmanniella Mo¨hn, 1961, which has a single tooth. a scanning electron microscope (S-3000N, Hitachi, It differs from Illiciomyia Tokuda, 2004 by having Tokyo, Japan) by using the acetone-preserved spec- several morphological features such as less constricted imens. male ßagellomeres, convolute male circumÞla, pres- Adult morphological terminology, except for that of ence of an apical spur on the Þrst tarsomeres, and thoracic plates, follows use in McAlpine (1981) and absence of asetose lateral papillae on larval thoracic that of thoracic plates follows use in Tokuda (2004) segments (Tokuda 2004). and Tokuda et al. (2004b). Counts of setae and scales were based on the setal and scale insertions because Bruggmanniella actinodaphnes many setae and scales become lost through the pro- Tokuda & Yukawa sp. n. cesses of collection, preservation, and preparation. (Figs. 2A and B, 3A and B; Tables 1 and 2) Morphological terminology of the immature stages follows use in Mo¨ hn (1955, 1961), which was orig- Male. Eye bridge four to six facets long. Frontocly- inally written in German and later translated into peal setal count as in Table 1. Palpus two-segmented; English in Yukawa (1971), but terminology of the Þrst palpal segment Ϸ38 ␮m long, Ϸ1.3 times as long pupal antennal horn follows that in Gagne´ (1994). as basal width; second Ϸ2.0 times as long as Þrst. In addition, the term “anterior dorsal papillae” (To- Antenna with 12 ßagellomeres; scape and pedicel with kuda et al. 2004a,b) is applied to pupal abdominal rather dense setae; Þrst and second ßagellomeres not papillae that are situated in the anterior fourth of fused; Þrst ßagellomere Ϸ215 ␮m long, 4.3 times as the dorsal surface and distinctly anterior to the row long as wide, 1.2 times as long as second, Þfth ßag- of “dorsal papillae.” ellomere Ϸ160 ␮m long, 3.3 times as long as wide. Thoracic setal counts as in Table 1. All legs covered with many blackish scales; length of respective seg- Taxonomy ments as in Table 2; Þrst tarsomeres of all legs each Genus Bruggmanniella Tavares with a short apical spur; claw simple on all legs, bent Bruggmanniella Tavares, 1909: 19. Type species: Brugg- nearly at right angle; empodium well developed, as manniella braziliensis Tavares 1909 long as claw; pulvillus much shorter than empodium. July 2006 TOKUDA AND YUKAWA: Bruggmanniella,NEW TO PALAEARCTIC/ORIENTAL REGIONS 631 (for each sex 7 ؍ Table 2. B. actinodaphnes sp. n.: measurements of legs (micrometers, n Male Female Mean SD Range Mean SD Range Foreleg Femur 1,272 53.8 1,197Ð1,344 1,118 91.2 985Ð1,241 Tibia 1,154 94.1 1,083Ð1,348 1,016 113.5 837Ð1,154 Tarsomere I 174 13.7 154Ð192 178 30.4 141Ð210 Tarsomere II 970 157.8 763Ð1123 889 156.8 641Ð1,053 Tarsomere III 441 25.6 415Ð475 366 46.4 314Ð410 Tarsomere IV 320 40.6
Recommended publications
  • Population Ecology of the Multivoltine Neotropical Gall Midge Eugeniamyia Dispar (Diptera, Cecidomyiidae)
    170 MENDONÇA JR & ROMANOWSKI Population ecology of the multivoltine Neotropical gall midge Eugeniamyia dispar (Diptera, Cecidomyiidae) Milton de S. Mendonça, Jr.1,2 & Helena P. Romanowski1 1. Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Bloco IV, Prédio 43435, 91501-970, Porto Alegre, RS, Brazil ([email protected]). 2. Departamento de Ecologia, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Bloco IV, Prédio 43422, 91501-970, Porto Alegre, RS, Brazil. ABSTRACT. Our understanding of the population ecology of insect gallers is largely built on examples from temperate zones, but tropical and subtropical gallers may present distinct patterns of abundance and distribution across time. Eugeniamyia dispar Maia, Mendonça & Romanowski, 1996 is a multivoltine Neotropical cecidomyiid that induces spongy leaf galls on Eugenia uniflora(Myrtaceae). Galls were censused in the urban area of Porto Alegre, southern Brazil on six plants at two sites, for two years, at roughly weekly intervals. Overall 9,694 eggs, galling attempts and galls were counted. New galls continuously appear on developing leaves, but galls with live inducers are absent from June to at least early August. Galls on a same shoot develop synchronically, thus the shoot is probably the unit for oviposition. Given the also synchronic appearance of galls on different plants on a site, it seems midges can disperse and attack close-by plants. Gall cohorts varied in abundance by two orders of magnitude; there were more galls during summer than for spring and autumn, in a wave-like pattern.
    [Show full text]
  • Gall Midges (Diptera: Cecidomyiidae) of South Tyrol (Italy) - Summary of Results and Zoogeographical Analysis
    Gredleriana Vol. 10 / 2010 pp. 275 - 324 Gall midges (Diptera: Cecidomyiidae) of South Tyrol (Italy) - summary of results and zoogeographical analysis Gallmücken (Diptera: Cecidomyiidae) Südtirols – zusammenfassende Resultate und zoogeographische Analyse Marcela Skuhravá and Václav Skuhravý Abstract At present the gall midge fauna of South Tyrol includes 311 species in 68 genera. A total of 271 species are valid and 40 species, still undescribed, are identified to the generic level. Investigations were carried out at 124 localities at altitides from 250 m a.s.l. at Salurn to 2581 m a.s.l. at Schaubachhütte in the Ortler Range during the period 1999-2009. Zoogeographical analysis is based on 2150 records, of which 200 were obtained by earlier researchers and 1950 records of the present authors. Until 1996 only 24 species were known to occur in South Tyrol. We enriched the faunal list of South Tyrol by adding 287 species and the faunal list of Italy by 114 species. A list of gall midge species and a list of host plants attacked by gall midges are given. Diversity ranged from 3 to 36 species at a single locality. On average we determined 15 species to occur per locality in South Tyrol. Species number declines with increasing elevation. Density is high at 189 species per 1000 km2. South Tyrol is one of the best explored areas of the world for galls of Cecidomyiidae. Frequency of occurrence: 49 % species occur very rarely, 21 % rarely, 17 % moderately frequently, 9 % frequently, 4 % very frequently. Iteomyia capreae is the most frequently recorded species in South Tyrol.
    [Show full text]
  • Diptera: Cecidomyiidae) Associated with Magnolia Kobus DC
    Biodiversity Data Journal 9: e68016 doi: 10.3897/BDJ.9.e68016 Taxonomic Paper A new species of Pseudasphondylia (Diptera: Cecidomyiidae) associated with Magnolia kobus DC. var. borealis Sarg. (Magnoliaceae) in Japan Hiroki Matsuda‡,§, Ayman Khamis Elsayed|, Wanggyu Kim ¶, Satoshi Yamauchi#, Martin Libra ¤,«, Naoto Kamata»,˄ ‡,Junichi˅ Yukawa , Makoto Tokuda ‡ Laboratory of Systems Ecology, Faculty of Agriculture, Saga University, Saga, Japan § IDEA consultants, inc., Yokohama, Japan | The Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo, Japan ¶ Animal Resources Division, National Institute of Biological Resources, Incheon, Republic of Korea # Shinjo, Aomori, Japan ¤ Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic « Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic » The University of Tokyo Hokkaido Forest, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Furano, Japan ˄ Entomological Laboratory, Faculty of Agriculture, Kyushu University, Fukuoka, Japan ˅ The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan Corresponding author: Makoto Tokuda ([email protected]) Academic editor: AJ Fleming Received: 28 Apr 2021 | Accepted: 28 May 2021 | Published: 17 Jun 2021 Citation: Matsuda H, Elsayed AK, Kim W, Yamauchi S, Libra M, Kamata N, Yukawa J, Tokuda M (2021) A new species of Pseudasphondylia (Diptera: Cecidomyiidae) associated with Magnolia kobus DC. var. borealis Sarg. (Magnoliaceae) in Japan. Biodiversity Data Journal 9: e68016. https://doi.org/10.3897/BDJ.9.e68016 ZooBank: urn:lsid:zoobank.org:pub:64D5D12E-DBCE-429F-B4E1-D398EB1C60AA Abstract Background A gall midge species (Diptera: Cecidomyiidae) inducing leaf bud galls on Magnolia kobus DC. var.
    [Show full text]
  • 9Th International Congress of Dipterology
    9th International Congress of Dipterology Abstracts Volume 25–30 November 2018 Windhoek Namibia Organising Committee: Ashley H. Kirk-Spriggs (Chair) Burgert Muller Mary Kirk-Spriggs Gillian Maggs-Kölling Kenneth Uiseb Seth Eiseb Michael Osae Sunday Ekesi Candice-Lee Lyons Edited by: Ashley H. Kirk-Spriggs Burgert Muller 9th International Congress of Dipterology 25–30 November 2018 Windhoek, Namibia Abstract Volume Edited by: Ashley H. Kirk-Spriggs & Burgert S. Muller Namibian Ministry of Environment and Tourism Organising Committee Ashley H. Kirk-Spriggs (Chair) Burgert Muller Mary Kirk-Spriggs Gillian Maggs-Kölling Kenneth Uiseb Seth Eiseb Michael Osae Sunday Ekesi Candice-Lee Lyons Published by the International Congresses of Dipterology, © 2018. Printed by John Meinert Printers, Windhoek, Namibia. ISBN: 978-1-86847-181-2 Suggested citation: Adams, Z.J. & Pont, A.C. 2018. In celebration of Roger Ward Crosskey (1930–2017) – a life well spent. In: Kirk-Spriggs, A.H. & Muller, B.S., eds, Abstracts volume. 9th International Congress of Dipterology, 25–30 November 2018, Windhoek, Namibia. International Congresses of Dipterology, Windhoek, p. 2. [Abstract]. Front cover image: Tray of micro-pinned flies from the Democratic Republic of Congo (photograph © K. Panne coucke). Cover design: Craig Barlow (previously National Museum, Bloemfontein). Disclaimer: Following recommendations of the various nomenclatorial codes, this volume is not issued for the purposes of the public and scientific record, or for the purposes of taxonomic nomenclature, and as such, is not published in the meaning of the various codes. Thus, any nomenclatural act contained herein (e.g., new combinations, new names, etc.), does not enter biological nomenclature or pre-empt publication in another work.
    [Show full text]
  • 38-4-Allfile.Pdf
    DOI:10.6662/TESFE.2018013 台灣昆蟲專刊 Formosan Entomol. 38. Special Issue. 1 Preface Formosan Entomologist Journal Homepage: entsocjournal.yabee.com.tw Preface This special issue of Formosan Entomologist years, this special issue of FE will update our (FE) is the result of an international symposium knowledges on gall-inducing arthropods and on gall-inducing arthropods held at the Huisun their associates. We believe that this issue of FE Experimental Forest Station, Nantou, Taiwan, along with other presentations made during the between the 3rd and 8th of March 2018. It was symposium will contribute to the development of organized as the 7th International Symposium on cecidological studies in future. Cecidology: Ecology and Evolution of Gall- We thank the International Union of Inducing Arthropods. The slogan of the Forestry Research Organizations (IUFRO) symposium was Let’s Gall Taiwan. Pertinent working group, 7.03.02, Gall-Inducing Insects, information can be found in the weblinks: which has been working closely in holding this http://www.letsgall.tw, https://www.facebook. series of gall symposia, the Taiwan com/lets.gall/. It is close to 25 years since the first Entomological Society for accepting to publish symposium of this series was held in Siberia in this special issue in FE, National Chung Hsing 1993. A concise historical review of the previous University (NCHU) for supporting us variously symposia, including the presently referred in the organization and conduct of the seventh, is provided after this preface. symposium in March 2018, and several Although the previous symposia of this international colleagues for timely reviews of the series were known as ‘gall symposia’ in short, published manuscripts.
    [Show full text]
  • Radiation of Gall Midges (Diptera: Cecidomyiidae) in Japan
    ARTICLE IN PRESS Basic and Applied Ecology 6 (2005) 453—461 www.elsevier.de/baae Radiation of gall midges (Diptera: Cecidomyiidae) in Japan Junichi Yukawaa,Ã, Nami Uechia, Makoto Tokudab, Shinsuke Satoc aEntomological Laboratory, Faculty of Agriculture, Kyushu University, Fukuoka 812-8581, Japan bInstitute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan cLaboratory of Ecology, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa 920-1192, Japan Received 9 May 2005; accepted 8 July 2005 KEYWORDS Summary Host plant; Based on literature surveys and morphological and DNA sequencing data, we examined Host organ; patterns of host association at the generic level for the Japanese gall midges. Many Adaptive radiation; examples of association of a gall midge genus with a particular host plant genus are Japanese known. We found that associations exist between Rabdophaga and Salix, Hartigiola Archipelago and Fagus, Rhopalomyia and Artemisia, and Daphnephila and Machilus, whereas the host range of some large genera, such as Asphondylia, Contarinia, Dasineura, and Lasioptera spans different plant families. Most Rabdophaga and some Rhopalomyia species seem to have colonized the Japanese Archipelago after radiation in the Eurasian Continent. Daphnephila came to Japan from the Oriental Region where they radiated on Machilus. Most Fagus gall midges seem to have diversified on relic Fagus species in the eastern Palearctic Region. Some Hartigiola species appear to have radiated in the Japanese Archipelago. Although Asphondylia has a wide host range at the generic level, most Japanese Asphondylia species and segregates are close to each other genetically, which means they are now spreading to various plant genera.
    [Show full text]
  • Formosan Entomologist Journal Homepage: Entsocjournal.Yabee.Com.Tw
    DOI:10.6662/TESFE.2018022 台灣昆蟲專刊 Formosan Entomol. 38. Special Issue. 88-92 Book Review Formosan Entomologist Journal Homepage: entsocjournal.yabee.com.tw Let’s Gall Taiwan: A Guidebook on Insect Galls edited by Gene-Sheng Tung and Man-Miao Yang, Published by the Council of Agriculture (Forestry Bureau), and the Taiwan Entomological Society, Taipei, 248 pages, 2018. ISBN: 978-986-05-5346-8 (Hard cover). Price: NTD 46000 Ananatanarayanan Raman Charles Sturt University & Graham Centre for Agricultural Innovation; PO Box 883, Orange, NSW 2800, Australia * Corresponding email: [email protected]; [email protected] Received: 19 November 2018 Available online: 3 June 2019 Taiwan, a 36000 km2 island‒country, occurs endemic ‒ more than 60% of the described plant- off the coast of south-east Asia, bordered by feeding arthropods of Taiwan are endemic as Fujian Province of the People’s Republic of China well (Shao et al., 2003). In such a context of a in the west, South Korea and the Fukuoka fascinating natural landscape and complex Prefecture of Japan in the north, Luzon Province biological diversity, Gene-Sheng Tung and Man- of the Philippines in the south, and the Miao Yang have catalogued several arthropod- Philippine Sea in the east. Historically a shallow induced galls of Taiwan in this c. 250 page shelf of the Taiwan Strait connected the islandic colourful and elegant book. Taiwan and China. During the interglacial Galls are plant excrescences induced by the periods of the Pleistocene glacial cycles, this action of specific groups of Insecta and Acarina, shelf submerged separating China and Taiwan.
    [Show full text]
  • Formosan Entomologist Journal Homepage: Entsocjournal.Yabee.Com.Tw
    DOI:10.6662/TESFE.2018018 台灣昆蟲專刊 Formosan Entomol. 38. Special Issue. 42-55 Research Article Formosan Entomologist Journal Homepage: entsocjournal.yabee.com.tw Diversity of Arthropod Galls in Taiwan Liang-Yu Pan1, Jhen Liu1, Man-Miao Yang2, and Gene-Sheng Tung1* 1 Botanical Garden Division, Taiwan Forestry Research Institute, COA. 67 Sanyuan St., Zhongzheng District, Taipei City 10079, Taiwan 2 Department of Entomology, National Chung Hsing University. 145 Xingda Rd., South Dist., Taichung City 402, Taiwan * Corresponding email: [email protected] Received: 6 August 2018 Accepted: 30 November 2018 Available online: 3 June 2019 ABSTRACT A synthesis of a long-term gall faunal study covering Taiwan Island, Kinmen Islands, Penghu Islands, Green Island, and Orchid Island, which was conducted between 1995 and 2018, is presented. A total of 4,328 of arthropod-induced galls were collected, with 96.0% of the gall-inducing arthropods being monophagous. Among the seven orders of gall-inducing arthropods in the region, DIPTERA (42.2%) and HEMIPTERA (22.8%) were the two dominant gall-inducing groups. The dominant host-plant families were LAURACEAE (17.6%) and FAGACEAE (16.2%). Enclosed types of galls (65.8%) were more abundant than the open types (32.2%). Most host species (44.7%) harbored two or more, occasionally up to 11, shapes of galls. Galls were mostly found on leaves (55.6%) compared with other parts of plants. Among all gall-inducing taxa, CECIDOMYIIDAE was the most diverse group in terms of abundance, richness, and host use. Key words: Gall flora, biodiversity, gall shape, host plant, gall-inducing arthropods Introduction species of vascular plants reportedly occur in Taiwan (Taiwan Biodiversity Information Taiwan is an island nation covering an area Facility, 2018).
    [Show full text]
  • Bio-Écologie Et Dynamique Des Populations De Cécidomyie Des Fleurs
    UNIVERSITE DE LA REUNION Faculté des Sciences et Technologies THESE Présentée à l’Université de La Réunion pour obtenir le DIPLOME DE DOCTORAT Discipline : Biologie des populations et écologie Ecole Doctorale Sciences Technologie Santé (E.D.S.T.S) Laboratoire : UMR 53, Peuplement des Végétaux et Bio-agresseurs en Milieu Tropical Bio-écologie et dynamique des populations de cécidomyie des fleurs (Procontarinia mangiferae ), un ravageur inféodé au manguier (Mangifera indica), en vue de développer une lutte intégrée par Paul AMOUROUX Soutenue le 3 juillet 2013 devant un jury composé de Stéphane POUSSIER, Professeur, Université de La Réunion, UMR PVBMT Président Alain ROQUES, Directeur de recherche, INRA, UR ZF, Orléans Rapporteur Thomas GUILLEMAUD, Directeur de recherche, INRA, UMR ISA, Sophia Rapporteur Virginie RAVIGNE, Chercheuse, CIRAD, UMR BGPI, Montpellier Examinatrice Samuel NIBOUCHE, Chercheur, CIRAD, UMR PVBMT, La Réunion Directeur Co-encadrants : Frédéric NORMAND (CIRAD HortSys) et Hélène DELATTE (CIRAD PVBMT) 1 REMERCIEMENTS Je tiens à remercier particulièrement mes trois encadrants qui ont, chacun à leur manière, participé à l’équilibre et au bon déroulement de cette thèse. En premier, je souhaite remercier Frédéric Normand, sans qui ce projet de thèse n’aurait pas pu se concrétiser. Pendant mon volontariat civil au sein son équipe, l’idée d’une thèse est lancée sur cette petite cécidomyie dont on ne sait pas grand-chose. Sans sa persévérance et son soutien, ce projet n’aurait certainement jamais abouti. Merci aussi pour ton encadrement et ton implication au quotidien, pour m’avoir fait découvrir la culture du manguier et ses particularités, et pour tes qualités humaines qui m’ont fait tant apprécier le travail au sein de ton équipe pendant plus de cinq ans ! En deuxième, je souhaite remercier Hélène Delatte, qui dès le début s’est associée à cette thèse.
    [Show full text]
  • Taxonomy and Biology of a New Ambrosia Gall Midge Daphnephila Urnicola Sp
    Zootaxa 3955 (3): 371–388 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3955.3.5 http://zoobank.org/urn:lsid:zoobank.org:pub:D8BFF6D1-FDF7-44EB-B8E7-DA9261834E7D Taxonomy and biology of a new ambrosia gall midge Daphnephila urnicola sp. nov. (Diptera: Cecidomyiidae) inducing urn-shaped leaf galls on two species of Machilus (Lauraceae) in Taiwan LIANG-YU PAN1†, TUNG-CHUAN CHIANG1†, YU-CHU WENG1†, WEN-NENG CHEN1, SHU-CHUAN HSIAO2, MAKOTO TOKUDA3, CHENG-LUNG TSAI1 & MAN-MIAO YANG1,4 1Department of Entomology, National Chung Hsing University, 250, Kuo Kuang Rd., Taichung 402, Taiwan. E-mail: LY Pan:[email protected]; TC Chiang:[email protected], YC Weng: [email protected], WN Chen:[email protected], CL Tsai: [email protected], MM Yang:[email protected] 2Department of Life Sciences, National Chung Hsing University, 250, Kuo Kuang Rd., Taichung 402, Taiwan . E-mail: [email protected] 3Department of Applied Biological Sciences, Faculty of Agriculture, Saga University, Saga 840-8502, Japan. E-mail: [email protected] 4Corresponding author. E-mail: [email protected] †These authors contributed equally to this work Abstract Recent field surveys show that galls induced by Daphnephila spp. (Cecidomyiidae) on Machilus spp. (Lauraceae) are common in Taiwan, yet only five species, four leaf-gall inducers and one stem-gall inducer on M. thunbergii, have been named in the past. Here we describe a new species, Daphnephila urnicola sp.
    [Show full text]
  • Is a Gall an Extended Phenotype of The
    Is a Gall an Extended Phenotype of the Inducing Insect? A Comparative Study of Selected Morphological and Physiological Traits of Leaf and Stem Galls on Machilus thunbergii (Lauraceae) Induced by Five Species of Daphnephila (Diptera: Cecidomyiidae) in Northeastern Taiwan Author(s): Liang-Yu Pan, Wen-Neng Chen, Shau-Ting Chiu, Anantanarayanan Raman, Tung-Chuang Chiang and Man-Miao Yang Source: Zoological Science, 32(3):314-321. Published By: Zoological Society of Japan DOI: http://dx.doi.org/10.2108/zs140244 URL: http://www.bioone.org/doi/full/10.2108/zs140244 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. ZOOLOGICAL SCIENCE 32: 314–321 (2015) © 2015
    [Show full text]
  • Diptera: Cecidomyiidae) in Asia, with Descriptions of Three New and One Newly Recorded Species from Taiwan
    Zoological Studies 59:66 (2020) doi:10.6620/ZS.2020.59-66 Open Access Molecular Phylogeny Revealing the Single Origin of Cinnamomum-associated Bruggmanniella (Diptera: Cecidomyiidae) in Asia, with Descriptions of Three New and One Newly Recorded Species from Taiwan Sheng-Feng Lin1,*, Man-Miao Yang1, and Makoto Tokuda2,* 1Department of Entomology, National Chung Hsing University, Taiwan. *Correspondence: E-mail: [email protected] (Lin) E-mail: [email protected] (Yang) 2Department of Biological Resource Science, Faculty of Agriculture, Saga University, Japan. *Correspondence: E-mail [email protected] (Tokuda) Received 31 July 2020 / Accepted 12 October 2020 / Published 30 November 2020 Communicated by Jen-Pan Huang Cecidomyiid genus Bruggmanniella contains four Lauraceae-associated species in Asia and 13 species associated with various plant families in Latin American. In this article, three new species, B. sanlianensis sp. nov., B. turoguei sp. nov. and B. shianguei sp. nov., and one newly recorded species, B. cinnamomi, are reported on Cinnamomum plant species (Lauraceae) from Taiwan. Molecular phylogenetic analysis was conducted for the four Cinnamomum-associated Bruggmanniella, together with B. brevipes Lin, Yang and Tokuda, B. actinodaphnes Tokuda and Yukawa, three Pseudasphondylia and two Daphnephila species. The Asian Bruggmanniella and the Cinnamomum-associated Bruggmanniella were monophyletic on the Neighbor-joining, Maximum-likelihood, and Bayesian inference trees. In addition, Cinnamomum- associated Bruggmanniella species had the closest sistership with B. brevipes, which are associated with the plant genus Neolitsea (Lauraceae). These results suggest that B. brevipes, B. actinodaphnes and B. cinnamomi are members of genus Bruggmanniella, a finding that is not consistent with another recent morphology-based phylogenetic study.
    [Show full text]