VALLEY NETWORKS and the NATURE of the LATE NOACHIAN MARS CLIMATE. B.M. Hynek 1Laboratory for Atmospheric and Space Physics, Univ

Total Page:16

File Type:pdf, Size:1020Kb

VALLEY NETWORKS and the NATURE of the LATE NOACHIAN MARS CLIMATE. B.M. Hynek 1Laboratory for Atmospheric and Space Physics, Univ 46th Lunar and Planetary Science Conference (2015) 2166.pdf VALLEY NETWORKS AND THE NATURE OF THE LATE NOACHIAN MARS CLIMATE. B.M. Hynek 1Laboratory for Atmospheric and Space Physics, University of Colorado-Boulder, 3665 Discover Drive, Boulder, CO 80303, 2Dept. of Geological Sciences, University of Colorado-Boulder [email protected] Introduction: Valley networks remain the best ev- valley networks formed and individual events were too idence that Mars had a long-lived, integrated hydro- short in duration to match expected formation time- sphere covering much of the planet, which seems to scales [1]. Recently, two Mars climate modeling ef- imply a warm/wet climate for 10s to 100s of millions forts show promise at making Mars warm during the of years in the Late Noachian. Most of these connect- faint sun Noachian period: SO2 warming of the planet ed and often dendritic valley systems are consistent during periods of punctuated volcanism [8] and micro- with a fluvial formation via precipitation and surface physical models of the early Mars climate [9]. These runoff [e.g., 1-2]. Cross-cutting relations with ancient models provide intriguing ways to allow an active hy- cratered highlands [1] and network crater-age dates [3- drosphere during the Noachian; however, the connec- 4] indicated that a majority (~90%) of these systems tion to valley network formation and temporally- seem to have formed in the Late Noachian up through resolved details of the models require further work. the Noachian‐Hesperian boundary (∼3.7 Ga) (Fig. 1). Additionally, the valley networks formed shortly There is evidence that valley incision was active in after the Late Heavy Bombardment. Could that deliv- different regions of Mars throughout this time period ery of volatiles and associated climate disruption been and also that many valleys had several periods of ac- required for valley network formation? tive formation [3]. Smaller, immature valley networks Timing: Dating the age of valley networks is chal- occur on younger terrains of Mars (Hesperian- lenging. Cross-cutting relations with the terrains they Amazonian) with a majority found on volcanic edifices incised and crater-age dates only provide minimum or and within Hellas basin [1] (Fig. 1). These smaller termination ages, respectively. Determining when younger systems are more apt to preserve terminal valleys were actively being incised is further exacer- deposits in the forms of fan deltas or alluvial fans [5-6] bated by many systems showing evidence of multiple The largest valley networks are similar in length periods of formation through time [3]. It is crucial to and drainage area to Earth’s largest river systems and characterize the inception of valley network formation individual trunk-segment valleys can be 20 km wide and the spatial and temporal components through time, and >1 km deep. Few of the larger valley systems not just the shut-off of incision. Were valley networks have sedimentary deposits at their termini; however, active in the Middle and Early Noachian? Or was many of the lower reaches of the large ancient valley there really a climate optimum in the Late Noachian? networks have been obscured by younger resurfacing. Formation timescales: Hoke et al. [7] showed that Analytical methods were used to assess the formation grain size-frequency and water depth greatly influence timescales of eight larger networks. Results indicate valley formation timescale models. These are uncon- that it took 105-107 years to transport enough sediment strained variables for Mars, since we have never ob- out of the valley network to match the observed vol- served Mars’ larger valley networks from the ground umes [7]. Though, considering the large uncertainty in with landed assets. How can we better model the these calculations and the combination of parameters length of time required for valley network formation? that produced minimum timescales, it is possible that Distribution: While valley networks cover most of the formation timescales approach durations similar to the ancient highland terrains, several regions have a their span in ages of ~108 years. paucity of valleys (e.g., Noachis Terra) or elsewhere Outstanding Questions: While strong evidence there are expansive undissected reaches between sys- exists that the Martian valley networks required a cli- tems. Were valleys formed on these terrains and then mate capable of producing sustained precipitation and later obliterated? Or did they never form in these re- surface runoff for formation, many questions still ex- gions? Fine scale tributaries are also lacking across ist: much of Mars. Is this just a result of the antiquity of Climatic Triggers: Morphometric arguments, mod- valleys on a geologically active planet? els, and sediment transport calculations indicate that Links to aqueous alteration: The orbiting spec- many of Mars’ larger valley networks required an ac- trometers and rovers have shown significant wa- tive hydrosphere with long-lived precipitation (at least ter:rock alteration of the Martian crust into several 10+ m.y. periods). Impact-induced warm/wet phyllosilicates, sulfates, silica, and even carbonates conditions has been proposed as a climate trigger; [e.g., 10]. Several deltas also exhibit alteration miner- however, the larger impacts needed to significantly als [e.g., 11]. Yet it remains unclear whether or not induce warm/wet conditions occurred long before most the widespread fluvial episodes that formed the valley 46th Lunar and Planetary Science Conference (2015) 2166.pdf networks contributed to the chemical alteration of the Martian crust (i.e., it could have been altered at an earlier time and just transported during valley for- mation). Links to volcanism: The majority of the Tharsis mass was emplaced in the Noachian and altered the long-wavelength topography of the planet on which the valleys were incised [12]. Additionally, Hesperi- an-aged volcanism resurfaced ~1/3 of the planet and was complete shortly after the majority of valley net- works formed [13]. The temporal coincidence be- tween valley formation and extensive volcanic outgas- sing may provide a causal link, especially considering the possible warming effect of Mars’ climate through volcanism [8]. Yet this link has not been demonstrat- ed. Lack of terminal deposits: Martian valley networks the size of the Mississippi River seldom have terminal deposits (e.g., deltas). What happened to all the mate- rial excavated from and transported through the net- works? It is easy to dismiss it as subsequent ero- sion/modification/obliteration, but is that the case? Is an ocean required?: Modeling by [14] showed that without a large standing body of water in the northern plains of Mars, a long-lived warm/wet cli- mate was impossible. Further, their regions of en- hanced precipitation when including a northern ocean in the models correlated with the regions of dense val- ley dissection observed of the highland crust. It is well known that the interior of the Pangean supercontinent on Earth was extremely arid due to the great distance from a body of water, as are the deep interior of conti- nents today (e.g., Antarctica). Did Mars need an ocean to produce the valley networks? References: [1] Hynek, B.M. et al. (2010) JGR, 115, E09008. [2] Craddock, R.A., & A.D. Howard (2002) JGR, 107(E11), 21-1. [3] Hoke, M.R.T., & B.M. Hynek (2009), JGR, 114, E08002. [4] Fassett, C.I., & J.W. Head (2008), Icarus, 195, 61–89. [5] Di Achille, G., & B.M. Hynek, (2010) Nat. Geosci., 3, doi:10.1038/NGEO891. [6] Moore, J.M., & A.D. Howard, A. D. (2005) JGR, 110(E4). [7] Hoke, M.R.T. et al. (2011) EPSL, 312, 1–12. [8] Halevy, I., & J.W. Head III, (2014). Nat. Geosci. 7, 865–868. [9] Urata, R.A. and O.B. Toon (2013) Icarus, 226, 229– 250. [10] Ehlmann, B.L., et al., (2011), Nature, 479(7371), 53-60. [11] Ehlmann, B.L., et al., (2008), Nat. Geosci. 1(6), 355-358. [12] Phillips, R.J., et al., Figure 1. Top to Bottom: (1) Valley networks on Noachian terrains (2001) Science, 291, 2587–2591. [13] Head, J.W., & (red). (2) Hesperian (blue) and Noachian valleys. (3) Noachian- L. Wilson, (2011) LPSC XLII Abs. 1214. [14] Soto, Hesperian-Amazonian (green) valleys [1]. (4) Valleys (blue) with A., et al., (2010) LPSC, XLI, Abs. 2397. [15] Fassett, drainage density in cold-warm colors. black = fan deltas [5], dark red C.I., & J.W. Head III, (2008) Icarus, 198(1), 37-56. = open-lake basins [15], pink = chloride salts [16] [16] Osterloo, M.K. et al., (2010) JGR, 115, E10012. .
Recommended publications
  • Mars Express Orbiter Radio Science
    MaRS: Mars Express Orbiter Radio Science M. Pätzold1, F.M. Neubauer1, L. Carone1, A. Hagermann1, C. Stanzel1, B. Häusler2, S. Remus2, J. Selle2, D. Hagl2, D.P. Hinson3, R.A. Simpson3, G.L. Tyler3, S.W. Asmar4, W.I. Axford5, T. Hagfors5, J.-P. Barriot6, J.-C. Cerisier7, T. Imamura8, K.-I. Oyama8, P. Janle9, G. Kirchengast10 & V. Dehant11 1Institut für Geophysik und Meteorologie, Universität zu Köln, D-50923 Köln, Germany Email: [email protected] 2Institut für Raumfahrttechnik, Universität der Bundeswehr München, D-85577 Neubiberg, Germany 3Space, Telecommunication and Radio Science Laboratory, Dept. of Electrical Engineering, Stanford University, Stanford, CA 95305, USA 4Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91009, USA 5Max-Planck-Instuitut für Aeronomie, D-37189 Katlenburg-Lindau, Germany 6Observatoire Midi Pyrenees, F-31401 Toulouse, France 7Centre d’etude des Environnements Terrestre et Planetaires (CETP), F-94107 Saint-Maur, France 8Institute of Space & Astronautical Science (ISAS), Sagamihara, Japan 9Institut für Geowissenschaften, Abteilung Geophysik, Universität zu Kiel, D-24118 Kiel, Germany 10Institut für Meteorologie und Geophysik, Karl-Franzens-Universität Graz, A-8010 Graz, Austria 11Observatoire Royal de Belgique, B-1180 Bruxelles, Belgium The Mars Express Orbiter Radio Science (MaRS) experiment will employ radio occultation to (i) sound the neutral martian atmosphere to derive vertical density, pressure and temperature profiles as functions of height to resolutions better than 100 m, (ii) sound
    [Show full text]
  • Drainage Network Development in the Keanakāko'i
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117, E08009, doi:10.1029/2012JE004074, 2012 Drainage network development in the Keanakāko‘i tephra, Kīlauea Volcano, Hawai‘i: Implications for fluvial erosion and valley network formation on early Mars Robert A. Craddock,1 Alan D. Howard,2 Rossman P. Irwin III,1 Stephen Tooth,3 Rebecca M. E. Williams,4 and Pao-Shin Chu5 Received 1 March 2012; revised 11 June 2012; accepted 4 July 2012; published 22 August 2012. [1] A number of studies have attempted to characterize Martian valley and channel networks. To date, however, little attention has been paid to the role of lithology, which could influence the rate of incision, morphology, and hydrology as well as the characteristics of transported materials. Here, we present an analysis of the physical and hydrologic characteristics of drainage networks (gullies and channels) that have incised the Keanakāko‘i tephra, a basaltic pyroclastic deposit that occurs mainly in the summit area of Kīlauea Volcano and in the adjoining Ka‘ū Desert, Hawai‘i. The Keanakāko‘i tephra is up to 10 m meters thick and largely devoid of vegetation, making it a good analog for the Martian surface. Although the scales are different, the Keanakāko‘i drainage networks suggest that several typical morphologic characteristics of Martian valley networks may be controlled by lithology in combination with ephemeral flood characteristics. Many gully headwalls and knickpoints within the drainage networks are amphitheater shaped, which results from strong-over-weak stratigraphy. Beds of fine ash, commonly bearing accretionary lapilli (pisolites), are more resistant to erosion than the interbedded, coarser weakly consolidated and friable tephra layers.
    [Show full text]
  • The Reference Mission of the NASA Mars Exploration Study Team
    NASA Special Publication 6107 Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team Stephen J. Hoffman, Editor David I. Kaplan, Editor Lyndon B. Johnson Space Center Houston, Texas July 1997 NASA Special Publication 6107 Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Team Stephen J. Hoffman, Editor Science Applications International Corporation Houston, Texas David I. Kaplan, Editor Lyndon B. Johnson Space Center Houston, Texas July 1997 This publication is available from the NASA Center for AeroSpace Information, 800 Elkridge Landing Road, Linthicum Heights, MD 21090-2934 (301) 621-0390. Foreword Mars has long beckoned to humankind interest in this fellow traveler of the solar from its travels high in the night sky. The system, adding impetus for exploration. ancients assumed this rust-red wanderer was Over the past several years studies the god of war and christened it with the have been conducted on various approaches name we still use today. to exploring Earth’s sister planet Mars. Much Early explorers armed with newly has been learned, and each study brings us invented telescopes discovered that this closer to realizing the goal of sending humans planet exhibited seasonal changes in color, to conduct science on the Red Planet and was subjected to dust storms that encircled explore its mysteries. The approach described the globe, and may have even had channels in this publication represents a culmination of that crisscrossed its surface. these efforts but should not be considered the final solution. It is our intent that this Recent explorers, using robotic document serve as a reference from which we surrogates to extend their reach, have can continuously compare and contrast other discovered that Mars is even more complex new innovative approaches to achieve our and fascinating—a planet peppered with long-term goal.
    [Show full text]
  • Variability of Mars' North Polar Water Ice Cap I. Analysis of Mariner 9 and Viking Orbiter Imaging Data
    Icarus 144, 382–396 (2000) doi:10.1006/icar.1999.6300, available online at http://www.idealibrary.com on Variability of Mars’ North Polar Water Ice Cap I. Analysis of Mariner 9 and Viking Orbiter Imaging Data Deborah S. Bass Instrumentation and Space Research Division, Southwest Research Institute, P.O. Drawer 28510, San Antonio, Texas 78228-0510 E-mail: [email protected] Kenneth E. Herkenhoff U.S. Geological Survey, 2255 North Gemini Drive, Flagstaff, Arizona 86001 and David A. Paige Department of Earth and Space Sciences, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, California 90095-1567 Received May 15, 1998; revised November 17, 1999 1. INTRODUCTION Previous studies interpreted differences in ice coverage between Mariner 9 and Viking Orbiter observations of Mars’ north residual Like Earth, Mars has perennial ice caps and an active wa- polar cap as evidence of interannual variability of ice deposition on ter cycle. The Viking Orbiter determined that the surface of the the cap. However,these investigators did not consider the possibility northern residual cap is water ice (Kieffer et al. 1976, Farmer that there could be significant changes in the ice coverage within et al. 1976). At the south residual polar cap, both Mariner 9 the northern residual cap over the course of the summer season. and Viking Orbiter observed carbon dioxide ice throughout the Our more comprehensive analysis of Mariner 9 and Viking Orbiter summer. Many have related observed atmospheric water vapor imaging data shows that the appearance of the residual cap does not abundances to seasonal exchange between reservoirs such as show large-scale variance on an interannual basis.
    [Show full text]
  • MARS DURING the PRE-NOACHIAN. J. C. Andrews-Hanna1 and W. B. Bottke2, 1Lunar and Planetary La- Boratory, University of Arizona
    Fourth Conference on Early Mars 2017 (LPI Contrib. No. 2014) 3078.pdf MARS DURING THE PRE-NOACHIAN. J. C. Andrews-Hanna1 and W. B. Bottke2, 1Lunar and Planetary La- boratory, University of Arizona, Tucson, AZ 85721, [email protected], 2Southwest Research Institute and NASA’s SSERVI-ISET team, 1050 Walnut St., Suite 300, Boulder, CO 80302. Introduction: The surface geology of Mars appar- ing the pre-Noachian was ~10% of that during the ently dates back to the beginning of the Early Noachi- LHB. Consideration of the sawtooth-shaped exponen- an, at ~4.1 Ga, leaving ~400 Myr of Mars’ earliest tially declining impact fluxes both in the aftermath of evolution effectively unconstrained [1]. However, an planet formation and during the Late Heavy Bom- enduring record of the earlier pre-Noachian conditions bardment [5] suggests that the impact flux during persists in geophysical and mineralogical data. We use much of the pre-Noachian was even lower than indi- geophysical evidence, primarily in the form of the cated above. This bombardment history is consistent preservation of the crustal dichotomy boundary, to- with a late heavy bombardment (LHB) of the inner gether with mineralogical evidence in order to infer the Solar System [6] during which HUIA formed, which prevailing surface conditions during the pre-Noachian. followed the planet formation era impacts during The emerging picture is a pre-Noachian Mars that was which the dichotomy formed. less dynamic than Noachian Mars in terms of impacts, Pre-Noachian Tectonism and Volcanism: The geodynamics, and hydrology. crust within each of the southern highlands and north- Pre-Noachian Impacts: We define the pre- ern lowlands is remarkably uniform in thickness, aside Noachian as the time period bounded by two impacts – from regions in which it has been thickened by volcan- the dichotomy-forming impact and the Hellas-forming ism (e.g., Tharsis, Elysium) or thinned by impacts impact.
    [Show full text]
  • “Mining” Water Ice on Mars an Assessment of ISRU Options in Support of Future Human Missions
    National Aeronautics and Space Administration “Mining” Water Ice on Mars An Assessment of ISRU Options in Support of Future Human Missions Stephen Hoffman, Alida Andrews, Kevin Watts July 2016 Agenda • Introduction • What kind of water ice are we talking about • Options for accessing the water ice • Drilling Options • “Mining” Options • EMC scenario and requirements • Recommendations and future work Acknowledgement • The authors of this report learned much during the process of researching the technologies and operations associated with drilling into icy deposits and extract water from those deposits. We would like to acknowledge the support and advice provided by the following individuals and their organizations: – Brian Glass, PhD, NASA Ames Research Center – Robert Haehnel, PhD, U.S. Army Corps of Engineers/Cold Regions Research and Engineering Laboratory – Patrick Haggerty, National Science Foundation/Geosciences/Polar Programs – Jennifer Mercer, PhD, National Science Foundation/Geosciences/Polar Programs – Frank Rack, PhD, University of Nebraska-Lincoln – Jason Weale, U.S. Army Corps of Engineers/Cold Regions Research and Engineering Laboratory Mining Water Ice on Mars INTRODUCTION Background • Addendum to M-WIP study, addressing one of the areas not fully covered in this report: accessing and mining water ice if it is present in certain glacier-like forms – The M-WIP report is available at http://mepag.nasa.gov/reports.cfm • The First Landing Site/Exploration Zone Workshop for Human Missions to Mars (October 2015) set the target
    [Show full text]
  • Volcanism on Mars
    Author's personal copy Chapter 41 Volcanism on Mars James R. Zimbelman Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, Washington, DC, USA William Brent Garry and Jacob Elvin Bleacher Sciences and Exploration Directorate, Code 600, NASA Goddard Space Flight Center, Greenbelt, MD, USA David A. Crown Planetary Science Institute, Tucson, AZ, USA Chapter Outline 1. Introduction 717 7. Volcanic Plains 724 2. Background 718 8. Medusae Fossae Formation 725 3. Large Central Volcanoes 720 9. Compositional Constraints 726 4. Paterae and Tholi 721 10. Volcanic History of Mars 727 5. Hellas Highland Volcanoes 722 11. Future Studies 728 6. Small Constructs 723 Further Reading 728 GLOSSARY shield volcano A broad volcanic construct consisting of a multitude of individual lava flows. Flank slopes are typically w5, or less AMAZONIAN The youngest geologic time period on Mars identi- than half as steep as the flanks on a typical composite volcano. fied through geologic mapping of superposition relations and the SNC meteorites A group of igneous meteorites that originated on areal density of impact craters. Mars, as indicated by a relatively young age for most of these caldera An irregular collapse feature formed over the evacuated meteorites, but most importantly because gases trapped within magma chamber within a volcano, which includes the potential glassy parts of the meteorite are identical to the atmosphere of for a significant role for explosive volcanism. Mars. The abbreviation is derived from the names of the three central volcano Edifice created by the emplacement of volcanic meteorites that define major subdivisions identified within the materials from a centralized source vent rather than from along a group: S, Shergotty; N, Nakhla; C, Chassigny.
    [Show full text]
  • Origin of Fluvial Channels in the Walls of Juventae Chasma: Evidences of Groundwater Sapping? P
    47th Lunar and Planetary Science Conference (2016) 1878.pdf ORIGIN OF FLUVIAL CHANNELS IN THE WALLS OF JUVENTAE CHASMA: EVIDENCES OF GROUNDWATER SAPPING? P. Singh1, R. Sarkar1, I. Ganesh1 and A. Porwal1, 1Geology and Mineral Resources Group, CSRE, Indian Institute of Technology, Bombay, India ([email protected]) Introduction: Juventae Chasma is a deep box- Type IV: This type includes channels emanating from canyon located to the north of Valles Marineris. The gullies between the spurs on the chasma wall (Fig. 1d). main geological units of the chasma are chaotic terrain, They are mainly found in the southern wall of the four mounds of interior layered deposits (ILDs) and an chasma. These channels have shorter lengths ranging outflow channel. The presence of the outflow channel from 1-6 km and at places converge into a single chan- indicates that water played an important role in the nel. geological and geomorphological evolution of the Age determination: We estimated the ages of the chasma. In this paper, we report ground-water sapping geological units containing Type 1 and Type III chan- features from the wall of Juventae Chasma. We also delineate and characterize fluvial channels originating nels using crater size-frequency distributions. The re- from the chasma wall. This study was carried out using sults indicate that Type 1 channels are younger than panchromatic data from the CTX and digital terrain 790+- 200 Ma and Type III channels are younger than models from the HRSC onboard the MRO and MEX 620+-300 Ma. Type II and IV were left out because of respectively.
    [Show full text]
  • Environmental Change and the Carbon Balance of Amazonian Forests
    Biol. Rev. (2014), 89, pp. 913–931. 913 doi: 10.1111/brv.12088 Environmental change and the carbon balance of Amazonian forests Luiz E. O. C. Aragao˜ 1,2,∗, Benjamin Poulter3, Jos B. Barlow4,5, Liana O. Anderson2,6, Yadvinder Malhi6, Sassan Saatchi7, Oliver L. Phillips8 and Emanuel Gloor8 1College of Life and Environmental Sciences, Geography University of Exeter, Exeter EX4 4RJ, U.K. 2Remote Sensing Division, National Institute for Space Research, Av. dos Astronautas, 1758, S˜ao Jos´e dos Campos, Sao Paulo 12227-010, Brazil 3Laboratoire des Sciences du Climat et de L’Environment, CEA, UVSQ, CNRS, 91190, Gif-sur Yvette, France 4Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K. 5Museu Paraense Emílio Goeldi, Av. Perimetral, 1901, Bel´em, Par´a 66077-830, Brazil 6School of Geography and the Environment, University of Oxford, Oxford OX1 3QY, U.K. 7Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, U.S.A. 8School of Geography, University of Leeds, Leeds LS2 9JT, U.K. ABSTRACT Extreme climatic events and land-use change are known to influence strongly the current carbon cycle of Amazonia, and have the potential to cause significant global climate impacts. This review intends to evaluate the effects of both climate and anthropogenic perturbations on the carbon balance of the Brazilian Amazon and to understand how they interact with each other. By analysing the outputs of the Intergovernmental Panel for Climate Change (IPCC) Assessment Report 4 (AR4) model ensemble, we demonstrate that Amazonian temperatures and water stress are both likely to increase over the 21st Century.
    [Show full text]
  • Propagation Dynamics of Spatio-Temporal Wave Packets
    PROPAGATION DYNAMICS OF SPATIO-TEMPORAL WAVE PACKETS Thesis Submitted to The School of Engineering of the UNIVERSITY OF DAYTON In Partial Fulfillment of the Requirements for The Degree of Master of Science in Electro-Optics By Qian Cao UNIVERSITY OF DAYTON Dayton, Ohio August, 2014 PROPAGATION DYNAMICS OF SPATIO-TEMPORAL WAVE PACKETS Name: Cao, Qian APPROVED BY: Andy Chong, Ph.D. Joseph Haus, Ph.D. Advisor Committee Chairman Committee Member Assistant Professor, Department of Professor, Electro-Optics Graduate Physics Engineering Program Partha Banerjee, Ph.D. Committee Member Professor, Electro-Optics Graduate Engineering Program John G. Weber, Ph.D. Eddy M. Rojas, Ph.D., M.A., P.E. Associate Dean Dean, School of Engineering School of Engineering ii c Copyright by Qian Cao All rights reserved 2014 ABSTRACT PROPAGATION DYNAMICS OF SPATIO-TEMPORAL WAVE PACKETS Name: Cao, Qian University of Dayton Advisor: Dr. Andy Chong We measured the three-dimensional (3D) propagation dynamics of the Airy-Bessel wave packet, inculding its intensity and phase evolution. Its non-diffraction and non-dispersive features were verified. Meanwhile, we built a spatial light modulator (SLM) based wave packet shaping system to generate other types of wave packets such as Airy-Airy-Airy and dual-Airy-Airy-rings. These wave packets were also measured in 3D. The abrupt 3D autofocusing effect was observed on dual-Airy- Airy-rings. iii To my family, my advisor and committee members and the time in University of Dayton. iv ACKNOWLEDGMENTS First of all, I want to express my thank to my advisor, Prof. Andy Chong. Although the time when I became his student it was the second year of his professor career, he taught and guided me in the world of science in such an experienced way.
    [Show full text]
  • Explosive Lava‐Water Interactions in Elysium Planitia, Mars: Geologic and Thermodynamic Constraints on the Formation of the Tartarus Colles Cone Groups Christopher W
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, E09006, doi:10.1029/2009JE003546, 2010 Explosive lava‐water interactions in Elysium Planitia, Mars: Geologic and thermodynamic constraints on the formation of the Tartarus Colles cone groups Christopher W. Hamilton,1 Sarah A. Fagents,1 and Lionel Wilson2 Received 16 November 2009; revised 11 May 2010; accepted 3 June 2010; published 16 September 2010. [1] Volcanic rootless constructs (VRCs) are the products of explosive lava‐water interactions. VRCs are significant because they imply the presence of active lava and an underlying aqueous phase (e.g., groundwater or ice) at the time of their formation. Combined mapping of VRC locations, age‐dating of their host lava surfaces, and thermodynamic modeling of lava‐substrate interactions can therefore constrain where and when water has been present in volcanic regions. This information is valuable for identifying fossil hydrothermal systems and determining relationships between climate, near‐surface water abundance, and the potential development of habitable niches on Mars. We examined the western Tartarus Colles region (25–27°N, 170–171°E) in northeastern Elysium Planitia, Mars, and identified 167 VRC groups with a total area of ∼2000 km2. These VRCs preferentially occur where lava is ∼60 m thick. Crater size‐frequency relationships suggest the VRCs formed during the late to middle Amazonian. Modeling results suggest that at the time of VRC formation, near‐surface substrate was partially desiccated, but that the depth to the midlatitude ice table was ]42 m. This ground ice stability zone is consistent with climate models that predict intermediate obliquity (∼35°) between 75 and 250 Ma, with obliquity excursions descending to ∼25–32°.
    [Show full text]
  • Pacing Early Mars Fluvial Activity at Aeolis Dorsa: Implications for Mars
    1 Pacing Early Mars fluvial activity at Aeolis Dorsa: Implications for Mars 2 Science Laboratory observations at Gale Crater and Aeolis Mons 3 4 Edwin S. Kitea ([email protected]), Antoine Lucasa, Caleb I. Fassettb 5 a Caltech, Division of Geological and Planetary Sciences, Pasadena, CA 91125 6 b Mount Holyoke College, Department of Astronomy, South Hadley, MA 01075 7 8 Abstract: The impactor flux early in Mars history was much higher than today, so sedimentary 9 sequences include many buried craters. In combination with models for the impactor flux, 10 observations of the number of buried craters can constrain sedimentation rates. Using the 11 frequency of crater-river interactions, we find net sedimentation rate ≲20-300 μm/yr at Aeolis 12 Dorsa. This sets a lower bound of 1-15 Myr on the total interval spanned by fluvial activity 13 around the Noachian-Hesperian transition. We predict that Gale Crater’s mound (Aeolis Mons) 14 took at least 10-100 Myr to accumulate, which is testable by the Mars Science Laboratory. 15 16 1. Introduction. 17 On Mars, many craters are embedded within sedimentary sequences, leading to the 18 recognition that the planet’s geological history is recorded in “cratered volumes”, rather than 19 just cratered surfaces (Edgett and Malin, 2002). For a given impact flux, the density of craters 20 interbedded within a geologic unit is inversely proportional to the deposition rate of that 21 geologic unit (Smith et al. 2008). To use embedded-crater statistics to constrain deposition 22 rate, it is necessary to distinguish the population of interbedded craters from a (usually much 23 more numerous) population of craters formed during and after exhumation.
    [Show full text]