Numerical Multilinear Algebra and Its Applications∗
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Special Western Canada Linear Algebra Meeting (17W2668)
Special Western Canada Linear Algebra Meeting (17w2668) Hadi Kharaghani (University of Lethbridge), Shaun Fallat (University of Regina), Pauline van den Driessche (University of Victoria) July 7, 2017 – July 9, 2017 1 History of this Conference Series The Western Canada Linear Algebra meeting, or WCLAM, is a regular series of meetings held roughly once every 2 years since 1993. Professor Peter Lancaster from the University of Calgary initiated the conference series and has been involved as a mentor, an organizer, a speaker and participant in all of the ten or more WCLAM meetings. Two broad goals of the WCLAM series are a) to keep the community abreast of current research in this discipline, and b) to bring together well-established and early-career researchers to talk about their work in a relaxed academic setting. This particular conference brought together researchers working in a wide-range of mathematical fields including matrix analysis, combinatorial matrix theory, applied and numerical linear algebra, combinatorics, operator theory and operator algebras. It attracted participants from most of the PIMS Universities, as well as Ontario, Quebec, Indiana, Iowa, Minnesota, North Dakota, Virginia, Iran, Japan, the Netherlands and Spain. The highlight of this meeting was the recognition of the outstanding and numerous contributions to the areas of research of Professor Peter Lancaster. Peter’s work in mathematics is legendary and in addition his footprint on mathematics in Canada is very significant. 2 Presentation Highlights The conference began with a presentation from Prof. Chi-Kwong Li surveying the numerical range and connections to dilation. During this lecture the following conjecture was stated: If A 2 M3 has no reducing eigenvalues, then there is a T 2 B(H) such that the numerical range of T is contained in that of A, and T has no dilation of the form I ⊗ A. -
500 Natural Sciences and Mathematics
500 500 Natural sciences and mathematics Natural sciences: sciences that deal with matter and energy, or with objects and processes observable in nature Class here interdisciplinary works on natural and applied sciences Class natural history in 508. Class scientific principles of a subject with the subject, plus notation 01 from Table 1, e.g., scientific principles of photography 770.1 For government policy on science, see 338.9; for applied sciences, see 600 See Manual at 231.7 vs. 213, 500, 576.8; also at 338.9 vs. 352.7, 500; also at 500 vs. 001 SUMMARY 500.2–.8 [Physical sciences, space sciences, groups of people] 501–509 Standard subdivisions and natural history 510 Mathematics 520 Astronomy and allied sciences 530 Physics 540 Chemistry and allied sciences 550 Earth sciences 560 Paleontology 570 Biology 580 Plants 590 Animals .2 Physical sciences For astronomy and allied sciences, see 520; for physics, see 530; for chemistry and allied sciences, see 540; for earth sciences, see 550 .5 Space sciences For astronomy, see 520; for earth sciences in other worlds, see 550. For space sciences aspects of a specific subject, see the subject, plus notation 091 from Table 1, e.g., chemical reactions in space 541.390919 See Manual at 520 vs. 500.5, 523.1, 530.1, 919.9 .8 Groups of people Add to base number 500.8 the numbers following —08 in notation 081–089 from Table 1, e.g., women in science 500.82 501 Philosophy and theory Class scientific method as a general research technique in 001.4; class scientific method applied in the natural sciences in 507.2 502 Miscellany 577 502 Dewey Decimal Classification 502 .8 Auxiliary techniques and procedures; apparatus, equipment, materials Including microscopy; microscopes; interdisciplinary works on microscopy Class stereology with compound microscopes, stereology with electron microscopes in 502; class interdisciplinary works on photomicrography in 778.3 For manufacture of microscopes, see 681. -
Multilinear Algebra and Applications July 15, 2014
Multilinear Algebra and Applications July 15, 2014. Contents Chapter 1. Introduction 1 Chapter 2. Review of Linear Algebra 5 2.1. Vector Spaces and Subspaces 5 2.2. Bases 7 2.3. The Einstein convention 10 2.3.1. Change of bases, revisited 12 2.3.2. The Kronecker delta symbol 13 2.4. Linear Transformations 14 2.4.1. Similar matrices 18 2.5. Eigenbases 19 Chapter 3. Multilinear Forms 23 3.1. Linear Forms 23 3.1.1. Definition, Examples, Dual and Dual Basis 23 3.1.2. Transformation of Linear Forms under a Change of Basis 26 3.2. Bilinear Forms 30 3.2.1. Definition, Examples and Basis 30 3.2.2. Tensor product of two linear forms on V 32 3.2.3. Transformation of Bilinear Forms under a Change of Basis 33 3.3. Multilinear forms 34 3.4. Examples 35 3.4.1. A Bilinear Form 35 3.4.2. A Trilinear Form 36 3.5. Basic Operation on Multilinear Forms 37 Chapter 4. Inner Products 39 4.1. Definitions and First Properties 39 4.1.1. Correspondence Between Inner Products and Symmetric Positive Definite Matrices 40 4.1.1.1. From Inner Products to Symmetric Positive Definite Matrices 42 4.1.1.2. From Symmetric Positive Definite Matrices to Inner Products 42 4.1.2. Orthonormal Basis 42 4.2. Reciprocal Basis 46 4.2.1. Properties of Reciprocal Bases 48 4.2.2. Change of basis from a basis to its reciprocal basis g 50 B B III IV CONTENTS 4.2.3. -
Mathematics (MATH) 1
Mathematics (MATH) 1 MATH 103 College Algebra and Trigonometry MATHEMATICS (MATH) Prerequisites: Appropriate score on the Math Placement Exam; or grade of P, C, or better in MATH 100A. MATH 100A Intermediate Algebra Notes: Credit for both MATH 101 and 103 is not allowed; credit for both Prerequisites: Appropriate score on the Math Placement Exam. MATH 102 and MATH 103 is not allowed; students with previous credit in Notes: Credit earned in MATH 100A will not count toward degree any calculus course (Math 104, 106, 107, or 208) may not earn credit for requirements. this course. Description: Review of the topics in a second-year high school algebra Description: First and second degree equations and inequalities, absolute course taught at the college level. Includes: real numbers, 1st and value, functions, polynomial and rational functions, exponential and 2nd degree equations and inequalities, linear systems, polynomials logarithmic functions, trigonometric functions and identities, laws of and rational expressions, exponents and radicals. Heavy emphasis on sines and cosines, applications, polar coordinates, systems of equations, problem solving strategies and techniques. graphing, conic sections. Credit Hours: 3 Credit Hours: 5 Max credits per semester: 3 Max credits per semester: 5 Max credits per degree: 3 Max credits per degree: 5 Grading Option: Graded with Option Grading Option: Graded with Option Prerequisite for: MATH 100A; MATH 101; MATH 103 Prerequisite for: AGRO 361, GEOL 361, NRES 361, SOIL 361, WATS 361; MATH 101 College Algebra AGRO 458, AGRO 858, NRES 458, NRES 858, SOIL 458; ASCI 340; Prerequisites: Appropriate score on the Math Placement Exam; or grade CHEM 105A; CHEM 109A; CHEM 113A; CHME 204; CRIM 300; of P, C, or better in MATH 100A. -
Causalx: Causal Explanations and Block Multilinear Factor Analysis
To appear: Proc. of the 2020 25th International Conference on Pattern Recognition (ICPR 2020) Milan, Italy, Jan. 10-15, 2021. CausalX: Causal eXplanations and Block Multilinear Factor Analysis M. Alex O. Vasilescu1;2 Eric Kim2;1 Xiao S. Zeng2 [email protected] [email protected] [email protected] 1Tensor Vision Technologies, Los Angeles, California 2Department of Computer Science,University of California, Los Angeles Abstract—By adhering to the dictum, “No causation without I. INTRODUCTION:PROBLEM DEFINITION manipulation (treatment, intervention)”, cause and effect data Developing causal explanations for correct results or for failures analysis represents changes in observed data in terms of changes from mathematical equations and data is important in developing in the causal factors. When causal factors are not amenable for a trustworthy artificial intelligence, and retaining public trust. active manipulation in the real world due to current technological limitations or ethical considerations, a counterfactual approach Causal explanations are germane to the “right to an explanation” performs an intervention on the model of data formation. In the statute [15], [13] i.e., to data driven decisions, such as those case of object representation or activity (temporal object) rep- that rely on images. Computer graphics and computer vision resentation, varying object parts is generally unfeasible whether problems, also known as forward and inverse imaging problems, they be spatial and/or temporal. Multilinear algebra, the algebra have been cast as causal inference questions [40], [42] consistent of higher order tensors, is a suitable and transparent framework for disentangling the causal factors of data formation. Learning a with Donald Rubin’s quantitative definition of causality, where part-based intrinsic causal factor representations in a multilinear “A causes B” means “the effect of A is B”, a measurable framework requires applying a set of interventions on a part- and experimentally repeatable quantity [14], [17]. -
28. Exterior Powers
28. Exterior powers 28.1 Desiderata 28.2 Definitions, uniqueness, existence 28.3 Some elementary facts 28.4 Exterior powers Vif of maps 28.5 Exterior powers of free modules 28.6 Determinants revisited 28.7 Minors of matrices 28.8 Uniqueness in the structure theorem 28.9 Cartan's lemma 28.10 Cayley-Hamilton Theorem 28.11 Worked examples While many of the arguments here have analogues for tensor products, it is worthwhile to repeat these arguments with the relevant variations, both for practice, and to be sensitive to the differences. 1. Desiderata Again, we review missing items in our development of linear algebra. We are missing a development of determinants of matrices whose entries may be in commutative rings, rather than fields. We would like an intrinsic definition of determinants of endomorphisms, rather than one that depends upon a choice of coordinates, even if we eventually prove that the determinant is independent of the coordinates. We anticipate that Artin's axiomatization of determinants of matrices should be mirrored in much of what we do here. We want a direct and natural proof of the Cayley-Hamilton theorem. Linear algebra over fields is insufficient, since the introduction of the indeterminate x in the definition of the characteristic polynomial takes us outside the class of vector spaces over fields. We want to give a conceptual proof for the uniqueness part of the structure theorem for finitely-generated modules over principal ideal domains. Multi-linear algebra over fields is surely insufficient for this. 417 418 Exterior powers 2. Definitions, uniqueness, existence Let R be a commutative ring with 1. -
Multilinear Algebra in Data Analysis: Tensors, Symmetric Tensors, Nonnegative Tensors
Multilinear Algebra in Data Analysis: tensors, symmetric tensors, nonnegative tensors Lek-Heng Lim Stanford University Workshop on Algorithms for Modern Massive Datasets Stanford, CA June 21–24, 2006 Thanks: G. Carlsson, L. De Lathauwer, J.M. Landsberg, M. Mahoney, L. Qi, B. Sturmfels; Collaborators: P. Comon, V. de Silva, P. Drineas, G. Golub References http://www-sccm.stanford.edu/nf-publications-tech.html [CGLM2] P. Comon, G. Golub, L.-H. Lim, and B. Mourrain, “Symmetric tensors and symmetric tensor rank,” SCCM Tech. Rep., 06-02, 2006. [CGLM1] P. Comon, B. Mourrain, L.-H. Lim, and G.H. Golub, “Genericity and rank deficiency of high order symmetric tensors,” Proc. IEEE Int. Con- ference on Acoustics, Speech, and Signal Processing (ICASSP), 31 (2006), no. 3, pp. 125–128. [dSL] V. de Silva and L.-H. Lim, “Tensor rank and the ill-posedness of the best low-rank approximation problem,” SCCM Tech. Rep., 06-06 (2006). [GL] G. Golub and L.-H. Lim, “Nonnegative decomposition and approximation of nonnegative matrices and tensors,” SCCM Tech. Rep., 06-01 (2006), forthcoming. [L] L.-H. Lim, “Singular values and eigenvalues of tensors: a variational approach,” Proc. IEEE Int. Workshop on Computational Advances in Multi- Sensor Adaptive Processing (CAMSAP), 1 (2005), pp. 129–132. 2 What is not a tensor, I • What is a vector? – Mathematician: An element of a vector space. – Physicist: “What kind of physical quantities can be rep- resented by vectors?” Answer: Once a basis is chosen, an n-dimensional vector is something that is represented by n real numbers only if those real numbers transform themselves as expected (ie. -
Multilinear Algebra
Appendix A Multilinear Algebra This chapter presents concepts from multilinear algebra based on the basic properties of finite dimensional vector spaces and linear maps. The primary aim of the chapter is to give a concise introduction to alternating tensors which are necessary to define differential forms on manifolds. Many of the stated definitions and propositions can be found in Lee [1], Chaps. 11, 12 and 14. Some definitions and propositions are complemented by short and simple examples. First, in Sect. A.1 dual and bidual vector spaces are discussed. Subsequently, in Sects. A.2–A.4, tensors and alternating tensors together with operations such as the tensor and wedge product are introduced. Lastly, in Sect. A.5, the concepts which are necessary to introduce the wedge product are summarized in eight steps. A.1 The Dual Space Let V be a real vector space of finite dimension dim V = n.Let(e1,...,en) be a basis of V . Then every v ∈ V can be uniquely represented as a linear combination i v = v ei , (A.1) where summation convention over repeated indices is applied. The coefficients vi ∈ R arereferredtoascomponents of the vector v. Throughout the whole chapter, only finite dimensional real vector spaces, typically denoted by V , are treated. When not stated differently, summation convention is applied. Definition A.1 (Dual Space)Thedual space of V is the set of real-valued linear functionals ∗ V := {ω : V → R : ω linear} . (A.2) The elements of the dual space V ∗ are called linear forms on V . © Springer International Publishing Switzerland 2015 123 S.R. -
"Mathematics in Science, Social Sciences and Engineering"
Research Project "Mathematics in Science, Social Sciences and Engineering" Reference person: Prof. Mirko Degli Esposti (email: [email protected]) The Department of Mathematics of the University of Bologna invites applications for a PostDoc position in "Mathematics in Science, Social Sciences and Engineering". The appointment is for one year, renewable to a second year. Candidates are expected to propose and perform research on innovative aspects in mathematics, along one of the following themes: Analysis: 1. Functional analysis and abstract equations: Functional analytic methods for PDE problems; degenerate or singular evolution problems in Banach spaces; multivalued operators in Banach spaces; function spaces related to operator theory.FK percolation and its applications 2. Applied PDEs: FK percolation and its applications, mathematical modeling of financial markets by PDE or stochastic methods; mathematical modeling of the visual cortex in Lie groups through geometric analysis tools. 3. Evolutions equations: evolutions equations with real characteristics, asymptotic behavior of hyperbolic systems. 4. Qualitative theory of PDEs and calculus of variations: Sub-Riemannian PDEs; a priori estimates and solvability of systems of linear PDEs; geometric fully nonlinear PDEs; potential analysis of second order PDEs; hypoellipticity for sums of squares; geometric measure theory in Carnot groups. Numerical Analysis: 1. Numerical Linear Algebra: matrix equations, matrix functions, large-scale eigenvalue problems, spectral perturbation analysis, preconditioning techniques, ill- conditioned linear systems, optimization problems. 2. Inverse Problems and Image Processing: regularization and optimization methods for ill-posed integral equation problems, image segmentation, deblurring, denoising and reconstruction from projection; analysis of noise models, medical applications. 3. Geometric Modelling and Computer Graphics: Curves and surface modelling, shape basic functions, interpolation methods, parallel graphics processing, realistic rendering. -
Multilinear Algebra for Visual Geometry
multilinear algebra for visual geometry Alberto Ruiz http://dis.um.es/~alberto DIS, University of Murcia MVIGRO workshop Berlin, june 28th 2013 contents 1. linear spaces 2. tensor diagrams 3. Grassmann algebra 4. multiview geometry 5. tensor equations intro diagrams multiview equations linear algebra the most important computational tool: linear = solvable nonlinear problems: linearization + iteration multilinear problems are easy (' linear) visual geometry is multilinear (' solved) intro diagrams multiview equations linear spaces I objects are represented by arrays of coordinates (depending on chosen basis, with proper rules of transformation) I linear transformations are extremely simple (just multiply and add), and invertible in closed form (in least squares sense) I duality: linear transformations are also a linear space intro diagrams multiview equations linear spaces objects are linear combinations of other elements: i vector x has coordinates x in basis B = feig X i x = x ei i Einstein's convention: i x = x ei intro diagrams multiview equations change of basis 1 1 0 0 c1 c2 3 1 0 i [e1; e2] = [e1; e2]C; C = 2 2 = ej = cj ei c1 c2 1 2 x1 x1 x01 x = x1e + x2e = [e ; e ] = [e ; e ]C C−1 = [e0 ; e0 ] 1 2 1 2 x2 1 2 x2 1 2 x02 | 0{z 0 } [e1;e2] | {z } 2x013 4x025 intro diagrams multiview equations covariance and contravariance if the basis transforms according to C: 0 0 [e1; e2] = [e1; e2]C vector coordinates transform according to C−1: x01 x1 = C−1 x02 x2 in the previous example: 7 3 1 2 2 0;4 −0;2 7 = ; = 4 1 2 1 1 −0;2 0;6 4 intro -
Randnla: Randomized Numerical Linear Algebra
review articles DOI:10.1145/2842602 generation mechanisms—as an algo- Randomization offers new benefits rithmic or computational resource for the develop ment of improved algo- for large-scale linear algebra computations. rithms for fundamental matrix prob- lems such as matrix multiplication, BY PETROS DRINEAS AND MICHAEL W. MAHONEY least-squares (LS) approximation, low- rank matrix approxi mation, and Lapla- cian-based linear equ ation solvers. Randomized Numerical Linear Algebra (RandNLA) is an interdisci- RandNLA: plinary research area that exploits randomization as a computational resource to develop improved algo- rithms for large-scale linear algebra Randomized problems.32 From a foundational per- spective, RandNLA has its roots in theoretical computer science (TCS), with deep connections to mathemat- Numerical ics (convex analysis, probability theory, metric embedding theory) and applied mathematics (scientific computing, signal processing, numerical linear Linear algebra). From an applied perspec- tive, RandNLA is a vital new tool for machine learning, statistics, and data analysis. Well-engineered implemen- Algebra tations have already outperformed highly optimized software libraries for ubiquitous problems such as least- squares,4,35 with good scalability in par- allel and distributed environments. 52 Moreover, RandNLA promises a sound algorithmic and statistical foundation for modern large-scale data analysis. MATRICES ARE UBIQUITOUS in computer science, statistics, and applied mathematics. An m × n key insights matrix can encode information about m objects ˽ Randomization isn’t just used to model noise in data; it can be a powerful (each described by n features), or the behavior of a computational resource to develop discretized differential operator on a finite element algorithms with improved running times and stability properties as well as mesh; an n × n positive-definite matrix can encode algorithms that are more interpretable in the correlations between all pairs of n objects, or the downstream data science applications. -
Advances in Matrices, Finite And
Journal of Applied Mathematics Advances in Matrices, Finite and Guest Editors: P. N. Shivakumar, Panayiotis Psarrakos, K. C. Sivakuma r, Yang Zhang, and Carlos da Fonseca Advances in Matrices, Finite and Infinite, with Applications 2014 JournalofAppliedMathematics Advances in Matrices, Finite and Infinite, with Applications 2014 Guest Editors: P. N. Shivakumar, Panayiotis J. Psarrakos, K. C. Sivakumar, Yang Zhang, and Carlos M. da Fonseca Copyright © 2014 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “Journal of Applied Mathematics.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board Saeid Abbasbandy, Iran Ru-Dong Chen, China Laura Gardini, Italy Mina B. Abd-El-Malek, Egypt Zhang Chen, China Bernard J. Geurts, The Netherlands Mohamed A. Abdou, Egypt Zhi-Zhong Chen, Japan Sandip Ghosal, USA Subhas Abel, India Xinkai Chen, Japan Pablo Gonzlez-Vera, Spain Jnos Abonyi, Hungary Rushan Chen, China Alexander N. Gorban, UK M. Montaz Ali, South Africa Ke Chen, UK Laurent Gosse, Italy Mohammad R, Aliha, Iran Eric Cheng, Hong Kong Keshlan S. Govinder, South Africa Carlos J. S. Alves, Portugal Ching-Hsue Cheng, Taiwan Said R. Grace, Egypt Mohamad Alwash, USA Qi Cheng, USA Jose L. Gracia, Spain Igor Andrianov, Germany Chin-Hsiang Cheng, Taiwan Maurizio Grasselli, Italy Boris Andrievsky, Russia Jin Cheng, China Zhi-Hong Guan, China Whye-Teong Ang, Singapore Hui Cheng, China Nicola Guglielmi, Italy Abul-Fazal M. Arif, Saudi Arabia Francisco Chiclana, UK Fred´ eric´ Guichard, Canada Sabri Arik, Turkey Jen-Tzung Chien, Taiwan Kerim Guney, Turkey Ali R.