Lecture Notes on Linear and Multilinear Algebra 2301-610

Total Page:16

File Type:pdf, Size:1020Kb

Lecture Notes on Linear and Multilinear Algebra 2301-610 Lecture Notes on Linear and Multilinear Algebra 2301-610 Wicharn Lewkeeratiyutkul Department of Mathematics and Computer Science Faculty of Science Chulalongkorn University August 2014 Contents Preface iii 1 Vector Spaces 1 1.1 Vector Spaces and Subspaces . 2 1.2 Basis and Dimension . 10 1.3 Linear Maps . 18 1.4 Matrix Representation . 32 1.5 Change of Bases . 42 1.6 Sums and Direct Sums . 48 1.7 Quotient Spaces . 61 1.8 Dual Spaces . 65 2 Multilinear Algebra 73 2.1 Free Vector Spaces . 73 2.2 Multilinear Maps and Tensor Products . 78 2.3 Determinants . 95 2.4 Exterior Products . 101 3 Canonical Forms 107 3.1 Polynomials . 107 3.2 Diagonalization . 115 3.3 Minimal Polynomial . 128 3.4 Jordan Canonical Forms . 141 i ii CONTENTS 4 Inner Product Spaces 161 4.1 Bilinear and Sesquilinear Forms . 161 4.2 Inner Product Spaces . 167 4.3 Operators on Inner Product Spaces . 180 4.4 Spectral Theorem . 190 Bibliography 203 Preface This book grew out of the lecture notes for the course 2301-610 Linear and Multilinaer Algebra given at the Deparment of Mathematics, Faculty of Science, Chulalongkorn University that I have taught in the past 5 years. Linear Algebra is one of the most important subjects in Mathematics, with numerous applications in pure and applied sciences. A more theoretical linear algebra course will emphasize on linear maps between vector spaces, while an applied-oriented course will mainly work with matrices. Matrices have an ad- vantage of being easier to compute, while it is easier to establish the results by working with linear maps. This book tries to establish a close connection between the two aspects of the subject. I would like to thank my students who took this course with me and proof- read the early drafts. Special thanks go to Chao Kusollerschariya who provide technical help about latex and suggest several easier proofs, and Detchat Samart who supplied the proofs on polynomials. Please do not distribute. Wicharn Lewkeeratiyutkul iii Chapter 1 Vector Spaces In this chapter, we will study an abstract theory of vector spaces and linear maps between vector spaces. A vector space is a generalization of the space of vectors in the 2- or 3-dimensional Euclidean space. We can add two vectors and multiply a vector by a scalar. In a general framework, we still can add vectors, but the scalars don't have to be numbers; they are required to satisfy some algebraic properties which constitute a field. A vector space is defined to be a non-empty set that satisfies certain axioms that generalize the addition and scalar multiplication of 2 3 vectors in R and R . This will allow our theory to be applicable to a wide range of situations. Once we have some vector spaces, we can construct new vector spaces from existing ones by taking subspaces, direct sums and quotient spaces. We then introduce a basis for a vector space, which can be regarded as choosing a coor- dinate system. Once we fix a basis for the vector space, every other element can be written uniquely as a linear combination of elements in the basis. We also study a linear map between vector spaces. It is a function that preserves the vector space operations. If we fix bases for vector spaces V and W , a linear map from V into W can be represented by a matrix. This will allow the computational aspect of the theory. The set of all linear maps between two vector spaces is a vector space itself. The case when the target space is a scalar field is of particular importance, called the dual space of the vector space. 1 2 CHAPTER 1. VECTOR SPACES 1.1 Vector Spaces and Subspaces Definition 1.1.1. A field is a set F with two binary operations, + and ·, and two distinct elements 0 and 1, satisfying the following properties: (i) 8x; y; z 2 F ,(x + y) + z = x + (y + z); (ii) 8x 2 F , x + 0 = 0 + x = x; (iii) 8x 2 F 9y 2 F , x + y = y + x = 0; (iv) 8x; y 2 F , x + y = y + x; (v) 8x; y; z 2 F ,(x · y) · z = x · (y · z); (vi) 8x 2 F , x · 1 = 1 · x = x; (vii) 8x 2 F − f0g 9y 2 F , x · y = y · x = 1; (viii) 8x; y 2 F , x · y = y · x; (ix) 8x; y; z 2 F , x · (y + z) = x · y + x · z. Properties (i)-(iv) say that (F; +) is an abelian group. Properties (v)-(viii) say that (F − f0g; ·) is an abelian group. Property (ix) is the distributive law for the multiplication over addition. Example 1.1.2. Q, R, C, Zp, where p is a prime number, are fields. Definition 1.1.3. A vector space over a field F is a non-empty set V , together with an addition + : V × V ! V and a scalar multiplication · : F × V ! V , satisfying the following properties: (i) 8u; v; w 2 V ,(u + v) + w = u + (v + w); (ii) 90¯ 2 V 8v 2 V , v + 0¯ = 0¯ + v = v; (iii) 8v 2 V 9 − v 2 V , v + (−v) = (−v) + v = 0;¯ (iv) 8u; v 2 V , u + v = v + u; (v) 8m; n 2 F 8v 2 V ,(m + n) · v = m · v + n · v; 1.1. VECTOR SPACES AND SUBSPACES 3 (vi) 8m 2 F 8u; v 2 V , m · (u + v) = m · u + m · v; (vii) 8m; n 2 F 8v 2 V ,(m · n) · v = m · (n · v); (viii) 8v 2 V , 1 · v = v. Proposition 1.1.4. Let V be a vector space over a field F . Then (i) 8v 2 V , 0 · v = 0¯; (ii) 8k 2 F , k · 0¯ = 0¯; (iii) 8v 2 V 8k 2 F , k · v = 0¯ , k = 0 or v = 0¯; (iv) 8v 2 V , (−1) · v = −v. Proof. Let v 2 V and k 2 F . Then (i) 0 · v + v = 0 · v + 1 · v = (0 + 1) · v = 1 · v = v: Hence 0 · v = 0.¯ (ii) k · 0¯ = k · (0 · 0)¯ = (k · 0) · 0¯ = 0 · 0¯ = 0¯: (iii) If k · v = 0¯ and k 6= 0, then 1 1 v = 1 · v = · k · v = (k · v) = 0¯: k k (iv) (−1) · v + v = (−1) · v + 1 · v = (−1 + 1) · v = 0 · v = 0¯: Hence (−1) · v = −v. Remark. When there is no confusion, we will denote the additive identity 0¯ simply by 0. Example 1.1.5. The following sets with the given addition and scalar multipli- cation are vector spaces. (i) The set of n-tuples whose entries are in F : n F = f(x1; x2; : : : ; xn) j xi 2 F; i = 1; 2; : : : ; ng; with the addition and scalar multiplication given by (x1; : : : ; xn) + (y1; : : : ; yn) = (x1 + y1; : : : ; xn + yn); k(x1; : : : ; xn) = (kx1; : : : ; kxn): 4 CHAPTER 1. VECTOR SPACES (ii) The set of m × n matrices whose entries are in F : Mm×n(F ) = f[aij]m×n j aij 2 F; i = 1; 2; : : : ; m; j = 1; 2; : : : ; ng ; with the usual matrix addition and scalar multiplication. Note that if m = n, we write Mn(F ) for Mn×n(F ). (iii) The set of polynomials over F : n F [x] = fa0 + a1x + ··· + anx j n 2 N [ f0g; ai 2 F; i = 0; 1; : : : ; ng: with the usual polynomial addition and scalar multiplication. (iv) The set of sequences over F : S = f(xn) j xn 2 F for all n 2 Ng; with the addition and scalar multiplication given by (xn) + (yn) = (xn + yn); k(xn) = (kxn): Here we are not concerned with convergence of the sequences. (v) Let X be a non-empty set. The set of F -valued functions on X F(X) = ff : X ! F g with the following addition and scalar multiplication: (f + g)(x) = f(x) + g(x)(x 2 X); (kf)(x) = kf(x)(x 2 X): Once we have some vector spaces to begin with, there are several methods to construct new vector spaces from the old ones. We first consider a subset which is also a vector space under the same operations. Definition 1.1.6. Let V be a vector space over a field F .A subspace of V is a subset of V which is also a vector space over F under the same operations. We write W ≤ V to denote that W is a subspace of V . 1.1. VECTOR SPACES AND SUBSPACES 5 Proposition 1.1.7. Let W be a non-empty subset of a vector space V over a field F . Then the following statements are equivalent: (i) W is a subspace of V ; (ii) 8v 2 W 8w 2 W , v + w 2 W and 8v 2 W 8k 2 F; kv 2 W ; (iii) 8v 2 W 8w 2 W 8α 2 F 8β 2 F , αv + βw 2 W . Proof. We will establish (i) , (ii) and (ii) , (iii). (i) ) (ii). Assume W is a subspace of V . Then W is a vector space over a field F under the restriction of the addition and the scalar multiplication to W . Hence v + w 2 W and kv 2 W for any v; w 2 W and any k 2 F . (ii) ) (i). Assume (ii) holds. Since the axioms of a vector space hold for all elements in V , they also hold for elements in W as well. Since W is non-empty, we can choose an element v 2 W . Then 0¯ = 0 · v 2 W . Moreover, for any v 2 W , −v = (−1) · v 2 W .
Recommended publications
  • Multilinear Algebra and Applications July 15, 2014
    Multilinear Algebra and Applications July 15, 2014. Contents Chapter 1. Introduction 1 Chapter 2. Review of Linear Algebra 5 2.1. Vector Spaces and Subspaces 5 2.2. Bases 7 2.3. The Einstein convention 10 2.3.1. Change of bases, revisited 12 2.3.2. The Kronecker delta symbol 13 2.4. Linear Transformations 14 2.4.1. Similar matrices 18 2.5. Eigenbases 19 Chapter 3. Multilinear Forms 23 3.1. Linear Forms 23 3.1.1. Definition, Examples, Dual and Dual Basis 23 3.1.2. Transformation of Linear Forms under a Change of Basis 26 3.2. Bilinear Forms 30 3.2.1. Definition, Examples and Basis 30 3.2.2. Tensor product of two linear forms on V 32 3.2.3. Transformation of Bilinear Forms under a Change of Basis 33 3.3. Multilinear forms 34 3.4. Examples 35 3.4.1. A Bilinear Form 35 3.4.2. A Trilinear Form 36 3.5. Basic Operation on Multilinear Forms 37 Chapter 4. Inner Products 39 4.1. Definitions and First Properties 39 4.1.1. Correspondence Between Inner Products and Symmetric Positive Definite Matrices 40 4.1.1.1. From Inner Products to Symmetric Positive Definite Matrices 42 4.1.1.2. From Symmetric Positive Definite Matrices to Inner Products 42 4.1.2. Orthonormal Basis 42 4.2. Reciprocal Basis 46 4.2.1. Properties of Reciprocal Bases 48 4.2.2. Change of basis from a basis to its reciprocal basis g 50 B B III IV CONTENTS 4.2.3.
    [Show full text]
  • Causalx: Causal Explanations and Block Multilinear Factor Analysis
    To appear: Proc. of the 2020 25th International Conference on Pattern Recognition (ICPR 2020) Milan, Italy, Jan. 10-15, 2021. CausalX: Causal eXplanations and Block Multilinear Factor Analysis M. Alex O. Vasilescu1;2 Eric Kim2;1 Xiao S. Zeng2 [email protected] [email protected] [email protected] 1Tensor Vision Technologies, Los Angeles, California 2Department of Computer Science,University of California, Los Angeles Abstract—By adhering to the dictum, “No causation without I. INTRODUCTION:PROBLEM DEFINITION manipulation (treatment, intervention)”, cause and effect data Developing causal explanations for correct results or for failures analysis represents changes in observed data in terms of changes from mathematical equations and data is important in developing in the causal factors. When causal factors are not amenable for a trustworthy artificial intelligence, and retaining public trust. active manipulation in the real world due to current technological limitations or ethical considerations, a counterfactual approach Causal explanations are germane to the “right to an explanation” performs an intervention on the model of data formation. In the statute [15], [13] i.e., to data driven decisions, such as those case of object representation or activity (temporal object) rep- that rely on images. Computer graphics and computer vision resentation, varying object parts is generally unfeasible whether problems, also known as forward and inverse imaging problems, they be spatial and/or temporal. Multilinear algebra, the algebra have been cast as causal inference questions [40], [42] consistent of higher order tensors, is a suitable and transparent framework for disentangling the causal factors of data formation. Learning a with Donald Rubin’s quantitative definition of causality, where part-based intrinsic causal factor representations in a multilinear “A causes B” means “the effect of A is B”, a measurable framework requires applying a set of interventions on a part- and experimentally repeatable quantity [14], [17].
    [Show full text]
  • 28. Exterior Powers
    28. Exterior powers 28.1 Desiderata 28.2 Definitions, uniqueness, existence 28.3 Some elementary facts 28.4 Exterior powers Vif of maps 28.5 Exterior powers of free modules 28.6 Determinants revisited 28.7 Minors of matrices 28.8 Uniqueness in the structure theorem 28.9 Cartan's lemma 28.10 Cayley-Hamilton Theorem 28.11 Worked examples While many of the arguments here have analogues for tensor products, it is worthwhile to repeat these arguments with the relevant variations, both for practice, and to be sensitive to the differences. 1. Desiderata Again, we review missing items in our development of linear algebra. We are missing a development of determinants of matrices whose entries may be in commutative rings, rather than fields. We would like an intrinsic definition of determinants of endomorphisms, rather than one that depends upon a choice of coordinates, even if we eventually prove that the determinant is independent of the coordinates. We anticipate that Artin's axiomatization of determinants of matrices should be mirrored in much of what we do here. We want a direct and natural proof of the Cayley-Hamilton theorem. Linear algebra over fields is insufficient, since the introduction of the indeterminate x in the definition of the characteristic polynomial takes us outside the class of vector spaces over fields. We want to give a conceptual proof for the uniqueness part of the structure theorem for finitely-generated modules over principal ideal domains. Multi-linear algebra over fields is surely insufficient for this. 417 418 Exterior powers 2. Definitions, uniqueness, existence Let R be a commutative ring with 1.
    [Show full text]
  • Multilinear Algebra in Data Analysis: Tensors, Symmetric Tensors, Nonnegative Tensors
    Multilinear Algebra in Data Analysis: tensors, symmetric tensors, nonnegative tensors Lek-Heng Lim Stanford University Workshop on Algorithms for Modern Massive Datasets Stanford, CA June 21–24, 2006 Thanks: G. Carlsson, L. De Lathauwer, J.M. Landsberg, M. Mahoney, L. Qi, B. Sturmfels; Collaborators: P. Comon, V. de Silva, P. Drineas, G. Golub References http://www-sccm.stanford.edu/nf-publications-tech.html [CGLM2] P. Comon, G. Golub, L.-H. Lim, and B. Mourrain, “Symmetric tensors and symmetric tensor rank,” SCCM Tech. Rep., 06-02, 2006. [CGLM1] P. Comon, B. Mourrain, L.-H. Lim, and G.H. Golub, “Genericity and rank deficiency of high order symmetric tensors,” Proc. IEEE Int. Con- ference on Acoustics, Speech, and Signal Processing (ICASSP), 31 (2006), no. 3, pp. 125–128. [dSL] V. de Silva and L.-H. Lim, “Tensor rank and the ill-posedness of the best low-rank approximation problem,” SCCM Tech. Rep., 06-06 (2006). [GL] G. Golub and L.-H. Lim, “Nonnegative decomposition and approximation of nonnegative matrices and tensors,” SCCM Tech. Rep., 06-01 (2006), forthcoming. [L] L.-H. Lim, “Singular values and eigenvalues of tensors: a variational approach,” Proc. IEEE Int. Workshop on Computational Advances in Multi- Sensor Adaptive Processing (CAMSAP), 1 (2005), pp. 129–132. 2 What is not a tensor, I • What is a vector? – Mathematician: An element of a vector space. – Physicist: “What kind of physical quantities can be rep- resented by vectors?” Answer: Once a basis is chosen, an n-dimensional vector is something that is represented by n real numbers only if those real numbers transform themselves as expected (ie.
    [Show full text]
  • Multilinear Algebra
    Appendix A Multilinear Algebra This chapter presents concepts from multilinear algebra based on the basic properties of finite dimensional vector spaces and linear maps. The primary aim of the chapter is to give a concise introduction to alternating tensors which are necessary to define differential forms on manifolds. Many of the stated definitions and propositions can be found in Lee [1], Chaps. 11, 12 and 14. Some definitions and propositions are complemented by short and simple examples. First, in Sect. A.1 dual and bidual vector spaces are discussed. Subsequently, in Sects. A.2–A.4, tensors and alternating tensors together with operations such as the tensor and wedge product are introduced. Lastly, in Sect. A.5, the concepts which are necessary to introduce the wedge product are summarized in eight steps. A.1 The Dual Space Let V be a real vector space of finite dimension dim V = n.Let(e1,...,en) be a basis of V . Then every v ∈ V can be uniquely represented as a linear combination i v = v ei , (A.1) where summation convention over repeated indices is applied. The coefficients vi ∈ R arereferredtoascomponents of the vector v. Throughout the whole chapter, only finite dimensional real vector spaces, typically denoted by V , are treated. When not stated differently, summation convention is applied. Definition A.1 (Dual Space)Thedual space of V is the set of real-valued linear functionals ∗ V := {ω : V → R : ω linear} . (A.2) The elements of the dual space V ∗ are called linear forms on V . © Springer International Publishing Switzerland 2015 123 S.R.
    [Show full text]
  • Multilinear Algebra for Visual Geometry
    multilinear algebra for visual geometry Alberto Ruiz http://dis.um.es/~alberto DIS, University of Murcia MVIGRO workshop Berlin, june 28th 2013 contents 1. linear spaces 2. tensor diagrams 3. Grassmann algebra 4. multiview geometry 5. tensor equations intro diagrams multiview equations linear algebra the most important computational tool: linear = solvable nonlinear problems: linearization + iteration multilinear problems are easy (' linear) visual geometry is multilinear (' solved) intro diagrams multiview equations linear spaces I objects are represented by arrays of coordinates (depending on chosen basis, with proper rules of transformation) I linear transformations are extremely simple (just multiply and add), and invertible in closed form (in least squares sense) I duality: linear transformations are also a linear space intro diagrams multiview equations linear spaces objects are linear combinations of other elements: i vector x has coordinates x in basis B = feig X i x = x ei i Einstein's convention: i x = x ei intro diagrams multiview equations change of basis 1 1 0 0 c1 c2 3 1 0 i [e1; e2] = [e1; e2]C; C = 2 2 = ej = cj ei c1 c2 1 2 x1 x1 x01 x = x1e + x2e = [e ; e ] = [e ; e ]C C−1 = [e0 ; e0 ] 1 2 1 2 x2 1 2 x2 1 2 x02 | 0{z 0 } [e1;e2] | {z } 2x013 4x025 intro diagrams multiview equations covariance and contravariance if the basis transforms according to C: 0 0 [e1; e2] = [e1; e2]C vector coordinates transform according to C−1: x01 x1 = C−1 x02 x2 in the previous example: 7 3 1 2 2 0;4 −0;2 7 = ; = 4 1 2 1 1 −0;2 0;6 4 intro
    [Show full text]
  • Multilinear Algebra a Bilinear Map in Chapter I
    ·~ ...,... .chapter II 1 60 MULTILINEAR ALGEBRA Here a:"~ E v,' a:J E VJ for j =F i, and X EF. Thus, a function rjl: v 1 X ••• X v n --+ v is a multilinear mapping if for all i e { 1, ... , n} and for all vectors a: 1 e V 1> ... , a:1_ 1 eV1_h a:1+ 1eV1+ 1 , ••. , a:.ev•• we have rjl(a: 1 , ... ,a:1_ 1, ··, a 1+ 1, ... , a:.)e HomJ>{V" V). Before proceeding further, let us give a few examples of multilinear maps. Example 1. .2: Ifn o:= 1, then a function cf>: V 1 ..... Vis a multilinear mapping if and only if r/1 is a linear transformation. Thus, linear tra~sformations are just special cases of multilinear maps. 0 Example 1.3: If n = 2, then a multilinear map r/1: V 1 x V 2 ..... V is what we called .Multilinear Algebra a bilinear map in Chapter I. For a concrete example, we have w: V x v• ..... F given by cv(a:, T) = T(a:) (equation 6.6 of Chapter 1). 0 '\1 Example 1.4: The determinant, det{A), of an n x n matrix A can be thought of .l as a multilinear mapping cf>: F .. x · · · x P--+ F in the following way: If 1. MULTILINEAR MAPS AND TENSOR PRODUCTS a: (a , ... , a .) e F" for i 1, ... , o, then set rjl(a: , ... , a:.) det(a J)· The fact "'I 1 = 11 1 = 1 = 1 that rJ> is multilinear is an easy computation, which we leave as an exercise at the In Chapter I, we dealt mainly with functions of one variable.
    [Show full text]
  • Cross Products, Automorphisms, and Gradings 3
    CROSS PRODUCTS, AUTOMORPHISMS, AND GRADINGS ALBERTO DAZA-GARC´IA, ALBERTO ELDUQUE, AND LIMING TANG Abstract. The affine group schemes of automorphisms of the multilinear r- fold cross products on finite-dimensional vectors spaces over fields of character- istic not two are determined. Gradings by abelian groups on these structures, that correspond to morphisms from diagonalizable group schemes into these group schemes of automorphisms, are completely classified, up to isomorphism. 1. Introduction Eckmann [Eck43] defined a vector cross product on an n-dimensional real vector space V , endowed with a (positive definite) inner product b(u, v), to be a continuous map X : V r −→ V (1 ≤ r ≤ n) satisfying the following axioms: b X(v1,...,vr), vi =0, 1 ≤ i ≤ r, (1.1) bX(v1,...,vr),X(v1,...,vr) = det b(vi, vj ) , (1.2) There are very few possibilities. Theorem 1.1 ([Eck43, Whi63]). A vector cross product exists in precisely the following cases: • n is even, r =1, • n ≥ 3, r = n − 1, • n =7, r =2, • n =8, r =3. Multilinear vector cross products X on vector spaces V over arbitrary fields of characteristic not two, relative to a nondegenerate symmetric bilinear form b(u, v), were classified by Brown and Gray [BG67]. These are the multilinear maps X : V r → V (1 ≤ r ≤ n) satisfying (1.1) and (1.2). The possible pairs (n, r) are again those in Theorem 1.1. The exceptional cases: (n, r) = (7, 2) and (8, 3), are intimately related to the arXiv:2006.10324v1 [math.RT] 18 Jun 2020 octonion, or Cayley, algebras.
    [Show full text]
  • Multibraces on the Hochschild Space  Fusun( Akman Department of Mathematics and Statistics, Coastal Carolina University, P.O
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Pure and Applied Algebra 167 (2002) 129–163 www.elsevier.com/locate/jpaa Multibraces on the Hochschild space Fusun( Akman Department of Mathematics and Statistics, Coastal Carolina University, P.O. Box 261954, Conway, SC 29528-6054, USA Received 24 March 1997; received in revised form8 January 2001 Communicated by J. Huebschmann Abstract We generalize the coupled braces {x}{y} of Gerstenhaber and {x}{y1;:::;yn} of Gersten- haber and Getzler depicting compositions of multilinear maps in the Hochschild space C•(A)= Hom(T •A; A) of a graded vector space A to expressions of the form {x(1);:::;x(1)}··· 1 i1 {x(m);:::;x(m)} on the extended space C•;•(A) = Hom(T •A; T •A). We apply multibraces to 1 im study associative and Lie algebras, Batalin–Vilkovisky algebras, and A∞ and L∞ algebras: most importantly, we introduce a new variant of the master identity for L∞ algebras in the form {m˜ ◦ m˜}{sa1}{sa2}···{san} = 0. Using the new language, we also explain the signiÿcance of this notation for bialgebras (coassociativity is simply ◦=0), comment on the bialgebra coho- mology di>erential of Gerstenhaber and Schack, and deÿne multilinear higher-order di>erential operators with respect to multilinear maps. c 2002 Elsevier Science B.V. All rights reserved. MSC: 17A30; 17A40; 17A42; 16W55; 16W30 1. Introduction Occasionally, an algebraic identity we encounter in mathematical physics or homo- logical algebra boils down to the following: the composition of a multilinear map with another one, or a sumof such compositions,is identically zero.
    [Show full text]
  • Tensors in 10 Minutes Or Less
    Tensors In 10 Minutes Or Less Sydney Timmerman Under the esteemed mentorship of Apurva Nakade December 5, 2018 JHU Math Directed Reading Program Theorem If there is a relationship between two tensor fields in one coordinate system, that relationship holds in certain other coordinate systems This means the laws of physics can be expressed as relationships between tensors! Why tensors are cool, kids This means the laws of physics can be expressed as relationships between tensors! Why tensors are cool, kids Theorem If there is a relationship between two tensor fields in one coordinate system, that relationship holds in certain other coordinate systems Why tensors are cool, kids Theorem If there is a relationship between two tensor fields in one coordinate system, that relationship holds in certain other coordinate systems This means the laws of physics can be expressed as relationships between tensors! Example Einstein's field equations govern general relativity, 8πG G = T µν c4 µν 0|{z} 0|{z} (2) tensor (2) tensor What tensors look like What tensors look like Example Einstein's field equations govern general relativity, 8πG G = T µν c4 µν 0|{z} 0|{z} (2) tensor (2) tensor Let V be an n-dimensional vector space over R Definition Given u; w 2 V and λ 2 R, a covector is a map α : V ! R satisfying α(u + λw) = α(u) + λα(w) Definition Covectors form the dual space V ∗ The Dual Space Definition Given u; w 2 V and λ 2 R, a covector is a map α : V ! R satisfying α(u + λw) = α(u) + λα(w) Definition Covectors form the dual space V ∗ The Dual Space Let V be
    [Show full text]
  • Numerical Multilinear Algebra I
    Numerical Multilinear Algebra I Lek-Heng Lim University of California, Berkeley January 5{7, 2009 L.-H. Lim (ICM Lecture) Numerical Multilinear Algebra I January 5{7, 2009 1 / 55 Hope Past 50 years, Numerical Linear Algebra played indispensable role in the statistical analysis of two-way data, the numerical solution of partial differential equations arising from vector fields, the numerical solution of second-order optimization methods. Next step | development of Numerical Multilinear Algebra for the statistical analysis of multi-way data, the numerical solution of partial differential equations arising from tensor fields, the numerical solution of higher-order optimization methods. L.-H. Lim (ICM Lecture) Numerical Multilinear Algebra I January 5{7, 2009 2 / 55 DARPA mathematical challenge eight One of the twenty three mathematical challenges announced at DARPA Tech 2007. Problem Beyond convex optimization: can linear algebra be replaced by algebraic geometry in a systematic way? Algebraic geometry in a slogan: polynomials are to algebraic geometry what matrices are to linear algebra. Polynomial f 2 R[x1;:::; xn] of degree d can be expressed as > > f (x) = a0 + a1 x + x A2x + A3(x; x; x) + ··· + Ad (x;:::; x): n n×n n×n×n n×···×n a0 2 R; a1 2 R ; A2 2 R ; A3 2 R ;:::; Ad 2 R . Numerical linear algebra: d = 2. Numerical multilinear algebra: d > 2. L.-H. Lim (ICM Lecture) Numerical Multilinear Algebra I January 5{7, 2009 3 / 55 Motivation Why multilinear: \Classification of mathematical problems as linear and nonlinear is like classification of the Universe as bananas and non-bananas." Nonlinear | too general.
    [Show full text]
  • Tensor)Algebraic Frameworkfor Computer Graphics,Computer Vision, and Machine Learning
    AMULTILINEAR (TENSOR)ALGEBRAIC FRAMEWORK FOR COMPUTER GRAPHICS,COMPUTER VISION, AND MACHINE LEARNING by M. Alex O. Vasilescu A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Computer Science University of Toronto Copyright c 2009 by M. Alex O. Vasilescu A Multilinear (Tensor) Algebraic Framework for Computer Graphics, Computer Vision, and Machine Learning M. Alex O. Vasilescu Doctor of Philosophy Graduate Department of Computer Science University of Toronto 2009 Abstract This thesis introduces a multilinear algebraic framework for computer graphics, computer vision, and machine learning, particularly for the fundamental purposes of image synthesis, analysis, and recog- nition. Natural images result from the multifactor interaction between the imaging process, the scene illumination, and the scene geometry. We assert that a principled mathematical approach to disentan- gling and explicitly representing these causal factors, which are essential to image formation, is through numerical multilinear algebra, the algebra of higher-order tensors. Our new image modeling framework is based on (i) a multilinear generalization of principal compo- nents analysis (PCA), (ii) a novel multilinear generalization of independent components analysis (ICA), and (iii) a multilinear projection for use in recognition that maps images to the multiple causal factor spaces associated with their formation. Multilinear PCA employs a tensor extension of the conventional matrix singular value decomposition
    [Show full text]