Bushrock Removal and the Impacts on Native Wildlife

Total Page:16

File Type:pdf, Size:1020Kb

Bushrock Removal and the Impacts on Native Wildlife Bushrock removal and the impacts on native wildlife The Pink-tailed Worm-lizard Aprasia parapulchella is a small, slender legless lizard that is threatened by bushrock removal in many parts of its geographical range. In some areas, landholders are fencing off rocky areas to protect these rare lizards from livestock grazing and rock disturbance. Photo: Damian Michael What is bushrock How does bushrock form? Why is bushrock Bushrock is loose rock that is Bushrock forms when bedrock important? found on the surface of the protrudes above the Earth’s surface Bushrock provides a wide range of soil or on other rock surfaces. and is exposed to rain and sunlight. native animals with shelter, protection Loose rocks are commonly Heat, water and chemical reactions from predators and refuge from fire or found on the summits, slopes cause large rock formations to break extreme weather conditions. Bushrock and bases of rocky outcrops, into smaller blocks. Bushrock may also provides animals such as geckos, rock escarpments and other rock take thousands of years to form, skinks, dunnarts, spiders and scorpions formations, but this habitat is although some processes such as with places to forage, lay their eggs also found in bushland and volcanism can disperse small rocks, or give birth to live young. some agricultural landscapes. and fire and ice may cause large rocks to crack and split into smaller Bushrock provides habitat for pieces. Bushrock typically ranges mosses, lichens and ferns and serves in size from small ‘football-sized’ an important ecosystem function rocks to boulders over 1 m³. by helping to maintain macro and micro environments by preserving soil moisture, stabilising slopes, and reducing soil erosion. Bushrock that is left in the landscape reduces the effects of fire and improves the germination rate of native seeds. Basalt rocks that have been removed from grasslands in western Victoria and placed along fence lines. This environment was once the habitat of the Grassland Earless Dragon, a threatened species that is now considered extinct in Victoria due to the loss of its grassland habitat. Photo: Janet Michael Bushrock collection Other threatening • Illegal reptile collectors. Some rock-dwelling species are rare Since European settlement, processes or attractive and as such these bushrock has been collected Several other activities and processes species are targeted by illegal and used in landscaping and can adversely affect native animals reptile collectors. Collectors often gardening to re-create natural that use bushrock. use crow bars and jacks to prise bush settings, for building open rock crevices in search of • Rock rolling or flipping. Bushrock fences or retaining walls, and highly-prized species. to create waterfalls and other can be damaged by wildlife rock features. A large number enthusiasts rolling or flipping rocks • Feral animals. Feral pigs and of new housing estates use seeking to take photographs of other hard-hoofed animals such locally sourced bushrock in frogs, reptiles and invertebrates as goats and cattle can cause the landscape designs. such as scorpions. Bushrock that is substantial damage to surface flipped and not replaced back into rocks, especially loose rocks that Bushrock is generally sourced the original soil cavity can impact lie in contact with the bedrock and obtained by licenced native wildlife as the disturbed on sloping ground. operators from quarries or from rocks may become unsuitable private property. However, in shelter sites, alter thermal • Inappropriate fire regimes. High some cases, bushrock is illegally conditions and create spaces intensity fire can cause some rock sourced from national parks that favour predators. types to explode and shatter into and conservation reserves. smaller pieces. Extreme heat can • Vandalism. In some regions, rocks also cause loose rocks to flake In some agricultural regions of that lie on bedrock are damaged away from large boulders and Australia, bushrock has been by vandals attempting to dislodge soot from the fire can damage removed from paddocks to create and throw rocks over cliff edges artefacts and Indigenous rock art. arable cropping land, increase or down steep slopes. Outcrops pasture and improve crop yields. close to walking trails, picnic areas Disturbing bushrock can also In recent times, new machinery and camping grounds, and those be harmful to humans as many has been developed to rip and on the outskirts of cities and rural venomous snakes, scorpions, bull crush surface rocks and bury towns are more likely to suffer ants, centipedes and wasps shelter them below the soil level. from vandalism than outcrops in beneath loose surface rocks. In Western Australia, South more remote parts of Australia. Australia and Victoria, large machines such as the Reefinator are towed behind powerful tractors and are converting rocky paddocks and low rocky outcrops into arable land at a rate of one hr/ha. The Reefinator works like a cheese grater, ripping the rock but not allowing large chunks to come to the surface. The largest rocks that come up are about the size of a football, and are then crushed into gravel by the roller. This image illustrates various rocks that have been flipped and not replaced back to their original positions. Many species shelter within the subterranean cavities that form beneath surface rocks. Disturbing embedded rocks impacts on a range of animals as once the rocks are displaced, they may become unsuitable shelter sites or expose sheltering wildlife to predators Photo: Damian Michael What species are threatened by bushrock removal? Bushrock removal has been implicated Aprasia parapulchella, Broad-headed affected by bushrock removal, in the decline of several threatened Snake Hoplocephalus bungaroides, including Granite Boronia Boronia reptile species, including the Red-crowned Toadlet Pseudophryne granitica and Hairy Geebung Persoonia Grassland Earless Dragon australis, Little Whip Snake Parasuta hirsute. The actual number of plants Tympanocryptis pinguicolla, flagellum and Border Thick-tailed and animals that are affected by Striped Legless Lizard Delma impar, Gecko Uvidicolus sphyrurus. Several bushrock removal in different Pink-tailed Worm-lizard plant species are also adversely parts of Australia is considerably higher. Rocks that lie in contact with rock surfaces are a critical habitat for threatened species such as the Broad-headed Snake and Granite Thick-tailed Gecko, which have declined due to illegal bushrock collection. Photo: David Michael Bushrock removal has been implicated in the decline of many threatened reptile species. Further Information For more information contact Dr Damian Michael [email protected] Fenner School of Environment and Society, The Australian National University. For more information on Research Project 1.2.1.6 Enhancing critical habitat for the Pink-tailed Worm-lizard in agricultural landscapes see the TSR Hub website. This project is supported through funding from the Australian Government’s National Environmental Science Programme..
Recommended publications
  • Western Australian Museum Foundation
    western australian museum ANNUAL REPORT 2005-2006 Abominable Snowman chatting with friends. This creature was a standout feature at an exhibition staged by animatronics specialist John Cox: How to Make a Monster: The Art and Technology of Animatronics. Photograph: Norm Bailey. ABOUT THIS REPORT This Annual Report is available in PDF format on the Western Australian Museum website www.museum.wa.gov.au Copies are available on request in alternate formats. Copies are archived in the State Library of Western Australia, the National Library Canberra and in the Western Australian Museum Library located at the Collection and Research Centre, Welshpool. For enquiries, comments, or more information about staff or projects mentioned in this report, please visit the Western Australian Museum website or contact the Museum at the address below. Telephone 9212 3700. PUBLISHED BY THE WESTERN AUSTRALIAN MUSEUM Locked Bag 49, Welshpool DC, Western Australia 6986 49 Kew Streeet, Welshpool, Western Australia 6106 www.museum.wa.gov.au ISSNISSN 2204-61270083-8721 © Western Autralian Museum, 2006 Contents Letter of transmittal 1 COMPLIANCE REQUIREMENTS Message from the Minister 2 Highlights – Western Australian Museum 2005-06 3 Auditor’s opinion financial statements 39 The year in review – Chief Executive Officer 5 Certification of financial statements 40 MUSEUM AT A GLANCE 7 Notes to the financial statements 45 INTRODUCING THE Certification of performance indicators 73 8 WESTERN AUSTRALIAN MUSEUM Key performance indicators 74 REPORT ON OPERATIONS THE WESTERN
    [Show full text]
  • Special Issue3.7 MB
    Volume Eleven Conservation Science 2016 Western Australia Review and synthesis of knowledge of insular ecology, with emphasis on the islands of Western Australia IAN ABBOTT and ALLAN WILLS i TABLE OF CONTENTS Page ABSTRACT 1 INTRODUCTION 2 METHODS 17 Data sources 17 Personal knowledge 17 Assumptions 17 Nomenclatural conventions 17 PRELIMINARY 18 Concepts and definitions 18 Island nomenclature 18 Scope 20 INSULAR FEATURES AND THE ISLAND SYNDROME 20 Physical description 20 Biological description 23 Reduced species richness 23 Occurrence of endemic species or subspecies 23 Occurrence of unique ecosystems 27 Species characteristic of WA islands 27 Hyperabundance 30 Habitat changes 31 Behavioural changes 32 Morphological changes 33 Changes in niches 35 Genetic changes 35 CONCEPTUAL FRAMEWORK 36 Degree of exposure to wave action and salt spray 36 Normal exposure 36 Extreme exposure and tidal surge 40 Substrate 41 Topographic variation 42 Maximum elevation 43 Climate 44 Number and extent of vegetation and other types of habitat present 45 Degree of isolation from the nearest source area 49 History: Time since separation (or formation) 52 Planar area 54 Presence of breeding seals, seabirds, and turtles 59 Presence of Indigenous people 60 Activities of Europeans 63 Sampling completeness and comparability 81 Ecological interactions 83 Coups de foudres 94 LINKAGES BETWEEN THE 15 FACTORS 94 ii THE TRANSITION FROM MAINLAND TO ISLAND: KNOWNS; KNOWN UNKNOWNS; AND UNKNOWN UNKNOWNS 96 SPECIES TURNOVER 99 Landbird species 100 Seabird species 108 Waterbird
    [Show full text]
  • Evolution of the Iguanine Lizards (Sauria, Iguanidae) As Determined by Osteological and Myological Characters David F
    Brigham Young University Science Bulletin, Biological Series Volume 12 | Number 3 Article 1 1-1971 Evolution of the iguanine lizards (Sauria, Iguanidae) as determined by osteological and myological characters David F. Avery Department of Biology, Southern Connecticut State College, New Haven, Connecticut Wilmer W. Tanner Department of Zoology, Brigham Young University, Provo, Utah Follow this and additional works at: https://scholarsarchive.byu.edu/byuscib Part of the Anatomy Commons, Botany Commons, Physiology Commons, and the Zoology Commons Recommended Citation Avery, David F. and Tanner, Wilmer W. (1971) "Evolution of the iguanine lizards (Sauria, Iguanidae) as determined by osteological and myological characters," Brigham Young University Science Bulletin, Biological Series: Vol. 12 : No. 3 , Article 1. Available at: https://scholarsarchive.byu.edu/byuscib/vol12/iss3/1 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Brigham Young University Science Bulletin, Biological Series by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. S-^' Brigham Young University f?!AR12j97d Science Bulletin \ EVOLUTION OF THE IGUANINE LIZARDS (SAURIA, IGUANIDAE) AS DETERMINED BY OSTEOLOGICAL AND MYOLOGICAL CHARACTERS by David F. Avery and Wilmer W. Tanner BIOLOGICAL SERIES — VOLUME Xil, NUMBER 3 JANUARY 1971 Brigham Young University Science Bulletin
    [Show full text]
  • Morphological and Molecular Assessment of Aprasia Fusca and A
    RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 28 144–163 (2013) Morphological and molecular assessment of Aprasia fusca and A. rostrata (Squamata: Pygopodidae), with a description of a new species from the Lake MacLeod region, Western Australia Brad Maryan¹,4, Brian G. Bush² and Mark Adams³ ¹ Biologic Environmental Survey, 50B Angove Street, North Perth, Western Australia 6006, Australia. Email: [email protected] ² Snakes Harmful and Harmless, 9 Birch Place, Stoneville, Western Australia 6554, Australia. ³ Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia. 4 Department of Terrestrial Zoology, Western Australian Museum, 49 Kew Street, Welshpool, Western Australia 6106, Australia. ABSTRACT – The Australian pygopodid genus Aprasia comprises a group of small, morphologically conservative, worm-like fossorial lizards, many of which are distributed along the west coast of the continent. This study re-examines the taxonomic distinctiveness of the two most northerly occurring species in Western Australia: A. fusca and A. rostrata, which are very similar in morphology. A combined morphological and allozyme analysis revealed these two species to be conspecifi c with A. rostrata considered a senior synonym of A. fusca. As a consequence, we have redescribed A. rostrata. The allozyme analysis also revealed a new species, named here as Aprasia litorea sp. nov. This species occurs in the Lake Macleod region, well to the south of its congener, A. rostrata, and the two species are diagnosable using a conservative suite of morphological and meristic characters. KEYWORDS: worm lizard, synonymy, Aprasia litorea sp. nov., North West Cape, Montebello Islands, Barrow Island, allozyme electrophoresis INTRODUCTION the fi rst British atomic weapons (Hill 1955).
    [Show full text]
  • Two New Legless Lizards from Eastern Australia (Reptilia: Squamata: Sauria: Pygopodidae)
    Australasian Journal of Herpetology 3 Australasian Journal of Herpetology 30:3-6. ISSN 1836-5698 (Print) Published 10 November 2015. ISSN 1836-5779 (Online) Two new legless lizards from Eastern Australia (Reptilia: Squamata: Sauria: Pygopodidae). RAYMOND T. HOSER 488 Park Road, Park Orchards, Victoria, 3134, Australia. Phone: +61 3 9812 3322 Fax: 9812 3355 E-mail: snakeman (at) snakeman.com.au Received 11 August 2015, Accepted 15 August 2015, Published 10 November September 2015. ABSTRACT Two new subspecies of legless lizards from south-eastern Australia within the genus Aprasia Gray, 1839 are formally identified and named according to the rules of the International Code of Zoological Nomenclature. Both are morphologically distinct from their nominate forms and both are allopatric in distribution with respect to the nominate forms. One of these populations, this being from Bendigo, Victoria and currently referred to as a population of Aprasia parapulchella, Kluge, 1974 has long been recognized as being taxonomically distinct from the nominate form (Osborne and Jones, 1995). The second taxon, referred to as being within Aprasia inaurita Kluge, 1974, was found to be distinct for the first time as part of this audit. Keywords: Taxonomy; nomenclature; Lizards; Aprasia; parapulchella; pseudopulchella; inaurita; new subspecies; gibbonsi; rentoni. INTRODUCTION MATERIALS, METHODS AND RESULTS As part of an audit of the reptiles in Victoria, Australia, two The audit consisted of looking at specimens from all relevant regionally isolated of legless lizards in the genus Aprasia Gray, species, herein effectively treated as two groups, namely A. 1839 were inspected with a view to assess their relationships inaurita and A.
    [Show full text]
  • Aprasia Rostrata Rostrata
    Listing Advice Aprasia rostrata rostrata Taxonomy Aprasia rostrata rostrata (Monte Bello worm-lizard) was described using specimens from Hermite Island in Western Australia (Parker 1956) and was presumed to be endemic to the Montebello (or Monte Bello) Islands (Cogger 2000; TSSC 2008). A proposal to elevate to a species (Kluge 1974) was not accepted by all authorities (ABRS 2017; Cogger 2000) and was not followed in the EPBC Act list of threatened species. More recently, A. r. rostrata is not considered a valid taxon. Maryan and colleagues (2013) conducted a taxonomic review of the Aprasia repens group, and A. r. rostrata and Aprasia rostrata fusca have been subsumed into A. rostrata (ABRS 2017; Maryan et al., 2013). Aprasia rostrata occurs on Hermite and Trimouille Islands in the Montebello Islands and Barrow Island off the Pilbara coast and on the North West Cape, extending south to Yardie Creek and Learmonth Air Weapons Range and inland to Bullara Station (Maryan et al. 2013). Aprasia rostrata appears to be widespread on the North West Cape as suggested by Storr and Hanlon (1980, cited in Maryan et al., 2013) and the Western Australian Threatened Species Scientific Committee has accepted that it does not meet the criteria for listing under IUCN criteria. Reason for conservation assessment by the Threatened Species Scientific Committee Aprasia rostrata rostrata is listed as Vulnerable under the Environment Protection and Biodiversity Conservation Act 1999 (Cwlth) (EPBC Act). The subspecies is eligible for listing as prior to the commencement of the EPBC Act, it was listed as Vulnerable under Schedule 1 of the Endangered Species Protection Act 1992 (Cwlth).
    [Show full text]
  • Aprasia Picturata (Squamata: Pygopodidae), a New Legless Lizard from the Interior of Western Australia
    Journal of the Royal Society of Western Australia, 82:75-77, 1999 Aprasia picturata (Squamata: Pygopodidae), a new legless lizard from the interior of Western Australia LA Smith1 & J Henry2 1Western Australian Museum of Natural Science, Francis Street, Perth WA 6000 email: [email protected] 2 Ninox Wildlife Consulting, Lot 14, The Glade, Keysbrook WA 6206 Manuscript received November 1998; accepted April 1999 Abstract A new species of pygopod, Aprasia picturata is described from the arid interior of Western Australia. The two specimens of the new species are from stony terrain near Leonora about 250 km from Bungalbin sandplain where the nearest Aprasia (A. repens) has been collected. The head scalation of the new species is most like Aprasia rostrata, the colouration most like Aprasia smithi. Introduction The 35 species and eight genera of legless lizard (Pygopodidae) currently recognised are confined to Australia and New Guinea. Of these, 34 species and all eight genera occur in Australia (Cogger 1992) and in New Guinea there is one genus and two species (Kluge 1974). In Western Australia there are 23 species and six genera of pygopods (Storr et al. 1990). The monotypic genera Aclys and Pletholax and eight of the 10 known worm-like fossorial species of Aprasia are only found in Western Australia and then, almost exclusively, along the coast. In Western Australia, members of the genus Aprasia are found on Hermite Island in the north and on the mainland from North West Cape south and east to Esperance and the southeast coast east of the vicinity of Toolina Rockhole (Fig 1).
    [Show full text]
  • Fauna of Australia 2A
    FAUNA of AUSTRALIA 28. FAMILY PYGOPODIDAE Glenn M. Shea 28. FAMILY PYGOPODIDAE Pl. 4.9. Delma butleri (Pygopodidae) is legless; it inhabits Triodia clumps in semi- arid and arid habitats in southern Australia; the pale yellow of the belly can brighten rapidly, perhaps in response to stress. [G. Shea] Pl. 4.10. Lialis burtonis (Pygopodidae) is found throughout Australia except in the extreme south-west and south-east; highly variable in colour and pattern; inhabits low vegetation and ground litter; feeds mainly on small lizards. [J. Wombey] 2 28. FAMILY PYGOPODIDAE Pl. 4.11. Aprasia parapulchella (Pygopodidae): a little known species found near Canberra and parts of the Riverina, New South Wales. [J. Wombey] Pl. 4.12. Pygopus nigriceps (Pygopodidae): showing characteristic black head bands; a nocturnal insectivore found throughout Australia, except along the wetter south and south-east coasts and ranges. [H. Cogger] 3 28. FAMILY PYGOPODIDAE Figure 28.1 Pygopus lepidopodus, the most generally primitive pygopodid. [B. Jantulik] DEFINITION AND GENERAL DESCRIPTION The Pygopodidae is a small family of 35 species, placed by most recent authors in eight genera. The family is endemic to Australia and New Guinea. All species are elongate, snake-like lizards (Fig. 28.1, Pls 4.9–4.12), with imbricate, or overlapping, body scales, hind limbs reduced to short scaly flaps without obvious toes (Fig. 28.2), and a tail which varies from slightly shorter to much longer than the body and is capable of being autotomised. There are no external traces of front limbs. The eyes have vertical pupils and are covered by a transparent spectacle.
    [Show full text]
  • A Phylogeny and Revised Classification of Squamata, Including 4161 Species of Lizards and Snakes
    BMC Evolutionary Biology This Provisional PDF corresponds to the article as it appeared upon acceptance. Fully formatted PDF and full text (HTML) versions will be made available soon. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes BMC Evolutionary Biology 2013, 13:93 doi:10.1186/1471-2148-13-93 Robert Alexander Pyron ([email protected]) Frank T Burbrink ([email protected]) John J Wiens ([email protected]) ISSN 1471-2148 Article type Research article Submission date 30 January 2013 Acceptance date 19 March 2013 Publication date 29 April 2013 Article URL http://www.biomedcentral.com/1471-2148/13/93 Like all articles in BMC journals, this peer-reviewed article can be downloaded, printed and distributed freely for any purposes (see copyright notice below). Articles in BMC journals are listed in PubMed and archived at PubMed Central. For information about publishing your research in BMC journals or any BioMed Central journal, go to http://www.biomedcentral.com/info/authors/ © 2013 Pyron et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes Robert Alexander Pyron 1* * Corresponding author Email: [email protected] Frank T Burbrink 2,3 Email: [email protected] John J Wiens 4 Email: [email protected] 1 Department of Biological Sciences, The George Washington University, 2023 G St.
    [Show full text]
  • Targeted Flora and Fauna Habitat Survey of Proposed Development
    Targeted Flora and Fauna Habitat Survey of Proposed Development in Swan View Prepared for Statewest Planning Ref: T18022 Terratree Pty Ltd ABN 48 159 6065 005 Unit 3, No. 42 Victoria Street, Midland WA 6056 Telephone: (08) 9250 1163 Mobile: 0400 003 688 Email: [email protected] www.terratree.com.au Document Control Revision Details Date Author Reviewer Rev 0 Internal Review 10/01/2019 G. Maslen J. Grehan Rev A Draft for Submission to Client for Review 23/01/2019 G. Maslen J. Grehan Rev B Final Submission to Client 07/02/2019 G. Maslen S. O’Hara Joseph Grehan Director and Principal Ecologist Targeted Flora and Fauna Survey of Proposed Development in Swan View for Statewest Planning i DISCLAIMER This document is prepared in accordance with and subject to an agreement between Terratree Pty Ltd (“Terratree”) and the client for whom it has been prepared (“Statewest Planning”) and is restricted to those issues that have been raised by the client in its engagement of Terratree and prepared using the standard of skill and care ordinarily exercised by Environmental Scientists in the preparation of such documents. Any organisation or person that relies on or uses this document for purposes or reasons other than those agreed by Terratree and the client without first obtaining the prior written consent of Terratree, does so entirely at their own risk and Terratree denies all liability in tort, contract or otherwise for any loss, damage or injury of any kind whatsoever (whether in negligence or otherwise) that may be suffered as a consequence of relying on this document for any purpose other than that agreed with the client.
    [Show full text]
  • Aprasia Pseudopulchella Flinders Ranges Worm-Lizard
    REPTILE Aprasia pseudopulchella Flinders Ranges Worm-lizard AUS SA AMLR Endemism Residency Distribution and Population Found exclusively in the Mount Lofty and Flinders V - U State Resident Ranges blocks, with the southern extreme of its range in the foothills just north of Adelaide.1 Eight individuals recorded in the northern suburbs of Adelaide during a 30 month survey of the Cobbler Creek RP near Salisbury (Mitchell 1992; Cogger et al. 1993).5 Also occurs in Mount Remarkable NP/Mambray Creek (Cogger et al. 1993).5 Post-1983 AMLR filtered records are few; west of One Tree Hill (near Cobbler Creek RP) and from Para Wirra RP.2,3 Pre-1983 AMLR filtered records indicate an additional record from the Mylor area.3 Habitat Occurs in open woodland, native tussock grassland, Photo: © Mark Hutchinson riparian habitats and rocky isolates (Cogger et al. Conservation Significance 1993). Prefers stony soils or clay soils with a stony Endemic to SA. The AMLR distribution is a peripheral surface (Wilson and Knowles 1988; Cogger et al. 2 part of a very limited extant distribution in adjacent 1993). regions within SA. Within the AMLR the species’ relative area of occupancy is classified as ‘Extremely Little is known about the abundance of this species. Restricted’.3 Populations may be in decline due to a number of factors, the main one being habitat degradation An infraspecific taxa ‘morphologically and through cropping and pasture improvement. Often electrophoretically this species is only doubtfully found under rocks in ant or termite nests and this is distinct from Aprasia parapulchella of NSW and VIC’ thought to be a critical combination for this lizard.
    [Show full text]
  • Species Richness in Time and Space: a Phylogenetic and Geographic Perspective
    Species Richness in Time and Space: a Phylogenetic and Geographic Perspective by Pascal Olivier Title A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Ecology and Evolutionary Biology) in The University of Michigan 2018 Doctoral Committee: Assistant Professor and Assistant Curator Daniel Rabosky, Chair Associate Professor Johannes Foufopoulos Professor L. Lacey Knowles Assistant Professor Stephen A. Smith Pascal O Title [email protected] ORCID iD: 0000-0002-6316-0736 c Pascal O Title 2018 DEDICATION To Judge Julius Title, for always encouraging me to be inquisitive. ii ACKNOWLEDGEMENTS The research presented in this dissertation has been supported by a number of research grants from the University of Michigan and from academic societies. I thank the Society of Systematic Biologists, the Society for the Study of Evolution, and the Herpetologists League for supporting my work. I am also extremely grateful to the Rackham Graduate School, the University of Michigan Museum of Zoology C.F. Walker and Hinsdale scholarships, as well as to the Department of Ecology and Evolutionary Biology Block grants, for generously providing support throughout my PhD. Much of this research was also made possible by a Rackham Predoctoral Fellowship, and by a fellowship from the Michigan Institute for Computational Discovery and Engineering. First and foremost, I would like to thank my advisor, Dr. Dan Rabosky, for taking me on as one of his first graduate students. I have learned a tremendous amount under his guidance, and conducting research with him has been both exhilarating and inspiring. I am also grateful for his friendship and company, both in Ann Arbor and especially in the field, which have produced experiences that I will never forget.
    [Show full text]